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…exists over a diversity of scales and physical systems
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Microphysics from macrophysics
Signs of new physics can show up in the macroscopic distribution of matter

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.

10 20 30 40 50 60 70 80
Vmax [kms−1]

0.5

1.0

2.0

3.0

5.0
7.0

10.0

20.0

r m
ax

 [k
pc

]

10 20 30 40 50 60 70 80
Vmax [kms−1]

0.5

1.0

2.0

3.0

5.0
7.0

10.0

20.0

r m
ax

 [k
pc

]

Cold                 
Warm               

Warm (Top 12) 
Cold (Top 12)   

Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8
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Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 6. The top left panel shows the sky emission model in band 6 for the best-fit smooth lens parameters for the SDP.81 data. The top middle panel shows
the same for the perturbed model and the top right panel the difference between the two models. The bottom panels show the same for band 7. The bright feature
in the difference plots is mainly caused by the astrometric anomaly of the arc.

the subhalo parameters and the parameters of the smooth lens
model, including low-order multipoles in the gravitational po-
tential. This confirms findings that such multipoles cannot
mimic the effects of small-scale substructure for lenses with
high-quality arcs (Kochanek & Dalal 2004).

The full set of best-fit lens model parameters are presented
in Table 1. Many previous works have modeled the lens po-
tential in SDP.81, using HST data (Dye et al. 2014), Sub-
millimeter Array data (Bussmann et al. 2013), and ALMA
data (Dye et al. 2015; Rybak et al. 2015a; Wong et al. 2015;
Tamura et al. 2015; Hatsukade et al. 2015; Rybak et al.
2015b). Our smooth model has a larger ellipticity compared
to these models. We note however that our model has more
degrees of freedom (e.g., angular multipoles) and phase er-
rors, and that the degeneracy of some of these additional pa-
rameters with ellipticity may shift its value. We do find that
models with parameters given by these authors produce rea-
sonable fits to the data. We also performed the linear subhalo
search for these parameters, finding that they produce similar
results and that the conclusion of the presence of the subhalo
is robust against these variations. Figure 8 shows the recon-
structed source using this model with pixel size of 10 milli-
arcsec in band 6 (top panel) and band 7 (bottom panel).

This model appears to be a good fit to the data, when we fit
the entire data set. The full data set, however, includes emis-
sion unrelated to SDP.81. The ALMA primary beam covers
approximately ⇠ 2500, of which only the central few arcsec-
onds are relevant for strong lens modeling. If we model the

sky emission only over a 5⇥ 5 arccsec area centered on the
lens, our model obtains �2 = 2⇥ 105 for 1.7⇥ 105 degrees
of freedom, suggesting that not all the signal in the data has
been modeled. However, if we expand our source-plane im-
age to cover the entire primary beam, additional flux is indi-
cated away from the lensed galaxy and the �2 decreases to
1.7⇥ 105. Since this emission originates from regions well
separated from the lensed images (far beyond the correlation
length of the dirty beam), it has no model covariance with the
lens parameters, and we therefore neglect it in the remainder
of our analysis.

5.2. Search for additional substructure

ALMA observations of SDP.81 allow us to search for addi-
tional substructure besides the subhalo detected in the previ-
ous subsection. Given our lens model (including one subhalo
of Msub = 108.96

M�), we next searched for additional substruc-
ture using the linearized treatment discussed in Section 3. We
repeated our search for a second subhalo, by linearly expand-
ing about a smooth model now containing a subhalo of mass
Msub = 108.96

M�. As before, we marginalize over all parame-
ters of the smooth model, including the mass and location of
the detected subhalo discussed above.

The inclusion of the subhalo in our main lens model re-
moves any improvement to the marginalized posterior from
additional subhalos of mass Msub � 108.6

M�, as illustrated
in top panel of Figure 9. Instead, additional subhalos of this
mass are excluded from occurring near the observed arcs. For

Hezaveh et al [ApJ 2016]
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Figure 6. The top left panel shows the sky emission model in band 6 for the best-fit smooth lens parameters for the SDP.81 data. The top middle panel shows
the same for the perturbed model and the top right panel the difference between the two models. The bottom panels show the same for band 7. The bright feature
in the difference plots is mainly caused by the astrometric anomaly of the arc.

the subhalo parameters and the parameters of the smooth lens
model, including low-order multipoles in the gravitational po-
tential. This confirms findings that such multipoles cannot
mimic the effects of small-scale substructure for lenses with
high-quality arcs (Kochanek & Dalal 2004).

