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Assume that any constant, or other trend regarded as extraneous to
the task at hand, has been removed from the data, so no constant term
need by included. Expanding out this sum-of-squares of the data-model
residual shown in Equation (14.5) gives the key expression

R = a2 C + b2 S → 2(aXC + bXS) + 2abT , (14.6)

where

C =
∑

n

wncos
2(ω tn → ε) (14.7)

S =
∑

n

wnsin
2(ω tn → ε) (14.8)

T =
∑

n

wncos(ω tn → ε)sin(ω tn → ε) (14.9)

XC =
∑

n

wnxncos(ω tn → ε) (14.10)

XS =
∑

n

wnxnsin(ω tn → ε) . (14.11)

These expressions for the coe!cients of the amplitude parameters, weighted
sums over n of the cross products in the resulting quadratic form, are
standard in the references cited above.
The parameter ε is ignored if the Lomb phase shift is not used, but if

it is the condition orthogonalizing wncos(ω tn → ε) and wnsin(ω tn → ε),
yields

ε =
1

2
arctan

”n wn sin 2ωtn
”n wn cos 2ωtn

. (14.12)

Two ways to “fit” the model in Equation (14.4) to the data are to
maximize or marginalize the likelihood in Equation (14.5) with respect to
the amplitude parameters. The former is equivalent to performing a least
squares regression (minimizing the residuals), the latter to a Bayesian
maximum posterior analysis (for which I choose flat priors on a and b).
This computation is facilitated by the famous Gaussian integral

∫ →

↑→
e↑(Ax2+Bx+C) dx =

√
ϑ

A
e(B

2/4A)↑C , (14.13)

the integrand being of the same form as the likelihood embodied in Equa-
tions (14.5) and (14.6) . This handy integral can also be used iteratively
in marginalizing the multi-frequency likelihood below.
The choice of whether or not to use the Lomb trick then gives us the 4

periodograms in Table 14.1, plus the Schuster form in Equation (14.2). It
turns out that the maximum likelihood periodogram with the Lomb trick
is equivalent to the LSP in Equation (14.3). These periodograms are all
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one of a number of choices for a taper function. Further discussion in
deferred to Section 14.8 in the broader context of other periodogram
variants.
A number of post-processing methods counteract the unfortunate noise

properties of this function. The most common approaches reduce noise by
averaging periodograms computed for data subintervals – non-ovelapping
or overlapping with tapering, called Bartlett’s and Welch’s method, re-
spectively. These procedures reduce fluctuations in the power at specific
frequencies, at the cost of reduced frequency resolution; power is eval-
uated at fewer, more widely spaced frequencies than in the raw peri-
odogram.

14.2. Periodograms for Arbitrarily Spaced Data

What are we to do if the time sampling of our data is not even? The
proposal of Schuster (1898) was in essence to ignore the fact that the
times are not on the Nyquist grid as they are in Equation (14.1), and
simply use the absolute square of the transform in Equation (13.9), i.e.

P (ω) = |
∑

n

xne
→iωtn | 2 (14.2)

We call this the Schuster periodogram. Another straightforward idea is
to take the absolute square of the Fourier transform in Equation (13.10)
for arbitrary sampling, i.e.

P (k) =
[ !nwnxncos ω(tn → ε) ]2

!nwncos2ω(tn → ε)
+

[ !nwnxnsin ω(tn → ε) ]2

!nwnsin2ω(tn → ε)
. (14.3)

This form is known as the Lomb-Scargle periodogram (LSP).
Let’s take a di”erent, more generalizable route, starting with the model

for the signal yn, a sinusoid of circular frequency ω and phase ϑ:

yn = a cos(ωtn → ϑ) + b sin(ωtn → ϑ) (14.4)

where the tn are the times of measurement, a and b are amplitude pa-
rameters, and ϑ is the optional Lomb phase parameter. Specification of
the model for the errors ϖn in the xn measured at times tn completes the
definition of the standard Gaussian log-likelihood:

logL = →1

2

N∑

n=1

(
xn → yn

ϖn

)2

= →1

2

N∑

n=1

wn (xn → yn)
2 ↑ →1

2

N∑

n=1

(xn → yn)
2

(14.5)
Here I have incorporated individual data uncertainties ϖn as statistical
weights wn = 1/ϖ2

n, a constant if the errors are “homoskedastic.” The
arrow indicates absorbing the weights in redefinitions of xn and yn,

