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How it began

Vuk Mandic

Professor, School of Physics and Astronomy and Minnesota Institute for
Astrophysics

My research focuses on the physics of the earliest stages of the evolution
of the universe and of the correspondingly high energies that cannot be
reproduced in laboratories. | work on experiments that probe the content
and properties of the Universe today: LIGO, which aims to measure
gravitational waves generated by various events and processes in the
universe; and SuperCDMS, which aims to detect dark matter in the form
of new weakly interactive massive particles.

My group uses Bayesian inference to extract information about the
gravitational wave sky from data acquired by LIGO detectors. This
includes imaging the gravitational wave sky and estimating the frequency,
directionality, and polarization properties of the gravitational wave
background on the sky. We use similar techniques to study implications of
dark matter searches for many-dimensional parameter space of
fundamental particle models. We also use machine learning techniques
for removing environmental contamination from gravitational-wave data
and to optimally extract information from dark matter cryogenic
semiconductor detectors.
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Welcome to the DSMMA Program!

The National Science Foundation-supported research training program Data Science in Multi-
Messenger Astrophysics at the University of Minnesota is designed to train graduate students in
modern data science techniques, using as a training ground the field of Multi-Messenger Astrophysics
(MMA). MMA is an emerging field of astrophysics where multiple messengers are used to study
astrophysical and cosmological events and processes: light, gravitational waves, neutrino particles,
cosmic rays, and gamma rays.

The MMA field is anticipating a substantial increase in the data flow in the coming years, driven by the
arrival of a series of new telescopes, gravitational-wave detectors, neutrino detectors, and gamma-ray
detectors. Existing tools for processing astrophysical data are often not sufficient to cope with this data
flow, s0 new, modern tools for data processing and analysis are needed, including machine learning,
deep learning, Bayesian statistical methods, and others.

The Data Science in MMA program will bring together students and faculty from diverse backgrounds
to enable breakthroughs in the MMA field based on deployment of modern data science tools.
Students from physics and astrophysics, as well as from traditional data-science fields (statistics,
computer science, electrical engineering, mathematics, and others) are encouraged to participate in




DSMMA Program

Above all else it is interdisciplinary and collaborative

Physics & Astronomy, Statistics, Electrical Engineering, and
Computer Science

Team-taught courses in Bayesian Astrostatistics and Machine
Learning for Astrophysics

Research project student teams mentored by
interdisciplinary teams of faculty



Research Projects

Since 2021 | have helped mentor four projects:
(i) a study of supernova siblings and the properties of the host
galaxies

(i) using observed kilonova candidates to inform ejecta quantities

(iii) cross-correlation between stochastic gravitational wave
backgrounds and the cosmic microwave background

(iv) constraining the neutron star equation of state based on
binary neutron star inspiral and post-merger
gravitational wave signals.



Constraining the Neutron Star EoS

EoS — relationship between NS mass and radius (or,
equivalently, pressure and density)

Goal is to constrain Ry ¢, the radius of a 1.6Mg NS

Current consensus: Ry = 12.077098 km (95% credible
interval)

Our work: Ry = 11.917582 km (95% credible interval)



NS EoS: Statistical Formalism and Challenges

Goal: Constrain Ry ¢

Inspiral signal provides the chirp mass

(m1m2)3/5

(m + m2)1/5

Post-merger signal peak frequency, fyeak.

Structure of Bayesian model:

Dj | M, foeak,i ~ p(Din,i | Mi)p(Dpm,i | foeak,i)
M;, fpeak,i | Ri6 ~ V(Mh fpeak,i R1.6)
Ri6 ~ v(Ry6)




Likelihood
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Complication

D; = (Din.i, Dpp,i) is not available.

Instead the Bilby pipeline provides samples from

q(M; | Din,i) < p(Din,i | Mj)po(M;)

and the BayesWave pipeline provides samples from

q(foeak,i | Dpmi) o< p(Dpmi | foeak,i)P1(foeak,i)

If BayesWave does not detect a peak frequency, then samples from
p1(foeak) are returned.



Likelihood

p(M; |DIN: (DINI) P(fpeak,i i)P(Dpu,i)
D|Rl H/ pl(fpeak,/)
x v( peak,iaMi | R1.6)dfpeak,id/\/li

The likelihood is not available in analytic form.

Instead we have a Monte Carlo approximation of it from the
Bilby and BayesWave posterior samples.

How good is the approximation?



Open Question

The BayesWave pipeline which is used to sample from

Dpm.i) o< p(Dpmi | foeak,i)P1(fpeak,i)

q(fpeak,i

uses reversible jump Metropolis-Hastings to produce the samples.

RJMH is not at all well understood and has a reputation for being
finicky and unreliable.

Is the BayesWave pipeline reliable?

The theory required to study this question is being developed.



Priors

For Ry we consider two options
Ri.6 ~ Uniform(9km, 15km)

and an astrophysical prior which is the posterior reported by Huth et
al (2022).

For M we use priors that match values found by Abbott et al
(2020) and Petrov et al (2022) which yield

M ~ N(1.33M,0.09M,)



Priors

Vretinaris et al (2020) use numerical relativity simulations to derive
EoS-agnostic relations between f,e,x and M of the form

fea
PWk = g(M,Rig) +e e ~ N(0,52)

but we need something of the form

fpeak = g(./\/l, R]_.ﬁ) +e€ €~ N(0,0’z)



Prior

Vretinaris et al (2020) suggests foeak should be centered around

pr = Bo + PiM + BaM? + B3Ry 6M + B3Ry 6M? + B3R} g M

Formally,

fpeak | datamufa )\f ~ N(Mfykfil)

-1/2
v(pr Ar) = Ar
yielding a posterior
q(pr | data)
We also consider an empirical Bayes approach to prewhitening and

set

f

veak = E[p | data



Model Validation

Validation: What happens if post-merger signals are just noise?

Developed a novel hypothesis testing framework based on
Wasserstein distance.

Model Validation: Perform tests under ideal conditions by
simulating BayesWave posteriors for f,eak
using wide range of merger masses

using a variety of EoSs



Ensemble of Mergers
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Model Evaluation

Simulations of future observing runs:
simulate 2 one-year observing runs of LVK (04, O5)

Use two different EoSs



Simulation of Future Runs
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