The full set of best-fit lens model parameters are presented
in Table 1. Many previous works have modeled the lens po-
tential in SDP.81, using HST data (Dye et al. 2014), Sub-
millimeter Array data (Bussmann et al. 2013), and ALMA
data (Dye et al. 2015; Rybak et al. 2015a; Wong et al. 2015;
Tamura et al. 2015; Hatsukade et al. 2015; Rybak et al.
2015b). Our smooth model has a larger ellipticity compared
to these models. We note however that our model has more
degrees of freedom (e.g., angular multipoles) and phase er-
rors, and that the degeneracy of some of these additional pa-
rameters with ellipticity may shift its value. We do find that
models with parameters given by these authors produce rea-
sonable fits to the data. We also performed the linear subhalo
search for these parameters, finding that they produce similar
results and that the conclusion of the presence of the subhalo
is robust against these variations. Figure 8 shows the recon-
structed source using this model with pixel size of 10 milli-
arcsec in band 6 (top panel) and band 7 (bottom panel).

This model appears to be a good fit to the data, when we fit
the entire data set. The full data set, however, includes emis-
sion unrelated to SDP.81. The ALMA primary beam covers
approximately ⇠ 2500, of which only the central few arcsec-
onds are relevant for strong lens modeling. If we model the

sky emission only over a 5⇥ 5 arccsec area centered on the
lens, our model obtains �2 = 2⇥ 105 for 1.7⇥ 105 degrees
of freedom, suggesting that not all the signal in the data has
been modeled. However, if we expand our source-plane im-
age to cover the entire primary beam, additional flux is indi-
cated away from the lensed galaxy and the �2 decreases to
1.7⇥ 105. Since this emission originates from regions well
separated from the lensed images (far beyond the correlation
length of the dirty beam), it has no model covariance with the
lens parameters, and we therefore neglect it in the remainder
of our analysis.

5.2. Search for additional substructure

ALMA observations of SDP.81 allow us to search for addi-
tional substructure besides the subhalo detected in the previ-
ous subsection. Given our lens model (including one subhalo
of Msub = 108.96

M�), we next searched for additional substruc-
ture using the linearized treatment discussed in Section 3. We
repeated our search for a second subhalo, by linearly expand-
ing about a smooth model now containing a subhalo of mass
Msub = 108.96

M�. As before, we marginalize over all parame-
ters of the smooth model, including the mass and location of
the detected subhalo discussed above.

The inclusion of the subhalo in our main lens model re-
moves any improvement to the marginalized posterior from
additional subhalos of mass Msub � 108.6

M�, as illustrated
in top panel of Figure 9. Instead, additional subhalos of this
mass are excluded from occurring near the observed arcs. For

Hezaveh et al [ApJ 2016]
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Figure 11. The errorbars indicate the 95% confidence limits on the projected
differential number density of subhalos around SDP.81, derived using the
non-detection regions shown in Figure 10 and the detection of the 109 M�
subhalo. For comparison, the shaded band shows the 90% confidence region
from Dalal & Kochanek (2002).

Figure 12. Limits on the normalization (A) and slope (⌘) of the mass func-
tion dn/d logM = A(M/Mpivot)-⌘ , using the bounds in Figure 11. Here we
use Mpivot = 109

M�. The grey contours show constraints derived using Equa-
tion (26), while the red contours show how the constraints change if we ne-
glect the marginally detected subhalo with M ⇡ 108

M�. The top panel shows
the probability at ⌘ = 0.9. The red and black curves simply show a slice of
the probability of the lower panel at ⌘ = 0.9. For comparison, the histograms
show the distribution of A using assumptions based on ⇤CDM simulations
assuming two different values of csubs/chost, which are intended to be repre-
sentative. These values assume ⌘ = 0.9 and a distribution of host halo masses
and concentrations given by abundance matching. See Section 6 for details.

use the same set of high-resolution zoom-in simulations de-
scribed in Mao et al. (2015) with the addition of a very high-
resolution cosmological box, (40963 particles in a 400 Mpc/h

box, ds14_i) from the Dark Sky Simulations (Skillman
et al. 2014)14. This calibration is done by first assuming a
constant log–log slope (⌘), then finding the best-fit M0 for
each host halo in the simulations, and finally for all host ha-
los, finding the best-fit values of (↵,�,�) in

M0 = ↵M
�
hostc

�
host. (28)

With this model, we can then predict the subhalo mass func-
tion given the host halo mass and concentration and the log–
log slope.

The subhalo abundance predicted in the procedure de-
scribed above is for all subhalos within the virial radius of the
host halo. To convert our prediction to the relevant quantity
probed by strong lensing measurements, we need to assume
a spatial distribution for the subhalos. Here we make three
simplifying assumptions: (1) the subhalo spatial distribution
is independent from the subhalo mass function (i.e., subhalos
of different mass halos have the same spatial distribution); (2)
the angular distribution of subhalos is isotropic (see, however,
Nierenberg et al. 2011); and (3) the radial distribution of sub-
halos within their host halos follows an NFW profile with a
characteristic concentration csubs. In other words, we assume
the subhalo abundance factorizes into a mass dependence and
radial dependence, n(M,r) = n(M) f (r), where the radial de-
pendence f (r) is an NFW profile of concentration csubs.