Single Frequency Periodograms
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linear combinations of the three inner products involving the data, XC2,
XCXS, and XS2, and the entries in this table are the corresponding
coe!cients.
In the periodogram names in this table S = Schuster, ML = max

likelihood, B = Bayes/Bretthorst , LSP = Lomb-Scargle Periodogram.
Also D = (T 2 → CS), E = D3/2

Table 14.1 Periodograms

Name XC2 XCXS XS2 a b

S 1 0 1 - -
SML S/D →2T/D CC/D (T XS-S XC)/D (T XC-C XS)/D
LSP 1/C 0 1 /S XC/C XS/S

B S/E -2 T /E C/E
BLSP C→3/2S→1/2 0 C→3/2S→3/2

D = (T 2 → CS), E = D3/2

In pracitce these periodograms tend to give rather similar results. In
simple tests they respond to periodic signals in very similar ways. The
main contributions to all of these periodograms are linear combinations
of the inner products of the sinusoidal basis functions with the data. The
di”erences between them are the coe!cients of these functions laid out
in Table 14.1.
In principle, the main di”erence is that those which invoke the Lomb

trick have the same exponential statistical distribution for white noise as
in the evenly spaced case. After all, this was the main motivation for the
LSP in the first place. However, in many circumstances the di”erence
with vs. without the Lomb shift may not be very large; Vityazev (1996)
has described some conditions relating to this issue.

The Lomb-Scargle periodogram (LSP) algorithm is in wide use in as-
tronomy and elsewhere. VanderPlas (2018) gives an excellent review of
the background, statistical issues, and practical caveats for the LSP. Bret-
thorst (2000) elevated the LSP from its status as least-squares fitting of
sinusoids into a rigorous Bayesian framework. He framed determining the
frequency of a single sinusoid in noisy data as a Bayesian parameter es-
timation problem. He showed that the LSP is “the su!cient statistic for
single frequency estimation in a wide class of problems.” Specifically, this
periodogram can be obtained by marginalizing the likelihood as we have
done here. The posterior P (ω) is useful for “peak hunting” in the peri-
odogram, as well as assessing uncertainty in the period of any detected
signal. Mortier et al. (2015) also developed a generalized periodogram in
the Bayesian setting (Bretthorst, 2000), to generate an explicit algorithm,
the Bayesian generalized Lomb-Scargle periodogram (BGLS).
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average exactly in the form of Equation (19.3). Its constructive proof tells
us how to generate the components of the model. The innovation R de-
livered by the theorem is zero-mean, normally distributed, uncorrelated
(white) noise – a garden of delight for practitioners of Gaussian process
methods. Jumping ahead a little, this model presents a number of very
nice properties wrapped up and tied with a bow, in an eminently useful
package. It is a main element of classical modeling theory – focusing on
causal filtering of uncorrelated and normally distributed innovations.

19.3. Autoregression: Remembrance of Things Past

The classical autoregressive model (AR) represents a process in terms
of weighted averages of its previous values, hence auto-regression. The
moving window in which these averages are defined is reminiscent of that
in moving average models, where instead the innovation is averaged.
Who invented the concept of processes in which current values are de-

termined by those earlier in the sequence? The names Yule (1871-1951)
and Markov (1856-1922), or perhaps Quetelet (1796-1874) may come to
mind. It is di!cult to know for sure who was first. Jacob Bernoulli and
Euler are perhaps contenders. And you may nominate Leonardo Bonacci
(Fibonacci, →1200). I believe the following discussion rather nicely de-
scribes a surprisingly modern view of an autoregressive process:

... consider a series of terms laid out in a horizontal line, such that each is derived
from the preceding one according to a given law. Suppose this law takes the form ofxn =

axn→1 +
axn→2 . . .

an equation of several consecutive terms and their indices indicating the position they
occupy in the series. I call this the equation of finite first di!erences. The order or the
degree of this equation is the di!erence between the indices of its first and last terms.
In this way one can successively determine terms in the series, continuing indefinitely.
But to do so it is necessary to know [initial] values in the series equal in number to toAR(p)
the degree of the equation. These values are the arbitrary constants giving the general
term of the series, or of the integral of the di!erence equation.

