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@ Approximate Bayesian Computation (ABC) Overview

— Framework for inference without specifying a likelihood

@ Simple example: Stellar Initial Mass Function (IMF) using
usual assumptions



Bayesian methods

Goal: the posterior distribution of the unknown parameter(s) 6.

Posterior distribution

Likelihood E;i:r\
Data s N
w675 = W x F(y | 6)r(6) = L(® | y)m(6)




Posterior distribution

_ L(0 | yl:n)ﬂ-(e)
O 1) = T y)n(0)d0
Prior: ()

— In the standard Bayesian set-up, the likelihood is required



Posterior distribution
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Prior: ()

With ABC, generate xi., from the forward process that produced
Y1.n, then approximate the posterior using

77(0 ’ p()’l:naxl:n) < 5)

where p is a distance function.
7T(9 ’ p(yl;,,,xl;,,) < 6) — (assuming p preserves sufficiency)

o 7(0 | y1.n) (the posterior) as ¢ — 0
e m(0) (the prior) as ¢ — o0



Approximate Bayesian Computation
o ‘Likelihood-free” approach (likelihood is not explicitly specified)

@ Works by simulating from the forward process

Issues with writing down a likelihood
© Physical model too complex or unknown
@ Theory is not fully understood
© Strong dependency in data
@ Observational limitations
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Assumptions(0) '

?

Real data == Simulated data



For observations yi.p, distance function p, and (small) tolerance e

Algorithm 1 Basic ABC Algorithm

1: fori=1to N do

while p (S, S) > € do

3 Propose 6* by drawing 6* from prior 7(6)

4 Generate xj., from forward process F(x | 6*)
5: Calculate summary statistics {S,, Sc}
6

;

8:

N

end while
o) « o*
end for

o ABC posterior based on {#(1) 9() ... 9N} = {g(NN

° {6(")};\’:1 are often referred to as particles

Introduced in Pritchard et al. (1999) (population genetics), Rubin (1984)
(conceptually)



Gaussian illustration

Data yi.p id Normal(u, 1) where n = sample size, p is unknown

Forward process F(x | u*) ~ Normal(p*, 1)
(In this case, we use the likelihood)

Summary statistics {S, = y, Sx = x}
Distance function p(S,, Sx) = |y — X|
Tolerance e = 0.50 and 0.10

Prior (1) = Normal(0,10)



Gaussian illustration: posteriors for p
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Sequential ABC

Main idea

Instead of starting the ABC algorithm over with a smaller tolerance
(€), use the already sampled particle system as a proposal
distribution rather than drawing from the prior distribution.

Particle system:

(1) retained sampled values, (2) importance weights

Some references:
Beaumont et al. (2009); Moral et al. (2011); Bonassi and West (2004)



Algorithm 2 ABC - Population Monte Carlo algorithm*

1: At iteration t =1 _

2: Algorithm 1: Basic ABC sampler to obtain {95')}?’:1

3: Set importance weights W) = 1/N fori=1,...,N

4: fort_2to T do

5. Set1?=2-var ({Qt - W( )1}, 1)

6 for i=1to N do

7 while p (S(y1:n), S(X1n)) > ¢ do

8 Draw 6o from {6\, }¥, with probabilities { W }¥,

9: Propose 6" ~ N(6o, 77)
10: Generate xi:, from F(x | 6%)
11: Calculate summary statistics {S,, S«}
12: end while
13: 0) o+ (
. ) = (6
14: We? R Wt(j7)1¢[(T;1)(9£f)76921)}
15: end for
16: (WO, (WYL S, WY
17: end for

Decreasing tolerances €1 > --- > er, ¢(-) is the density function of a N(0,1)
*From Beaumont et al. (2009)



Gaussian illustration: sequential posteriors

N:1000, n:25
= True Posterior '
o e=== ABC Posterior
o 7| = = Inputvalue

Density

Tolerance sequence, €1:1p:
1.00 0.75 053 038 027 0.19 0.15 0.11 0.08

0.06
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Star Cluster Formation

IMF: The distribution of star masses after a star formation event
within a specified volume of space
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Image (left): Adapted from http://www.astro.ljmu.ac.uk
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Examples of IMF models

Power-law: Salpeter (1955)

- Used a power law with o« = 2.35

Broken power-law: Kroupa (2001)
(M) oc M™%, My < M < Mo,

a; =03 for 0.01 < M/Mg,, < 0.08 [Sub-stellar]
ap = 1.3 for 0.08 < M/Ms,, < 0.50
az =23 for 0.50 < M/Msyn < Mmax