To predict the projected abundance of substructure, our
model requires a prescription for the concentration of the
subhalo distribution, csubs. In ⇤CDM simulations, gener-
ally the radial distribution of subhalos is less centrally con-
centrated than the dark matter distribution of the host halo
(i.e., csubs/chost < 1) (e.g., Nagai & Kravtsov 2005; Gao et al.
2012), and at small radii the subhalo distribution may become
shallower than an NFW profile (e.g., Xu et al. 2015a). Ob-
servational results for real galaxies are less clear: some are
consistent with csubs/chost ' 1 (e.g., Guo et al. 2012; Yniguez
et al. 2014), while others imply that galaxies are less concen-
trated (e.g., Hansen et al. 2005) than the total mass distribu-
tion in their hosts. Also note that our assumption of spher-
ical symmetry might lead us to underestimate the average
substructure abundance around lenses, since strong lenses are
preferentially viewed along the major axis of their host halos
(Rozo et al. 2007; Hennawi et al. 2007).

Given the uncertainty in predictions for csubs, we treat it as
a free parameter, along with other parameters describing the
lens halo: the host halo mass and concentration (Mhost, chost),
and the log–log slope (⌘) of the subhalo mass function. Us-
ing these model ingredients, we can predict dn/d logM pro-
jected at the Einstein radius. The histograms in the top panel
of Figure 12 show an example, the distribution of A, i.e.,
dn/d logM at M = 109

M� computed with this model. For
this figure, we assume the mass function slope is ⌘ = 0.9, and
we show two possible values for the subhalo concentration,
csubs/chost = 0.2 and 1.0, which should span the range of un-
certainty described above. For the other two parameters, we
marginalize over possible values of the host halo mass and
concentration using the following prior. We first assign galaxy
luminosity to dark matter halos and subhalos with the abun-
dance matching technique (e.g., Conroy et al. 2006; Reddick
et al. 2013), and find the joint distribution of mass and con-

14 http://darksky.slac.stanford.edu
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Future observatories like the Euclid are expected to deliver large samples of galaxy-galaxy lenses
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• Capture maximum information from high-dim data


• Scalable to a large sample of lenses


• Can deal with a large number of nuisance/latent parameters
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Latent z
SimulatorParameters


θ
Observables


x

Simulation-based inference (SBI)
Slides inspiration: Johann Brehmer
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Latent z
SimulatorParameters


θ
Observables


x

• Well-motivated mechanistic, causal model


• Simulator can generate samples  x ∼ p(x |θ)
Prediction:

Simulation-based inference (SBI)
Slides inspiration: Johann Brehmer
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Latent z
SimulatorParameters


θ
Observables


x

• Well-motivated mechanistic, causal model


• Simulator can generate samples  x ∼ p(x |θ)
Prediction:

• Likelihood  is intractable


• Inference is challenging

p(x |θ) = ∫ dz p(x, z |θ)
Inference:

Simulation-based inference (SBI)
Slides inspiration: Johann Brehmer
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“Traditional” SBI: Approximate Bayesian Computation

Simulator

Prior


p(θ)
Summary statistics


x′￼

Observables


x

Parameters


θ

Summary statistics


x′￼obs

Keep
Yes

Parameters sampled from 
approximate posterior

[Rubin 1984]

Observables


xobs

 x′￼− x′￼obs < ϵ

θ ∼ p (θ ∣ x′￼obs)ϵ → 0
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“Traditional” SBI: Approximate Bayesian Computation

Simulator

Prior


p(θ)
Summary statistics


x′￼

Observables


x

Parameters


θ

Summary statistics


x′￼obs

Keep
Yes

Parameters sampled from 
approximate posterior

[Rubin 1984]

Observables


xobs

 x′￼− x′￼obs < ϵ

θ ∼ p (θ ∣ x′￼obs)ϵ → 0 • How to choose ? Curse of dimensionality


• Loss of information


• How to compare with data? Likelihood may not be available


• Need to re-run pipeline for new data or new prior

x′￼
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“Traditional” SBI: Approximate Bayesian Computation

Simulator

Prior


p(θ)
Summary statistics


x′￼

Observables


x

Parameters


θ

Summary statistics


x′￼obs

Keep
Yes

Parameters sampled from 
approximate posterior

[Rubin 1984]

