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The Solar Corona

The solar corona is a complex and dynamic system

Measuring physical properties in any solar region is important for
understanding the processes that lead to these events

Figure: The photospheric magnetic field measured with HMI, million degree
emission observed with the AIA Fe IX 171,Å channel, and high temperature loops
observed with XRT
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The Problem

We want to infer physical quantities of the solar atmosphere (density,
temperature, path length, etc.), but we only observe intensity

Inferences rely on models for the underlying atomic physics

How to address uncertainty in the atomic physics models?

Figure: Hinode spacecraft. Image credit: NASA/GSFC/C. Meaney
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Physical Parameters

k : pixel index, of 1000 randomly selected from the image

nek : number of free electrons per unit volume in plasma

Tek : electron temperature

dsk : path length through the solar atmosphere

θk = (log nek , log dsk)

m: index of the emissivity curve

Expected intensity of line with wavelength λ:

ε
(m)
λ (nek ,Tek)n2ekdsk

ε
(m)
λ (nek ,Tek) is the plasma emissivity for the line with wavelength λ

in pixel k
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Data: Observed Intensity

Data from the Extreme-Ultraviolet Imaging Spectrometer (EIS) on
Hinode spacecraft.

Figure: Example EIS spectrum of seven Fe XIII lines

Spectral lines with wavelengths Λ = {λ1, . . . , λJ}
Observed intensities for K pixels and J wavelengths:

D̂ = {Dk = (Ikλ1 , . . . , IkλJ
), k = 1, . . . ,K}

Standard deviation σkλj
are also measured
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Uncertainty: Emissivity

Emissivity: how strongly energy is radiated at a given wavelength
Simulated from a model accounting for uncertainty in the atomic data
Suppose a collection of M emissivity curves are known

M = {ε(m)
λ (nek ,Tek), λ ∈ Λ,m = 1, . . . ,M}

m = 1: the default value from CHIANTI
Treating all pixels independently, but with same emissivities

Figure: A simplified level diagram: transitions relevant to the 7 lines considered.
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Aim

To infer density
In Fe XIII, density dependence of emissivities is not sensitive to
temperature

Figure: Relationship of emissivities and density when temperature changes in
Fe XIII case.

Xixi Yu (Imperial College London) A Case Study in Fe XIII 19 April 2018 8 / 20



Bayesian Inference

Prior distribution: quantify the uncertainty in the values of the
unknown model parameters before the data is observed

Likelihood: the distribution of the data given the model parameters

Posterior distribution: quantify the uncertainty in the values of the
unknown model parameters after the data is observed

Relationship:
posterior ∝ likelihood× prior
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Statistical Model

Let M = {ε(m)
λ (nek ,Tek), λ ∈ Λ,m = 1, . . . ,M}, emissivity curves

Let D̂ = {Dk = (Ikλ1 , . . . , IkλJ
), k = 1, . . . ,K}, observed intensity

Likeihood p(Dk | m, θk)

Ikλ | m,nek ,dsk
indep∼ Normal

(
ε
(m)
λ (nek ,Tek)n2ekdsk , σ

2
kλ

)
, for λ ∈ Λ (1)
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Prior Distributions

Independent prior distributions:

p(m, θk) = p(m) p(log nek) p(log dsk) (2)

Prior distributions of p(m) and p(θk):

m ∼ DiscreteUniform({1, . . . ,M}) (3)

log10 nek ∼ Uniform(min = 7,max = 12) (4)

log10 dsk ∼ Cauchy(center = 9, scale = 5) (5)

Note: a flat prior, p(log dsk) ∝ 1, yields an improper posterior
distribution because likelihood → constant > 0 as log dsk → −∞
Here we use a sample of M = 1000 emissivity curves
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Posterior Distribution and Methods

Use Bayesian Methods to incorporate information in the data for
narrowing the uncertainty in the atomic physics calculation

Joint posterior distribution of m and θk = (log nek , log dsk)

p(m, θk | Dk) ∝ p(Dk | m, θk) p(m, θk), (6)

m is treated as an unknown parameter
Have specified the likelihood and prior distribution

Aim: To obtain a Monte Carlo (MC) sample from p(m, θk | Dk)

Strategy: two-step Monte Carlo samplers

Separate and joint analysis: Deal with pixels individually or jointly
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Using a sample for p(m) makes it easy
for different team experts to work in parallel:

−→

−→
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Pragmatic vs. Fully Bayesian Methods

Joint posterior distribution:

p(m, θk | Dk) =
p(Dk | m, θk)p(m, θk)

p(Dk)
(7)

How to handle uncertainty in ?

Pragmatic Bayesian

p(m, θk | Dk) = p(θk | Dk ,m) p(m). (8)

M = 1000 equally likely emissivity curves as a priori

Fully Bayesian

p(m, θk | Dk) = p(θk | Dk ,m) p(m | Dk). (9)
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Compare inferred parameters via diff methods for pixel 217
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Compare inferred parameters via diff methods for pixel 593
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Multimodal Posterior Distributions

Bimodal posterior distributions occur
Two modes correspond to two emissivity curves,
Emis471 and Emis368

Reason: Not enough emissivity curves
Challenge: Sparse selection of emissivity curves
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Figure: Comparison of the relative posterior probability p(m|Dk) for test
(top) or observed (bottom) set of intensities,

Xixi Yu (Imperial College London) A Case Study in Fe XIII 19 April 2018 17 / 20



Compare selected emissivities with default
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Figure: Plot of ratio of selected emissivities and default CHIANTI over 7 lines.
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Conclusions

Use a Bayesian framework to interpret the observed intensities in
the context of the different realizations of the atomic data

A pragmatic Bayesian approach, where each realization of
emissivities is considered to be equally likely, yields uncertainties in
the electron density and path length that are larger than the
statistical uncertainty implied by fluctuation in data alone

A fully Bayesian approach, where we allow the observed
intensities to update the uncertainty in the emissivity curves,
reduces the uncertainties in the plasma parameters

A different realization of the atomic data is more likely than the
default CHIANTI calculation
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Nest Step

Come up with a way to efficiently represent the high dimensional
joint distribution of the uncertainty of the emissivity curves

An algorithm: summarizing the distribution with multivariate
(standard) Normal distribution via principal component analysis
(PCA)
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