Who do you think wrote this? To me this dsecription cries out to be
written mathematically as something like Equation (19.14) or Equation
(19.36) below? It was written by Pierre Simon de LaPlace (1749-1827),
in Essai philosophique sur les probabilitiés (A Philosophical Essay on
Probabilities). This is my loose translation from the French version at the
Free WikiSource Library, fr.wikisource.org, attempting to modernize
the language without altering LaPlace’s ideas. The side notes exhibit
what I think he would have written using currently standard notation.
Explicit representation of this sort of “memory” in physical systems is

the key feature of autoregressive models. Their popularity is largely due
to their direct representation a causal relations in many physics appli-
cations: the present state of a dynamically evolving system is typically
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determined by, or at least influenced by, the history of its previous states –
plus a new, or innovative, random contribution, independent of the past.
As the AR model is one of the most studied in the statistics literature,
we will take aleisurely tour of it.
The simplest nontrivial expression of causation is to represent the

present measurement as a linear function of the previous one:

xn = axn→1 + rn . (19.14)

This causal model is the first order autoregressive model known as AR(1)
which we will discuss it in detail, not just because it has simple, easily
understood behavior, but because more complicated AR(p) models can
be constructed from it (see later in this chapter); you can think of them
as “molecules” built from AR(1) “atoms” .
Comparing with the moving average, the innovation process here is

also an injection of new information into the system at the present time.
Here the separation of determinism and randomness is just as clean as
in Equation (19.3), but additive instead of convolutional.

The deterministic part of the process – the memory – is regulated
by the constant a: at each time the process includes a fraction a of its
previous value. Here, in contrast to the moving average, it turn out that
we are not free to use any value for a. If 0 < a < 1 it is easy to see that
the behavior is a simple exponential decay. You might choose to explore
the behavior in other ranges.

The random part of this process, rn, is called the innovation since,
just as for the moving average model, it is the new information entering
the process at the current time n. And just as for the MA, it is generally
taken to be an uncorrelated random process – again white noise driving
the system, but through a di!erent avenue than in the MA.

Autoregression is not Markov!

AR(1)’s memory one time-step into the past is similar to the
defining property of a Markov process (Section 21.4) as one whose

probability distribution depends on previous states xn→k, k > 0

In contrast to such probabilistic memory, the dependence on the
past in Equation (19.14) is deterministic. The innovation, the only
probabilistic element, has no memory of the past.

While assumptions about the statistical properties of this random pro-
cess are invoked in theoretical contexts, in the current discussion it rep-
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and AR(2) to the autoregressive model of with arbitrarily long memory,
AR(p), is

xn =
p∑

k=1

akxn→k + rn, (19.36)

which we will soon write in compact convolution notation as X →A = R.
The Yule-Walker method allows easy estimation of the parameters ak.

(You may also be interested in the innovation itself, or at least its statis-
tics; stay tuned!) However, the limitation of MA’s to relatively low order
(issue #2 in the list in the previous section), applies perhaps even more
strongly ARs. There are simply not enough data available to capture
memory extending over time a time range comparable to the full data
interval. This is, of course, a fundamental limitation of any modeling
technique.
It is standard to collect autoregressive coe!cients in a prediction filter

Bn = {a1, a2, a3, ..., ap} , (19.37)

so called because its convolution with past data can be interpreted as
predictions of current values from data as far back as p steps into the
past – cf. Equation (19.36). You will also find reference to the closely
related (p+ 1)-long prediction-error filter3

An = {1,↑a1,↑a2,↑a3, ...,↑ap} , (19.38)

whose output, when convolved with the data series, is ... well, the pre-
diction errors. [Note the abuse of notation with the signs here: An =
↑an, n > 0.] Then Equation (19.36) can be rewritten in convolution no-
tation as

AR(p) :
p∑

k=0

Akxn→k = A →X = R . (19.39)

