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The DEM Reconstruction Problem

GOAL: Want to ascertain some measure of n_, and T, of the optically thin plasma in
the solar atmosphere.

For a line of sight through a heterogeneous distribution of plasma, the Differential

Emission Measure is a fundamental measure of the plasma that can be determined
with intensity observations of atomic transitions.

Ty
ODbs|channel = / Response(T)|channel X DEM(T) dT
Ty

A2
Response(T')|channel :/ Eff. Area(\)|channer X S(A, T') dA
A1

DEM(T) dT' = Emission measure at T = T+dT
= (Total number electrons at T > T+dT) x (average electron density over T = T+dT)
= Ne(T) X <ne>(T)

Make discrete formulation... d. = Z R.r x DEMy
T

How to invert linear system of equations to get DEM,?
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The DEM Reconstruction Problem: CONCERNS

d, = Z R. x DEMyp
T

* Finding the best (or an adequate) fit to the data.

» Keeping the DEM (mostly) positive definite. (l.e.: all DEM values > 0)

* Dealing with the underdetermined problem (N, > N_). Handling the
multiplicity of solutions and selecting for one solution.

* The problem is “ill-posed”, meaning that it can be difficult to find a
contiguous variation in DEM solutions for a corresponding variation in
the data.

* Reasonable computation speed (i.e.: fast enough to be useful).
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Historical Approaches to DEM Reconstruction

d, = Z R.r x DEM7
T

Can broadly categorize solution methods:
* Direct inversion
* Parametric models (assume a shape)
* [terative fitting

A principal characteristic shared by these methods:
They all map one observation set to one DEM solution.

— This necessarily confounds the handling of the issues (fitting, p.d., selection from
underdetermined multiplicity, ill-posedness).

— Selecting one solution from the underdetermined multiplicity is equivalent to
applying some a priori information that is independent of the evidence of the data.

Historically, regularization has emerged as the preferred way to simultaneously get
better results on all issues. (E.g., fitness criterion is a tradeoff of fit to data against
maximizing the information entropy.)
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Historical Approaches to DEM Reconstruction:
Consequences

d, = Z R. x DEMyp
T

When the solution method returns one solution and confounds all issues...:

... the underdetermined multiplicity is opaquely filtered. No chance to investigate
alternate shapes that satisfy the data. Was a better fit to the data possible?

... difficult to understand/pursue the ramifications of the implicit (or explicit)
a priori information in selecting the solution.

... the ill-posed property may be somewhat mitigated by selecting for
“smoothest” solutions, but there is no guarantee. As the community is venturing into

correlating emission measures across space and time, the ability to control for
contiguous solutions will gain importance.
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A (R)Evolution in DEM Methodology

A new method for solving the DEM inversion:
* Finds all “globally best fit” pos.def. solutions that fit the data. If no exact solutions exist,
then finds closest possible fit.

* This is equivalent to finding the subspace of solutions that fit the data. One may (must)
still apply a priori constraints to filter for a unique solution.

* Working with the set of all global solutions, it is possible to avoid ill-posedness and find
contiguous solutions for contiguous changes to the observations.

The (R)Evolution is...:
* One can know/explore ALL of the best possible (pos.def.) fits to the data (even if one
wants to do trade-offs against other criteria).

* The “ill-posed” aspect of the problem can be cleanly circumvented.

* The issue of fitting the data is cleanly separated from the issue of applying a priori
information to select a solution.

* There is a framework for mapping the “geometry” of the data and DEM vector
spaces, as determined by the response functions and discretized temperature grid.

* By these properties, the new method is not only suitable for reconstructing DEMs, it
may also be used for meta-analysis of other solution methods.
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The “Convex Hull + Singular Value Decomposition” Framework
(CH+SVD)

Convex Hull €2 “Geometry” of observation (ratio) vector space:

* For ANY observation set that corresponds to a physical (p.d.) DEM, there MUST be at least one
solution that uses only N_ of the N temperature bins, or there is no exact solution.

* Strategy = It is trivial to solve for a DEM with N_unknowns, using data with N_knowns. Just try
every combination of “N; choose N_” bins.

* There is a very nice analogy to center of mass problems that provides geometric insight for
thinking about the solutions in the observation vector space.
* Example #1: one can visualize how far an observation set is from being consistent with an
isothermal solution.
* Example #2: one can visualize whether an observation set has an exact solution, or where
the closest solvable set lies.
* Example #3: one can see that it is possible to find solutions that vary contiguously with
changes in the data, and thereby circumvent the ill-posedness problem.

* If none of the tried combinations work, then there is no exact solution. However, there are
known linear programming methods for finding the absolutely closest observation set that CAN
be solved.

* This method gives ALL DEM solutions that use N (or fewer) temperature bins. To get the ones

that use more bins, we turn to SVD.
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The “Convex Hull + Singular Value Decomposition” Framework
(CH+SVD)

SVD <> “Geometry” of DEM vector space:

* For a response matrix R_; on a specific T-grid, SVD will provide an orthonormal set of
N basis functions for DEMs.

III

* In that set, there will be N “real” basis functions 8/).whose coefficients a’ are

uniquely fixed by the data d...

Ne
d, = Z Rer X Z al? Qéf)
T i=1

* There will also be (N-N,) “null” basis functions ¢U); that solve the homogeneous
DEM equation, and therefore their coefficients b0 are irrelevant for fitting to the data.

0=%" R (bm ¢¥'>) ¥V j={1.(Ny—N))}
T

NC NT_NC
DEM; = (Z a® 9§E)> + ( > bl qs(TJ)) V¥ bWs.t. DEMy > 0
i=1 j=1
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Application to Nanoflares
(Winebarger et al., 2012, ApJ Lett. 746, 17)

Emission Measure
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Application to Nanoflares (AlA)

Hot slopes for nanoflares
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Application to Nanoflares (AlA)
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Application to Nanoflares (MAGIX)

MAGIX Response functions
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Application to Nanoflares (MAGIX)
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