Observables


xobs

 x′￼− x′￼obs < ϵ

θ ∼ p (θ ∣ x′￼obs)ϵ → 0 • How to choose ? Curse of dimensionality


• Loss of information


• How to compare with data? Likelihood may not be available


• Need to re-run pipeline for new data or new prior

x′￼

Lots of recent progress using ML
see Cranmer, Brehmer, Louppe [PNAS 2020] for a review



Siddharth Mishra-Sharma (IAIFI) | CHASC Astrostatistics Seminar /4817

Cranmer, Pavez, Louppe [arXiv 2015]

Brehmer et al [PRL, PRD 2018]


Stoye et al [arXiv 2018]

Hermans et al [ICML 2020] 


+ othersWe can train a classifier between two sets of simulated samples

The likelihood-ratio trick
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Cranmer, Pavez, Louppe [arXiv 2015]

Brehmer et al [PRL, PRD 2018]


Stoye et al [arXiv 2018]

Hermans et al [ICML 2020] 


+ othersWe can train a classifier between two sets of simulated samples

The likelihood-ratio trick
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d(x)

1 − d(x)
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p (x |θ0)
p (x |θ1)

Estimator for likelihood ratio
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+ othersWe can train a classifier between two sets of simulated samples

The likelihood-ratio trick
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Proof of principle Simulated ensemble of galaxy-galaxy lenses observable by Euclid
Collett [1507.02657]
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fsub = 5 % , β = − 0.9

Brehmer, SM, Hermans, Louppe, Cranmer [ApJ 2019]
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Galaxy sources at z ∼ 1.5

fsub = 5 % , β = − 0.9

Brehmer, SM, Hermans, Louppe, Cranmer [ApJ 2019]
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Inferred likelihood ratios fsub = 5 % , β = − 0.9
12 Brehmer and Mishra-Sharma et al.
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Figure 2. Four simulated lens images (upper panels) and the corresponding likelihood ratio maps estimated by the network
(lower panels, without calibration). The star marks the true point used to generate the images, the black line shows 95% CL
contours in parameter space based on each image. �

inference on individual simulated lensed images realiz-
ing substructure corresponding to benchmark parame-
ters � = �0.9 and fsub = 0.05. The top row shows
example simulated images, with the corresponding in-
ferred 2-D likelihood surfaces shown in the bottom row.
The true parameter point is marked with a star and the
95% confidence level (CL) contours are shown.

Several interesting features can already be seen in
these results. The 95% CL contours contain the true
parameter point, with the overall likelihood surface be-
ing strongly correlated with the corresponding image. A
smaller projected surface area of the lensed arc, result-
ing from a smaller host halo or a larger o↵set between
the host and source centers, generally results in a flat-
ter likelihood surface. This is expected, since a smaller
host galaxy will contain relatively less substructure, and
a smaller host or larger relative o↵set will result in a
smaller e↵ective arc area over which the substructure
can imprint itself. The first column of Figure 2 shows an
example of such a system. In contrast, the last columns
show a system with a relatively massive host and a small
o↵set, producing a symmetric image with a larger e↵ec-
tive arc surface area over which the e↵ects of substruc-
ture can be discerned. This results in a “peakier” in-
ferred likelihood surface, corresponding to a higher sen-
sitivity to fsub and �. The second and third columns of
Figure 2 correspond to systems with a small, centered

and a large, o↵set halo respectively, and show interme-
diate sensitivity to substructure properties.

In the spirit of stacking multiple observations, we next
consider a simultaneous analysis of multiple lensed im-
ages. As discussed in Section 3.4, the product of the
likelihood maps of the individual images defines the ap-
propriate test statistic. For the purpose of population-
level inference, these two-dimensional likelihood maps
are hence a good alternative way to define a probabilistic
catalog over individual observations, avoiding the com-
plications of prior dependence and of communicating
a complicated trans-dimensional posterior. In the left
panel of Figure 3, we show the expected log likelihood
ratio surface per-image in the asymptotic limit, with the
1-D slice corresponding to � = �0.9 shown in the right
panel. The 95% CL expected exclusion limits for 5, 20,
and 100 lenses are shown using the dotted, dashed, and
solid lines respectively. The procedure can easily be ex-
tended to an arbitrarily large collection of lenses.

We find that, at least within the simplifying assump-
tions of our simulator, an analysis of a few tens of
lenses is already sensitive to the overall substructure
abundance parameterized by fsub. A larger observed
lens sample provides a tighter constraint on substruc-
ture properties. Approximately 100 lens images are re-
quired to begin resolving �. The expected exclusion
contours are centered around the true values, confirm-
ing that our inference methods yield an unbiased es-
timate of the underlying substructure properties. Note

12 Brehmer and Mishra-Sharma et al.
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ing substructure corresponding to benchmark parame-
ters � = �0.9 and fsub = 0.05. The top row shows
example simulated images, with the corresponding in-
ferred 2-D likelihood surfaces shown in the bottom row.
The true parameter point is marked with a star and the
95% confidence level (CL) contours are shown.