The output of A here is the di”erence between a prediction of xn based
on the coe!cients {an→k} (with k ↓= 0) and its actual value, the k = 0
term: A0xn = xn. It is convenient to work with this filter, because of
its property that convolution with the data array yields the data-model
residuals, and also because the convolution notation is useful in framing
connections between the various models of this chapter.
While the above comments about AR(1) mostly apply to the general

case, convergence of AR(p) is slightly more more complicated. The key

3 This term is entrenched in the statistics literature, but throughout our meaning is
estimation, not prediction, so we should probably speak of estimnation-error filters.
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delta function when convolved with the given filter. (The computation
of such inverses and related issues is given in Section 19.6.) For example,
the MA(1) with C = {C0, C1} = {1,→a} is invertible if |a| < 1, but if
|a| ↑ 1 its inverse is said to be divergent or unstable, so the model itself
is “not invertible.” This is because the inverse C→1 is the geometrical
progression

C = A→1 = {1, a, a2, a3, . . . } , (19.4)

which does not converge if |a| ↑ 1.

C→1 = {1, a, a2, a3, . . . } , (19.5)

But until you need such inverse you can ignore this issue. A moving
average model with arbitrary coe!cients generates a random sequence of
finite, perfectly defined pulses, regardless of whether or not C is invert-
ible. Furthermore, in Section 19.6 you will find that a practical kind of
invertibility can be defined even for such classically uninvertible models.
In addition, there are at least three settings in which such restriction

to causal models is not justified.

Causality Need Not Apply

• For sequential data in domains other than time (spatial, wave-
length, etc.) the concepts replacing past, present and future do
not have the same cause-and-e”ect type significance.

• We will see in Section 19.2 that for some filters the time at which
input begins is ambiguous. It is then natural to model response
both before and after the fiducial input moment (Chapter 20).

• In retrospective analysis, measurements over the full observation
interval are available to the analyst. Hence there is no reason why
the modeling the value at a given point of time can’t usefully
incorporate values in that point’s future.

In at least these three major contexts, the conventional restriction
to causal models can result in underutilization of information in
the data.

The last point is most important here. Except for relatively rare real-
time situations, time series analysis is retrospective: you are presented
with observations for which any physical causation has already unfolded.
Causal models are generally speaking no more justified than one-sided
spatial kernels, e.g. using only data “to the left” of the point of interest.
Of course applications di”er; yours may have ties to a specific physical
process, or some other justification for a causal viewpoint. One can imag-

Classically: |a| < 1 is necessary 

(Roots of characteristic equation 
outside unit circle in the complex 
plane:  1 - az = 0)

A = (1, -a) 
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determined by, or at least influenced by, the history of its previous states –
plus a new, or innovative, random contribution, independent of the past.
As the AR model is one of the most studied in the statistics literature,
we will take aleisurely tour of it.
The simplest nontrivial expression of causation is to represent the

present measurement as a linear function of the previous one:

xn = axn→1 + rn . (19.14)

This causal model is the first order autoregressive model known as AR(1)
which we will discuss it in detail, not just because it has simple, easily
understood behavior, but because more complicated AR(p) models can
be constructed from it (see later in this chapter); you can think of them
as “molecules” built from AR(1) “atoms” .
Comparing with the moving average, the innovation process here is

also an injection of new information into the system at the present time.
Here the separation of determinism and randomness is just as clean as
in Equation (19.3), but additive instead of convolutional.

The deterministic part of the process – the memory – is regulated
by the constant a: at each time the process includes a fraction a of its
previous value. Here, in contrast to the moving average, it turn out that
we are not free to use any value for a. If 0 < a < 1 it is easy to see that
the behavior is a simple exponential decay. You might choose to explore
the behavior in other ranges.

The random part of this process, rn, is called the innovation since,
just as for the moving average model, it is the new information entering
the process at the current time n. And just as for the MA, it is generally
taken to be an uncorrelated random process – again white noise driving
the system, but through a di!erent avenue than in the MA.

Autoregression is not Markov!

AR(1)’s memory one time-step into the past is similar to the
defining property of a Markov process (Section 21.4) as one whose

probability distribution depends on previous states xn→k, k > 0

In contrast to such probabilistic memory, the dependence on the
past in Equation (19.14) is deterministic. The innovation, the only
probabilistic element, has no memory of the past.

While assumptions about the statistical properties of this random pro-
cess are invoked in theoretical contexts, in the current discussion it rep-
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Innovation Specificity Let’s examine the remaining element of the
Wold Decomposition: the innovation constructed in theorem is also quite
specific: zero-mean, Gaussian, uncorrelated noise. Its variance can be
determined explicitly, but is not just that of the process itself.

