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Single Frequency Periodograms C'= 2 wncos’(w tn =)

n

Yn = a cos(wt, —0) + b sin(wt, — 0) S= > wysin®(w t, — )
lOgL:_%i: (mna_nyn)zz _%iwn (2 — Un)? _)_%éj:(xn_yn)z T = ancos(w tn, — 0)sin(w t, — 6
- XC = anxncos(w tn, — 0)
PSchuster(®) = | ) zne ™" |2 . n
— (3 @ncos wta)? + (3 ansin wty)? Table 14.1 Periodograms XS = waansin(w t, —6) .

Name XC? XCXS X 52 a b

'S 1 0 1 - -
SML S/D —2T'/D CC/D (T XS-S XC)/D (T XC-C XS)/D
LSP 1/C 0 1 /S XC/C XS/S
B S/E 2T /E C/E
BLSP (C~?%/2871/2 0 C—3/2873/2

D= (T?-CS),E = D3/?

In the periodogram names in this table S = Schuster, ML = max
likelihood, B = Bayes/Bretthorst , LSP = Lomb-Scargle Periodogram.



Multiplc Frequency Perioclograms
Yn =0y cos(wity, — 0) + by sin(wit, — 0)

N

1 Tn — Yno
logl, = —— : .
2;( On ) “+Qa9 COS(UJztn — 9) + b9 S’L'TL((Uztn — 9) ;
Least-Squares Bayesian Marginalized Posterior
R = aj CC11 + b7 SS11 + a3 CC22 + b3 5522 Plwy, 1) / / / / (a1, by, az, by)day dbydasdbs |
—2(a1XCl+b1X51+a2XC2+b2X52) .
+2(a1b1CS11 + a1a2CC12 + a1baCS12 /_ TR g \/; BADTE

T bla,zSCIQ + bleSSIQ + a2b2C522 )

Other basis functions: just plug in!

Yn = a1 coS((wy + wa)ty) cos((wy — wa)ty)

b1 sin((w1 + wa)t,) cos((wr — ws)ty,




The Diagonal Singulatitg
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Omnigrams




Three Parameter time-domain Omnigram

9

QO
R
N
— m
T
Al S
o
1~ |
b
"N
o
V
n |
e
S
O O
|
N ]
=
)
S
S
b .
p —
-

P
<
<y
SRS
£ 3

T £ G
O o 3
,....O@
B E <4
O
0
Y,
-
O
O
D)
N

60

50

-
—

time



Autoregression: Remembrance of Things Past




Tp = ATp—1 T Tp

C=A"'={1,a,a",a°,...}

Classica”g: lal<1is necessary

A= (1, -a) o |
(Roots of characteristic equatlon

l-az=0 — 5 outside unit circle in the Complex

=1/ Plane: | -~az=0)

p
AR(p) : Z Akxn_k — A+*x X =R
k=0



. consider a series of terms laid out in a horizontal line, such that each is derived
from the preceding one according to a given law. Suppose this law takes the form of x,,
an equation of several consecutive terms and their indices indicating the position they gz,
occupy in the series. I call this the equation of finite first differences. The order or the
degree of this equation is the difference between the indices of its first and last terms.
In this way one can successively determine terms in the series, continuing indefinitely.
But to do so it is necessary to know [initial] values in the series equal in number to to AR(p)
the degree of the equation. These values are the arbitrary constants giving the general
term of the series, or of the integral of the difference equation.

(Ian_Q * o o



. consider a series of terms laid out in a horizontal line, such that each is derived
from the preceding one according to a given law. Suppose this law takes the form of x,,
an equation of several consecutive terms and their indices indicating the position they gz,
occupy in the series. I call this the equation of finite first differences. The order or the
degree of this equation is the difference between the indices of its first and last terms.
In this way one can successively determine terms in the series, continuing indefinitely.
But to do so it is necessary to know [initial] values in the series equal in number to to AR(p)
the degree of the equation. These values are the arbitrary constants giving the general
term of the series, or of the integral of the difference equation.

Pierre Simon de LaPlace (1749-1827),
in Essai philosophique sur les probabiliti‘es

azxn_z * o o



Autoregression is not Markov!

AR(1)’s memory one time-step into the past is similar to the
defining property of a Markov process (Section 21.4) as one whose

probability distribution depends on previous states x,,—p,k > 0
In contrast to such probabilistic memory, the dependence on the

past in Equation (19.14) is deterministic. The innovation, the only
probabilistic element, has no memory of the past.