Several interesting features can already be seen in
these results. The 95% CL contours contain the true
parameter point, with the overall likelihood surface be-
ing strongly correlated with the corresponding image. A
smaller projected surface area of the lensed arc, result-
ing from a smaller host halo or a larger o↵set between
the host and source centers, generally results in a flat-
ter likelihood surface. This is expected, since a smaller
host galaxy will contain relatively less substructure, and
a smaller host or larger relative o↵set will result in a
smaller e↵ective arc area over which the substructure
can imprint itself. The first column of Figure 2 shows an
example of such a system. In contrast, the last columns
show a system with a relatively massive host and a small
o↵set, producing a symmetric image with a larger e↵ec-
tive arc surface area over which the e↵ects of substruc-
ture can be discerned. This results in a “peakier” in-
ferred likelihood surface, corresponding to a higher sen-
sitivity to fsub and �. The second and third columns of
Figure 2 correspond to systems with a small, centered

and a large, o↵set halo respectively, and show interme-
diate sensitivity to substructure properties.

In the spirit of stacking multiple observations, we next
consider a simultaneous analysis of multiple lensed im-
ages. As discussed in Section 3.4, the product of the
likelihood maps of the individual images defines the ap-
propriate test statistic. For the purpose of population-
level inference, these two-dimensional likelihood maps
are hence a good alternative way to define a probabilistic
catalog over individual observations, avoiding the com-
plications of prior dependence and of communicating
a complicated trans-dimensional posterior. In the left
panel of Figure 3, we show the expected log likelihood
ratio surface per-image in the asymptotic limit, with the
1-D slice corresponding to � = �0.9 shown in the right
panel. The 95% CL expected exclusion limits for 5, 20,
and 100 lenses are shown using the dotted, dashed, and
solid lines respectively. The procedure can easily be ex-
tended to an arbitrarily large collection of lenses.

We find that, at least within the simplifying assump-
tions of our simulator, an analysis of a few tens of
lenses is already sensitive to the overall substructure
abundance parameterized by fsub. A larger observed
lens sample provides a tighter constraint on substruc-
ture properties. Approximately 100 lens images are re-
quired to begin resolving �. The expected exclusion
contours are centered around the true values, confirm-
ing that our inference methods yield an unbiased es-
timate of the underlying substructure properties. Note
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inference on individual simulated lensed images realiz-
ing substructure corresponding to benchmark parame-
ters � = �0.9 and fsub = 0.05. The top row shows
example simulated images, with the corresponding in-
ferred 2-D likelihood surfaces shown in the bottom row.
The true parameter point is marked with a star and the
95% confidence level (CL) contours are shown.

Several interesting features can already be seen in
these results. The 95% CL contours contain the true
parameter point, with the overall likelihood surface be-
ing strongly correlated with the corresponding image. A
smaller projected surface area of the lensed arc, result-
ing from a smaller host halo or a larger o↵set between
the host and source centers, generally results in a flat-
ter likelihood surface. This is expected, since a smaller
host galaxy will contain relatively less substructure, and
a smaller host or larger relative o↵set will result in a
smaller e↵ective arc area over which the substructure
can imprint itself. The first column of Figure 2 shows an
example of such a system. In contrast, the last columns
show a system with a relatively massive host and a small
o↵set, producing a symmetric image with a larger e↵ec-
tive arc surface area over which the e↵ects of substruc-
ture can be discerned. This results in a “peakier” in-
ferred likelihood surface, corresponding to a higher sen-
sitivity to fsub and �. The second and third columns of
Figure 2 correspond to systems with a small, centered

and a large, o↵set halo respectively, and show interme-
diate sensitivity to substructure properties.

In the spirit of stacking multiple observations, we next
consider a simultaneous analysis of multiple lensed im-
ages. As discussed in Section 3.4, the product of the
likelihood maps of the individual images defines the ap-
propriate test statistic. For the purpose of population-
level inference, these two-dimensional likelihood maps
are hence a good alternative way to define a probabilistic
catalog over individual observations, avoiding the com-
plications of prior dependence and of communicating
a complicated trans-dimensional posterior. In the left
panel of Figure 3, we show the expected log likelihood
ratio surface per-image in the asymptotic limit, with the
1-D slice corresponding to � = �0.9 shown in the right
panel. The 95% CL expected exclusion limits for 5, 20,
and 100 lenses are shown using the dotted, dashed, and
solid lines respectively. The procedure can easily be ex-
tended to an arbitrarily large collection of lenses.