Note: The distribution R → N(0,ω) of the Wold innovation may
be astrophysically inappropriate in at least two ways. Its zero mean
is not consistent with non-negativity of outbursts of radiation. The
shape of the normal distribution, with its finite probability of un-
bounded negative values, may di!er from the actual distribution.
More on this in the next chapter.

It should be appreciated that none of the specific properties discussed
above are ad hoc choices imposed by the analyst; they are automatic
properties of the of the Wold Decomposition.

Turning to more practical issues, start with how well the decomposition
describe the properties of the most commonly encountered variability in
astrophysical sources. To a top-level, first approximation, the essential
features of the math and physics here are remarkably well matched; both
involve random inputs generating responses distributed in time and ex-
hibiting memory. I don’t know of any underlying reason for this concor-
dance, so it is perhaps one example of the unreasonable e!ectiveness of
mathematics in describing the natural world.

Let’s explore this connection a little more. As we discussed in Section
19.2, a MA has two elements. The innovation can be interpreted as a
driving process , e.g. blips in the “central engine” in an active galaxy.
It may be anything from sparsely timed, discrete impulsive events, to
continuous bubbling, or something in between. It distribution may be
approximately Gaussian; typically negative values are not allowed, so
other distributions are common.

The filter is interpreted as the evolving response to the innovation, e.g.
a flare generated by an expanding cloud of heated gas. All sorts of shapes
are possible, but something like a sharply rising-exponentially decaying
profile is common. Physical causality will hold if for most assumptions
underlying a presumed input-output relation.

Constancy of the function C is perhaps confusing. We might denote
the Wold relation as X(t) = C ↑R(t) +D(t), replacing the time index n
with t, not to invoke continuous time, but to distinguish the three time-
dependent processes from the “constant function C” – perhaps a slightly
self-contradictory phrase! But physically the concept is simple: The flares
occurring randomly over the interval all have the same shape {Cn}.

Problems with Application to Real Data

And what is this Minimum Delay Thing?
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19.2. Moving Average Models

Among the many kinds of dynamic processes, such as the examples in
Chapter 1, there is no single one that can be considered typical. But a
relatively common type of activity in astronomical sources consists of a
random series of explosive events, each lasting for some limited range
of time. The timing and strengths of the explosions may show various
degrees of randomness and/or regularity.
These events are given di!erent names depending on the source and

the profiles of the outbursts of observable radiation: flares (AGNs), pulses
(GRBs), shots, transients (FRBs: fast radio bursts, e.g.), light curve peaks
or bumps, etc. Here I use pulse and flare, largely interchangeably but
with mathematical and physical connotation, respectively. As you will
soon appreciate, filter is probably the most apt term in data analysis
contexts, e.g. in electrical engineering, where this model represents dis-
crete samples of the output of an electrical filter following the input of a
sudden voltage pulse.
Figure 19.1 demonstrates three synthetic light curves, each consisting

of random sequences of pulses with profiles taken to be two-sided expo-
nentials:

X(t) = x0 e→c(growth) |t→t0| t → t0

= x0 e→c( decay) |t→t0| t ↑ t0
(19.1)

growing before t0 and decaying after. The degree of overlap in time in-
fluences both the appearance of the light curve, as demonstrated by the
sequence of pulse rates in the panels of this figure, and what analytic
results are possible.
In the first example, the rate is so low that the exponential shapes are

quite evident, and individual pulses are well separated, easily identified
and quantified (location in time, amplitude, and shape) as discrete events.
In contrast, the faster rate in the second yields considerable overlap.