. Moving Average Models
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Figure 19.1 The March From Discrete Events to Gaussianity. These time

In the limit of a large degree of pulse overlap, the process becomes
Gaussian and is fully described by its second order statistics. Much
information about pulse shapes is thereby irretrievable lost.

One example: fast-rise/exponential-decay pulses (FREDs) cannot
be distinguished from their time reverse. Due to the loss of phase
information in this limit, the true pulse shape cannot be recovered
by any method — including those introduced in Section ?77.



The Wold Decomposition



The Wold Decomposition Theorem: Any stationary process X can
be decomposed into the sum of two processes: one purely deterministic,
and the other a moving average consisting of the convolution of a constant
function (filter C') with an uncorrelated Gaussian process (innovation R):

X=CxR+D Tn ={) CkRn—k+ Dn} (19.84)

/ k>0
Serious|9

equal Random Deterministic

Constant



Chatfield (2004) considers it mainly of theoretical interest, and
has rarely found it of much assistance.

On the other hand, in his review of the book Wold (1938),
Neyman (1939) said the Wold Theorem is of considerable interest
in describing the structure of the most general discrete stationary,
and recommended the book to time series analysts in economics

and statistics, for a practically useful description of the theory.



The Wold Decomposition Theorem: Any stationary process X can
be decomposed into the sum of two processes: one purely deterministic,
and the other a moving average consisting of the convolution of a constant
function (filter C') with an uncorrelated Gaussian process (innovation R):

X=CxR+D Tn={» CiRu_+ Dn} (19.84)
k>0

Explicit Linearity The Wold Decomposition is linear in several ways:

e Process D is linearly deterministic (but not necessarily linear itself).
e The moving average C x R and trend D are simply added together.
e The MA expresses linear response to the innovation.

Stationarity is a very powerful condition!



The Wold Decomposition Theorem: Any stationary process X can
be decomposed into the sum of two processes: one purely deterministic,
and the other a moving average consisting of the convolution of a constant
function (filter C') with an uncorrelated Gaussian process (innovation R):

X=CxR+D Tn={» CiRu_+ Dn} (19.84)
k>0

Filter Specificity The linear form of the decomposition is rather
special itself, but there is more to come! The MA filter has these spe-
cific properties — consequences of the theorem following from the single
assumption of stationarity, and not imposed constraints:

- 1

S S —
(a) C is causal. |

(b) C' is constant. |

(c) C is minimum delay i

e ‘:J




Problems with Application to Real Data

Causality Need Not Apply

CL : . . e For sequential data in domains other than time (spatial, wave-
Note: The distribution [t ~ N(O’ U) of the Wold innovation may length, etc.) the concepts replacing past, present and future do

be astrophysically inappropriate in at least two ways. Its zero mean not have the same cause-and-effect type significance.

is not consistent with non-negativity of outbursts of radiation. The e We will see in Section 19.2 that for some filters the time at which
input begins is ambiguous. It is then natural to model response
both before and after the fiducial input moment (Chapter 20).

e In retrospective analysis, measurements over the full observation
interval are available to the analyst. Hence there is no reason why
the modeling the value at a given point of time can’t usefully
incorporate values in that point’s future.

shape of the normal distribution, with its finite probability of un-
bounded negative values, may differ from the actual distribution.

In at least these three major contexts, the conventional restriction

_ _ to causal models can result in underutilization of information in
X(t) =g el ol < the data Z
— 2 e—c( decay) |t—to t >t
The Arrow of Time

Analysis methods limited to second-order statistics do not access

information needed to distinguish between minimum and maxi-

/ , ;o / ~> mum delay filter shapes. Therefore they cannot capture the arrow

ArlCl Wl'-lat 1S tl’]lS Minimum Délag Thlﬂg. of time — to tell whether the “movie” is running in reverse or not.

In failing to distinguish any of the filters of intermediate delay
character, these methods miss more than just the arrow of time.
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Extended Wold Decomposition:
Given a stationary process X, there exist:

1 A linearly deterministic process D
2 A family of uncorrelated, zero-mean random processes { R*}
3 A family of (two-sided) moving average filters {C*}

such that
X=CF«RF+D, (20.1)

for all k. The filter family is the set of all those that have the same

autocorrelation function as X: one minimum delay, one maximum
delay, and the rest mixed delay.