We find that, at least within the simplifying assump-
tions of our simulator, an analysis of a few tens of
lenses is already sensitive to the overall substructure
abundance parameterized by fsub. A larger observed
lens sample provides a tighter constraint on substruc-
ture properties. Approximately 100 lens images are re-
quired to begin resolving �. The expected exclusion
contours are centered around the true values, confirm-
ing that our inference methods yield an unbiased es-
timate of the underlying substructure properties. Note
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Figure 2. Four simulated lens images (upper panels) and the corresponding likelihood ratio maps estimated by the network
(lower panels, without calibration). The star marks the true point used to generate the images, the black line shows 95% CL
contours in parameter space based on each image. �

inference on individual simulated lensed images realiz-
ing substructure corresponding to benchmark parame-
ters � = �0.9 and fsub = 0.05. The top row shows
example simulated images, with the corresponding in-
ferred 2-D likelihood surfaces shown in the bottom row.
The true parameter point is marked with a star and the
95% confidence level (CL) contours are shown.

Several interesting features can already be seen in
these results. The 95% CL contours contain the true
parameter point, with the overall likelihood surface be-
ing strongly correlated with the corresponding image. A
smaller projected surface area of the lensed arc, result-
ing from a smaller host halo or a larger o↵set between
the host and source centers, generally results in a flat-
ter likelihood surface. This is expected, since a smaller
host galaxy will contain relatively less substructure, and
a smaller host or larger relative o↵set will result in a
smaller e↵ective arc area over which the substructure
can imprint itself. The first column of Figure 2 shows an
example of such a system. In contrast, the last columns
show a system with a relatively massive host and a small
o↵set, producing a symmetric image with a larger e↵ec-
tive arc surface area over which the e↵ects of substruc-
ture can be discerned. This results in a “peakier” in-
ferred likelihood surface, corresponding to a higher sen-
sitivity to fsub and �. The second and third columns of
Figure 2 correspond to systems with a small, centered

and a large, o↵set halo respectively, and show interme-
diate sensitivity to substructure properties.

In the spirit of stacking multiple observations, we next
consider a simultaneous analysis of multiple lensed im-
ages. As discussed in Section 3.4, the product of the
likelihood maps of the individual images defines the ap-
propriate test statistic. For the purpose of population-
level inference, these two-dimensional likelihood maps
are hence a good alternative way to define a probabilistic
catalog over individual observations, avoiding the com-
plications of prior dependence and of communicating
a complicated trans-dimensional posterior. In the left
panel of Figure 3, we show the expected log likelihood
ratio surface per-image in the asymptotic limit, with the
1-D slice corresponding to � = �0.9 shown in the right
panel. The 95% CL expected exclusion limits for 5, 20,
and 100 lenses are shown using the dotted, dashed, and
solid lines respectively. The procedure can easily be ex-
tended to an arbitrarily large collection of lenses.

We find that, at least within the simplifying assump-
tions of our simulator, an analysis of a few tens of
lenses is already sensitive to the overall substructure
abundance parameterized by fsub. A larger observed
lens sample provides a tighter constraint on substruc-
ture properties. Approximately 100 lens images are re-
quired to begin resolving �. The expected exclusion
contours are centered around the true values, confirm-
ing that our inference methods yield an unbiased es-
timate of the underlying substructure properties. Note

Inferred likelihood ratios: individual images fsub = 5 % , β = − 0.9
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Figure 3. The expected per-lens likelihood ratio map assuming � = �0.9 and fsub = 0.05 in the two-dimensional parameter
space (left) and along a one-dimensional slice at � = �0.9 (right). The lines show expected 95% CL exclusion limits for 5
(dotted), 20 (dashed), and 100 (solid) observed lenses. While the colormap shows the network output without calibration, the
lines include the calibration procedure described in Section 3.3. �

the “banana” shape of the expected exclusion limits,
which approximately traces the total deflection con-
tributed by substructure. We demonstrate this in Fig-
ure 4, where we show a proxy for the total subhalo-
induced deflection,

P
subhalos

4srs, equal to the space-
independent part of Equation (12), and compare it to
the expected exclusion limits. In our particular substruc-
ture scenario, this proxy can be shown to approximately
scale like

P
subhalos

m2/3

200
. We note that this comparison

is schematic, as the subtle e↵ects of substructure over
a wide range of masses cannot be quantified through a
single number (here, the total deflection).

With the likelihood ratio in hand, Equation (28) easily
admits a Bayesian interpretation. In the left panel of
Figure 5 we show the posterior for 100 lenses derived
from the expected likelihood ratio results, assuming a
Gaussian prior with mean �0.9 and standard deviation
0.1 on the slope �. This choice is intended to capture
a prior expectation on the subhalo mass function slope
consistent with the Cold Dark Matter scenario (e. g.,
Madau et al. 2008; Springel et al. 2008). As expected
from the likelihood maps, we find a posterior density
peaked around the true point.