Log-Normal model: Chabrier (2003a)

(log m — log 0.08)?
B 2(0.69)2 )

dn
dlogm

&(logm) = = 0.158 x exp (

*1 Msy, = 1 Solar Mass (the mass of our Sun)
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ABC for the stellar initial mass function

@ We propose an ABC algorithm using the canonical IMF model
as the forward process
e Assume stellar masses are independent draws from the IMF
o Useful for selecting appropriate summary statistics and
distance functions
e Can account for various observational limitations and
uncertainties

@ We propose a new data-generating model

e Account for the dependency in the stellar masses due to the
cluster formation process
o New model can be used in other settings

Cisewski, Weller, Schafer, and Hogg (Submitted)
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IMF Likelihood

e Start with a power-law distribution: each star’s mass is
independently drawn from a power law distribution with density

l—« 11—«
Mmax - M

min

f(m) — <1_a> m % me (Mmim Mmax)

@ Then the likelihood is

min

1 Ntot Ntot
Lla | min,,) = Tal_a x H m;®
Mmax - M i=1

nior = total number of stars in cluster



Observational limitations: aging

Lifecycle of star depends on mass — more massive stars die faster

Cluster age of 7 Myr — only observe stars with masses

< Tage = 7725 x 108/5
Then the likelihood is

1 _
Lla | myng,,, Ntot) = ( @

e 11—«
Tige™ — M

min

Nops [ Nobs
) (H mia> X P(M > Tage)ntot*"obs

i=1

nior = # of stars in cluster
Nops = F£ stars observed in cluster
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Observational limitations: completeness

o Completeness function:

0, m < Cnin
P(observing star | m) = % m € [Gain, Cmax)
1, m > Crmax

@ Probability of observing a particular star given its mass
@ Depends on the flux limit, stellar crowding, etc.

Image: NASA, J. Trauger (JPL), J. Westphal (Caltech)
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Observational limitations: measurement error

Incorporating log-normal measurement error gives our final likelihood:

L(e | Mingpe s Neot) =
11—«

<P(M > Tage) + (

max

M — Ciin

x [ H{M> Crax} + | ——=

oo _ o
min

x l_bl {/Tageumz)’%mfle’ﬁ('%(mf)*'%“””z (
i=1 /2

"Cmax
L m
C. .

‘min

a v l1— M — Cin
G

11—«

max min

)I{Cmin S M S Cmax}) dM}

Moo _ o

Ntot — Nobs
— | aM
max — Crmin

o
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IMF

With aging, completeness, and error

Sample size = 1000 stars, [Crin, Cmax] = [2,4], 0 = 0.25
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Simulation Study: forward model

Draw from

l1-a —a

Aged 30 Myrs

Observational completeness:

0, m<4
P(obs | m) = ’"T_2 m € [2,4]
1, m> 4.

Uncertainty: log M = log m + 0.25n (with n ~ N(0,1))
Prior: o ~ UJ[0, 6]*
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Simulation Study: summary statistics

We want to account for the following with our summary statistics
and distance functions:

@ Shape of the observed Mass Function

1/2

N

p1(im ) = | [ {Fogm0) ~ om0} ]

@ Number of stars observed

P2(msim7 mobs) = |1 - nsim/”obs|

Msim = masses of the stars simulated from the forward model
myps = masses of observed stars

nsim = number of stars simulated from the forward model
nops = number of observed stars
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Simulation Study

@ Draw n = 103 stars

@ IMF slope a = 2.35 with Mp,;, = 2 and My, = 60
© N =103 particles

@ T = 30 sequential time steps

Observed Mass Function
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Results

Density
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= Attime step =1

— At time step = 30
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Results

Density

35

Posteriors

= True posterior
= = Input value
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Results

Posteriors
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Results

el
31 —— Posterior predictive
m — = 95% Credible bands
[\ —— Observed
o
N
S
©
2 s |
[}
c
[
o e |
S}
w0
o 4
S}
o
o 4
S}
T T T T
0 5 10 15
Mass

Credible bands based on 1000 draws from the ABC posterior
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Summary

@ ABC can be a useful tool when data are too complex to define a
reasonable likelihood

@ Selection of good summary statistics is crucial for ABC posterior to
be meaningful

Assumptions(6) '
model

?

Real data Simulated data
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