+ARMA Models







Explicit Definition D b0 AkTn—k = D p_g CkTn—k

Convolutional Ax X =CxR

Fourier Transform FTs(k) FTx(k) = FT¢o(k) FTgr(k)
Z-Transform ZA(z) Zx(z2) = Zc(z) Zgr(2)

Laplace Transform ("L are %) Lx(s) = (3, cre ™) Lg(2)
Shift Operator ¢»(B)x, =6(B)r,

Characteristic Polynomial d(2)xy, = 0(2)ry,

Factored Characteristic Polynomial - 11.(1 —zak)z, =]].(1 — 2vk)n

23 e ™y Bese S



The ARMA Convolution Group
XxY=F Y FX)FY)],

@ Al = FU 1/F(A) ]
/e A

A' C
e
—
A C7
A*X=R X=C~*R

A*X=C*R




+Deconvolution Example



Conjecture:

Given: Stationary process X = {x,}.

Define:

e (), an index set (positive or negative, non-zero integers)
e A linear regression form:

if?n = Z Bkiltn_k . (203)
kel

where { By, k € (1} are unknown real coefficients.
e A measure of the distance between this model and X:

D(X‘X) — En[F(Xm i’n)] (2O°4)
for some function F' and estimator F,, (e.g. some kind of average).

If a minimum of D(X|X) with respect to the parameters By, exists,
Equation (20.3) evaluated with the minimizing By values is an
exact representation of process X.



Ipast Ppast

F=—4future F=—Pfuture



Tp = Q_1Tp—1 +a1Tpe1 + Ry
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Pseudocode: A Distributional Sparseness Measure

Input: array R of length nn
CDF = (1: nn-1)/(nn - 1)

R =R - min(R);R = R / max(R)
R = sort( R )

sparse_metric = sum( diff( R ) * CDF )

% Normalized interval

CDF

0.5 o
% AR L LY
0.4
0.3
¥ % | | % | s
0.2 n +
0.1F |°m P R ) »
0
-0.1 ﬁ °§%o o ”-. . o‘& k
-0.2 . x, :
R | | r +
0.3
0.4 *
% | | | W % &
0.5
05 0.5




The Convolution GrouP
The ARMA Convolution Group



Properties ot Convolution

1.
. Commutativity: Ax B=Bx A

. Associativity: Ax (B*xC)=(AxB)*C

. Index swap: ), AxBn_x = > 1 An—ik By

. Length: Length(C') = Length(A) + Length(B) - 1

. Polynomials: Polynomial Multiplication = Filter Convolution
. Identity: There is a filter I such that I *x C = C' (-function).

© WOtk W

Closure: The convolution of two filters is a filter.

Existence of convergent Inverses 1s

the onlg nontrivial group Prol:)ertg

A commutative (aka Abelian) group is a set S = {C,,} of things
C), (elements) and an operator @ applied to pairs of things, that
satisfy the following for all such elements:

Closure: Ci @ (Cyisin S

Commutativity: C1 0 Co = Cy @ C

Associativity: C; @ (Cy0 Cs3) = (C1 @ Cy) @ Cs
Identity: There is an element I in S such that I o C = C
Inverse: There is an element C~! such that C-1o C =1

X+xY=F'FX)F{Y)],
AP =F1/FA)]

S ={Aog,A1,As,... Ay—1 | Ao =1, F(A)|_" #0}

FF1x |eng’ch of filters +

Fourier wral:)arouncl



The ARMA Convolution Group T make A group

M —_ (C, A) (a) the group operator @, by specifying M1 @ Mo
/ (b) the identity element Z, satisfying Z o M = M
(c) the inverse M~! = =1 M satisfying M~ oM =1
Mi@ My =(CrxCoAysAs)  \
—1 —1 —1
M=(C,A)=(A",C)

M™1(5,A) = (A7, )
The Fundamental Theorem of Convolution M~ . (C, 0 ) — (57 C™ 1)

Any filter A of length M is the convolution of M elementary dipole
filters C}, each of length 2:

A=A1*A2*A3*---*AM (1949)

where 4y — {1, ax}. - > Group generators: dipoles {1,-a }

By the same token, an M-th order polynomial can be factored into
binomials:

¢(z) = co ﬁ(l_ck) (19.50) Hk(l o Zak)mn — Hk(l — z'yk)'rn
k=1 - | | | |



e Backup
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