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Computer Model for Stellar Evolution
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@ We observe a star's photometric magnitudes—the apparent
brightness of a star in several wide wavelength bands.

e Magnitudes observed with Gaussian measurement error.

@ Computer models to predict the photometric magnitudes of a star
given a set of input parameters that describe certain characteristics
about the star.

@ Embed these models in a multilevel model for statistical inference.
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Combining Computer Models and Statistical Models
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@ Observe photometric magnitudes through n different filters per star.
@ Model photometric magnitudes as n independent Gaussians.

@ Means involve the computer models for stellar evolution; depend on
the stellar evolution parameters.
o Known Gaussian measurement errors in the covariance matrix.

@ Data is contaminated by non-cluster field stars.

@ Use a finite mixture model, with field star magnitudes assumed
uniform over the range of the data.
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Final Combined Computer/Statistical Model
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@ We take a Bayesian approach to model fitting.

o Informative prior distributions are constructed based on
previous studies and astrophysical theory.
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Bayesian Statistical Analyses

@ Specifying a Bayesian statistical model:

o Likelihood Function: the distribution of the data, Y, given
model parameters, ©. Denoted by L(©)=P(Y | ©).

@ © may contain computer model inputs.

e Prior Distribution: represents knowledge about the parameters
obtained prior to the current data. Denoted by P(©).

e Posterior Distribution: represents knowledge about the
parameters in light of the data. Denoted by P(© | Y).

@ From Bayes' Theorem:

P(©]Y)e<P(Y|©)P(O)
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Complex Posterior Distributions
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Exploring P(© | Y)

source: http://commons.wikimedia.org/wiki/File:3dRosenbrock.png#mediaviewer/File:3dRosenbrock.png

@ We explore the posterior distribution, P(© | Y), using Markov
chain Monte Carlo (MCMC) methods.

@ MCMC produces (correlated) samples from P(© | Y).
o Fitted values, 95% Cls, etc. computed using MCMC draws.
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The Metropolis Algorithm

Draw ©©) from some starting distribution.
Fort=1,2,...

o Draw “proposed state” ©*) = ©(t=1) 4 random perturbation.

e random perturbation must be symmetric
o eg. O ~ N(O1DE)

P(0M 1Y) )

(] Compute a = min (1, W

o Set ©(t) = ©(*) with probability a, else set ©(t) = @(t-1),

Note that proposed states “uphill” are always accepted, while
proposed states “downhill” are only sometimes accepted.
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The Metropolis Algorithm: Step-Size Effect
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Adaptive Metropolis Algorithm

@ How to choose an “optimal” proposal distribution?

e For a N(0,X) target distribution, the optimal proposal
distribution is N (o, [(2.38)2 /d] z), where ¥ is a
d—dimensional covariance matrix (Gelman et al. 1996).

e Adaptive Metropolis (AM) algorithm (e.g., Haario et al. 2001):

o At iteration t, draw ©() ~ N (@(t’l), {(2.38)2/d} 5t-1)-
o &;_1 is the empirical covariance matrix of @@ ... ©(t-1),

Key condition: the amount of adaptation at iteration t goes to 0 as
t — oo (Diminishing Adaptation Condition).
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Adaptive Metropolis Advantage
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e Exploring a (marginal)
posterior distribution using
an AM algorithm.

@ Improved efficiency and
convergence compared to
non-adaptive Metropolis
implementation.

e Same data and setup used
for both algorithms.

o AM algorithm adapts the
proposal distribution
starting at iteration 1000.
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CMD Matrix with Fitted Computer Models
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