Here determination of the pulse shape is more di”cult, both visually and
analytically. The overall appearance here is somewhat misleading. Since
the pulses all have the same amplitude and area (integral over time), the
apparent variability is due to the randomness of the times of the pulses
and their overlap, not to variations in the pulses themselves.
In the final example the pulse rate is so high that individual pulses are

essentially indistinguishable, illustrating two points. First: increasing the
number of pulses leads to an increase of standard measures of variability,
but at some point overlap decrease them. Second: the data in the final
panel are close to the important limit: pulse overlap is so great that the
process becomes Gaussian, by the Central Limit Theorem. This result
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is held by the zeros of the characteristic polynomial

ω(z) =
p∑

k=0

Akz
k , (19.40)

essentially the same as the z-transform of A. Solutions of ω(z) = 0,
sometimes called the auxiliary equation, can be complex. Their locations
in the complex plane determine stability: a root inside the unit circle
indicates a divergent model. For AR(1), e.g.,

ω(z) = 1→ a1z; ω = 0 at z = 1/a1, (19.41)

and as noted above |a1| ↑ 1 leads to divergence, |a1| < 1 to convergence.
In higher order cases the roots of the characteristic polynomial are easily
found numerically; one or more inside the unit circle indicate the model
diverges.
Power spectra for AR models are also of considerable interest. Both

of these topics will be delayed to the more general discussion in Section
19.7, where the AR model is a special case

19.4. Autoregressive Moving Average Models

Looking at Equations (19.3) and (19.36) you probably recognize that
there is a straightforward, if somewhat formal, way to combine the two
models:

xn =
p∑

k=0

ckrn→k +
q∑

k=1

akxn→k , (19.42)

or making use of Equation (19.38) and convolutional notation

A ↓X = C ↓R . (19.43)

This merger of AR and MA models is a common construction, developed
extensively in textbooks and called the autoregressive-moving average
(ARMA) model, abbreviated ARMA(p, q) to indicate the orders of the
MA and AR components, p and q respectively. The intuitive idea is to
account for memory of

• the process itself, in the A ↓X term (“internal dynamics”)
• the innovation, in the C ↓R term (“external shocks”)

Later sections will describe, from a modeling standpoint, the illusory
nature of this separation, both in general and in the particular way the
MA and AR formalisms seem to address these kinds of e!ects separately.
However, ARMA models may be useful in (rare?) composite scenarios. I
don’t know of cases in astronomy of clearly “ARMA processes,” where
these di!erent kinds of memory are both operative.
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values of the points making up the cumulative distribution curve (the
widths of the rectangles). The sum of all these rectangles then is an
estimate of the area under the CDF.
The idea is that the area under the cumulative distribution function of

the ordered values of a data array is a measure of sparseness of the array.
The many small values drive the CDF rapidly to near its maximum,
thus encompassing a large area. E.g., in the most extreme sparseness
– N → 1 zeros and a single 1 – the CDF immediately jumps up close
to its maximum (unity), yielding an area ↑ 1 – compared to random,
non-sparse arrays with areas of order 1/2 on average.
This sparseness measure was used to estimate the two parameters of

the simplest non-trivial extended ARMA model, namely the AR(1,1)
process

xn = a→1xn→1 + a1xn+1 +Rn (20.5)

representing the current x as a linear combination of its immediate past
and future values, plus a random input from the innovation R. The array
of plots in Figure 20.1 depicts the set of moving average pulse shapes,
corresponding to a range of values of a→1 and a1 indicated in the leg-
ends, making up the set of test problems analyzed. These include causal,
acausal, and mixed causal cases.
These AR models lie outside the scope of classical – causal, minimum

delay – models, and many of them would be dismissed as “unstable,” “di-
vergent” or the like. I have argued that these models can indeed express
meaningful information contained in time series data. The point here is
to demonstrate a reliable computational procedure to deal with these
models. Not only can the parameters be accurately recovered, but so can
the all-important innovation series – often as important as the model pa-
rameters. Both of these physically meaningful statistical quantities can
be recovered by maximizing the sparseness of the innovation.

The results of the sparseness-based deconvolution are shown in Figure
20.2 This procedure accurately recovers the true parameters of a large
range of non-causal ARMA processes.

Figure 20.1 displays quite a variety of shapes – “fast rise, exponen-
tial decay” (FREDs), the time-reverse of these (DERFs), symmetric,
two sided curves, etc. Results like those in Figure 20.2, somewhat sur-
prisingly, carry over to broader range of parameter values, even |a| > 1,
although some problems arise especially near the singular case a = 0, giv-
ing “instability” in the classical terminology. The plotted array depicts
a variety of models constructed from causal and acausal dipoles – atoms
of the generalized AR representation – in the terminology of (Scargle,
1981).
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