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What’s the Problem?
True Sky:
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Real Instrument: Model Instrument:

Instruments: Exposure; Effective Area (e.g. ARF) ; Spatial Response (e.g.
PSF); Energy Response (e.g. RMF) ... (All with Calibration Uncertainties)




* Dataz: Poisson, Other complications ¢
Real Data, Exposure:  Model Expected Rate:

10 15 20 25 30
CGRO/EGRET Data from HEASARC;

100000 2000 Model from GALPROP collaboration




What’s the Problem? Looks Easy!

|. MODEL the SKY

2. MODEL the INSTRUMENT RESPONSE
3. MODEL any BACKGROUND

4. PREDICT the EXPECTED RATE

5. COMPARE EXPECTED RATE to DATA:
Search through parameter-space

Using Likelihood framework
6. PROBLEMS:

“Unknown” (i.e. no physics model) components;
What'’s a “Good-Enough-Fit” (e.g. Poisson)?
Correlations among (say) neighboring pixels
Significance of unknown (maybe irregular) features!?
Searching larger and larger parameter spaces




Our Solution - Plain but Tedious!

|. We CRACKED the GOODNESS-OF-FIT, etc.
(for Poisson, but method can work for any distribution).

2. We MODEL a MISMATCH (between data and expected

rate; analogous to a residual) with a FLEXIBLE MODEL
(like Multi-scale)

3. We FIT enhanced model (physics-model+flexible-model)
3.1 Using MCMC to explore the parmeter space;
3.2 Using MEAN as the “best estimate”™
3.3 (Allows for calibration uncertainty -
see H. Lee poster 41.15)




Our Solution - Plain but Tedious, 2:

4. We QUANTIFY the MISMATCH and get SIGNIFICANCE of
UNKNOWN FEATURES by:

4.1 ANALYZE the INTERESTING (usually, real) DATA

4.2 SIMULATING samples from the NULL (physics-model)

4.3 ANALYZE SIMULATIONS from NULL: IL.E. in exactly
the same way as for the INTERESTING DATA

4.4 NOW one has many MCMC SAMPLES of each.
Use a few key SUMMARIES like:
TOTAL COUNTS in flexible Multi-Scale component;
Norm, or SCALE FACTOR, of physics-based model
NOTE: Because of intrinsic correlations among pixels
inherent in most multi-scale or flexible models,
bixel-by-pixel significances won’t work in a simple way.




Our Solution - Plain but Tedious, 3:

5. COMPARE EXPECTED RATE to DATA:
Search parameter-space; Using Likelihood framework
5.1 We COMPARE the distributions of the SUMMARIES
(e.g. Total MS Counts; scale factor)
for NULL and INTERESTING Data.
What is the probability of ‘overlap’?

THIS IS OUR GOODNESS-OF-FIT TEST.
5.2 We RANK these SUMMARY STATISTICS.

We take SLICES through the tails to get

(say) the +/-5% limits on flux and position.
THIS IS OUR FEATURE SIGNIFICANCE TEST.
5.3 PROBLEM: Currently takes a lot of time to do this nicely
(On the order of a day for a 128x128 sky image, on G4).




ASIDE: MULTI-SCALE FOR POISSON- called
“Multiplicative Multiscale Innovation Models”

MMI Slides courtesy of
R.Willett, SAMSI 2006

Timmermann & Nowak, 1999
Kolaczyk, 1999
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ASIDE: MULTI-SCALE FOR POISSON- called
“Multiplicative Multiscale Innovation Models”
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¢ Recursively subdivide image into squares
e L et {p} denote the ratio between child and parent
intensities

e Knowing {p} < Knowing {\}
e Estimate {p} from empirical estimates based on counts

MMI Slides courtesy of in each partition square
R.Willett, SAMSI 2006

Timmermann & Nowak, 1999
Kolaczyk, 1999




REMINDER OF TRICKS: (Using our MMI, Enhanced EMC?2)

* Match Models to Physics: Multiply, Add; SO
Quantify Difference: Multiscale + Scale-Factor®(Null)

* Get Uncertainties by Embedding in MCMC; SO
Many Samples of Images

* Compare to Null Simulations: Low-Dim (2+) Summary
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Simulation Study #1: . ]
NULL - Model Only Simulated All-Sky Data+Model
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Nothing (Null Hypothesis)
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Simulation Study #1: Baseline Null: Results
NULL - Model Only
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simulation Study #2: Simulated All-Sky Data+Model
Bright Discontinuous

Extra Component

=
?

ata [Simulated from

odel+Bright Extra

=
l
S~
o
a O-
21
00
@)

o
-
T




Bright Discontinuous Unknown
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Null (.) vs Bright Unknown (+)
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Simulation Study #2:

Bright Discontinuous
Extra Component
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Simulation Study #3: Simulated All-Sky Data+Model
Faint Model MisMatch
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Null vs Faint Model Mis-Match

150 200 250

>
@)
-
O
>
O
O
| -
LL

100

50

0

Log10(Expected Total MS Counts)




Simulation Study #3:
Faint Model MisMatch Faint Model Mismatch: Results
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Special Thanks To:

NSF and SAMSI 2006 Special Topics in AstroStatistics
NASA and AISR Python Tools for AstroStatistics
CHASC: http://nea-www.harvard.edu/AstroStat/

Quick Reference: See Statistical Challenges in Modern Astronomy
IV, Proceedings, Connors and van Dyk, “How To Win With Non-Gaussian

Data: Poisson Goodness-of-Fit”