The corresponding inferred subhalo mass function
(SHMF) per host halo mass, marginalized over the host
halo properties, is shown in the right panel of Fig-
ure 5. We show the point-wise mean (solid line) and
68 / 95% credible intervals (cyan and blue bands), where
the point-wise quantities are defined as the mean and
respective quantiles of the subhalo mass function poste-
rior evaluated at a given mass point. A comparison with

the true simulated subhalo mass function (dotted line,
also marginalized over the host halo properties) shows
excellent agreement.

5. EXTENSIONS

For the proof-of-concept analysis presented here our
lensing simulation makes a number of simplifying as-
sumptions in order to highlight the broad methodolog-
ical points in a computationally tractable setting. An
application of our method to real lensing data will invari-
ably require modifications to our simulation and infer-
ence pipelines to account for the vast physical diversity
in host and source galaxy morphologies, as well as ways
to deal with more realistic detector response. Modeling
substructure in a more involved setting than presented
here (e. g., to account for tidal evolution and/or suppres-
sion of small-scale structure), and accounting for sub-
structure along the line of sight is also desired. We will
now discuss these features and comment on how they
might a↵ect our pipeline and the results presented here,
leaving implementation and application to real lensing
data to future work.

First, we currently fix all properties of the background
source as described in Section 2.3. It is straightforward
to instead draw and marginalize over the parameters as-
sociated with a chosen parameterization for the source
light distribution, with Gaussian and Sérsic (Sérsic
1963) profile models being common choices. For high-
fidelity images (e. g., those obtainable by targeted fol-
lowups or interferometric imaging) more complicated
features in the background galaxies such as outflows may
not be adequately captured by such a parameterization

Inferred likelihood ratios: stacking images fsub = 5 % , β = − 0.9

Combination of lenses can place powerful constraints on subhalo mass function
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Uniform priors for fsub ∼ [0, 0.2], β ∼ [−1.5, − 0.5]

Lens sample Mass function posterior Parameter posteriors

Bayesian inference fsub = 5 % , β = − 0.9

ESA/NASA/Hubble 


Analysis of real lensing data will require 
several extensions, e.g. accounting for 
complex morphology of lensed galaxies

Lots of recent progress, e.g.

• Auto encoders Chianese et al [MNRAS 2020]


• Gaussian processes Coogan et al [NeurIPS ML4PS 

2020], Karchev et al [MNRAS 2021]


• Real galaxies Wagner-Carena et al [2203.00690]



Outline

Characterizing -ray point sources in the Galactic Center

Exploiting more information to reduce model misspecification

γ

Detecting extragalactic dark matter in strong lenses

Combining information from thousands of systems
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Dark matter annihilation in the Galactic Center

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8

SM 

SM
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DM
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Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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The Fermi Galactic Center Excess
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FIG. 7: Intensity maps (in galactic coordinates) after subtracting the point source model and best-fit Galactic di↵use model,
Fermi bubbles, and isotropic templates. Template coe�cients are obtained from the fit including these three templates and
a � = 1.3 DM-like template. Masked pixels are indicated in black. All maps have been smoothed to a common PSF of 2
degrees for display, before masking (the corresponding masks have not been smoothed; they reflect the actual masks used in
the analysis). At energies between ⇠0.5-10 GeV (i.e. in the first three frames), the dark-matter-like emission is clearly visible
around the Galactic Center.

V. THE GALACTIC CENTER

In this section, we describe our analysis of the Fermi
data from the region of the Galactic Center, defined as
|b| < 5�, |l| < 5�. We make use of the same Pass 7 data
set, with Q2 cuts on CTBCORE, as described in the pre-
vious section. We performed a binned likelihood analysis
to this data set using the Fermi tool gtlike, dividing
the region into 200⇥200 spatial bins (each 0.05�⇥0.05�),
and 12 logarithmically-spaced energy bins between 0.316-

10.0 GeV. Included in the fit is a model for the Galac-
tic di↵use emission, supplemented by a model spatially
tracing the observed 20 cm emission [45], a model for
the isotropic gamma-ray background, and all gamma-ray
sources listed in the 2FGL catalog [46], as well as the
two additional point sources described in Ref. [47]. We
allow the flux and spectral shape of all high-significance
(
p
TS > 25) 2FGL sources located within 7� of the

Galactic Center to vary. For somewhat more distant or
lower significance sources ( = 7� � 8� and

p
TS > 25,

•  Spherically symmetric -ray excess in the Inner Galaxy


• Extends out 10˚ from the center of Galaxy


• Constitutes 10% total flux

∼ γ
∼
∼

Some facts:

7

FIG. 6: Left frame: The spectrum of the dark matter component, extracted from a fit in our standard ROI (1� < |b| < 20�,
|l| < 20�) for a template corresponding to a generalized NFW halo profile with an inner slope of � = 1.18 (normalized to the
flux at an angle of 5� from the Galactic Center). Shown for comparison (solid line) is the spectrum predicted from a 43.0 GeV
dark matter particle annihilating to bb̄ with a cross section of �v = 2.25⇥10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]

2. Right frame:
as left frame, but for a full-sky ROI (|b| > 1�), with � = 1.28; shown for comparison (solid line) is the spectrum predicted from
a 36.6 GeV dark matter particle annihilating to bb̄ with a cross section of �v = 0.75⇥ 10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]

2.

of the Galactic plane; masking the region with |b| < 2�

changes the preferred value to � = 1.25 in our default
ROI, and � = 1.29 over the whole sky. In contrast to
Ref. [8], we find no significant di↵erence in the slope pre-
ferred by the fit over the standard ROI, and by a fit only
over the southern half (b < 0) of the ROI (we also find
no significant di↵erence between the fit over the full sky
and the southern half of the full sky). This can be seen
directly from Fig. 5, where the full-sky and southern-
sky fits for the same level of masking are found to favor
quite similar values of � (the southern sky distribution
is broader than that for the full sky simply due to the
di↵erence in the number of photons). The best-fit values
for gamma, from fits in the southern half of the standard
ROI and the southern half of the full sky, are 1.13 and
1.26 respectively.

In Fig. 6, we show the spectrum of the emission cor-
related with the dark matter template in the default
ROI and full-sky analysis, for their respective best-fit
values of � = 1.18 and 1.28.6 We restrict to energies
50 GeV and lower to ensure numerical stability of the
fit in the smaller ROI. While no significant emission is
absorbed by this template at energies above ⇠10 GeV,
a bright and robust component is present at lower en-
ergies, peaking near ⇠1-3 GeV. Relative to the analy-
sis of Ref. [8] (which used an incorrectly smoothed dif-
fuse model), our spectrum is in both cases significantly
harder at energies below 1 GeV, rendering it more con-

6 A comparison between the two ROIs with � held constant is
presented in Appendix A.

sistent with that extracted at higher latitudes (see Ap-
pendix A).7 Shown for comparison (as a solid line) is the
spectrum predicted from (left panel) a 43.0 GeV dark
matter particle annihilating to bb̄ with a cross section
of �v = 2.25 ⇥ 10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]2,
and (right panel) a 36.6 GeV dark matter particle anni-
hilating to bb̄ with a cross section of �v = 0.75 ⇥ 10�26

cm3/s ⇥ [(0.4GeV/cm3)/⇢local]2. The spectra extracted
for this component are in moderately good agreement
with the predictions of the dark matter models, yielding
fits of �2 = 44 and 64 over the 22 error bars between 0.3
and 50 GeV. We emphasize that these uncertainties (and
the resulting �2 values) are purely statistical, and there
are significant systematic uncertainties which are not ac-
counted for here (see the discussion in the appendices).
We also note that the spectral shape of the dark matter
template is quite robust to variations in �, within the
range where good fits are obtained (see Appendix A).

In Fig. 7, we plot the maps of the gamma-ray sky
in four energy ranges after subtracting the best-fit dif-
fuse model, Fermi Bubbles, and isotropic templates. In
the 0.5-1 GeV, 1-3 GeV, and 3-10 GeV maps, the dark-
matter-like emission is clearly visible in the region sur-
rounding the Galactic Center. Much less central emission
is visible at 10-50 GeV, where the dark matter compo-
nent is absent, or at least significantly less bright.

7 An earlier version of this work found this improvement only in
the presence of the CTBCORE cut; we now find this hardening
independent of the CTBCORE cut.

Energy spectrum

Spatial morphology

Daylan et al [PDU 2016]
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mass fixed at 49 GeV. This plot is based on the fluxes from the segmented GCE template,
see figure 16. As expected, the cross-section is strongly correlated with the profile slope. We
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FIG. 6: Left frame: The spectrum of the dark matter component, extracted from a fit in our standard ROI (1� < |b| < 20�,
|l| < 20�) for a template corresponding to a generalized NFW halo profile with an inner slope of � = 1.18 (normalized to the
flux at an angle of 5� from the Galactic Center). Shown for comparison (solid line) is the spectrum predicted from a 43.0 GeV
dark matter particle annihilating to bb̄ with a cross section of �v = 2.25⇥10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]

2. Right frame:
as left frame, but for a full-sky ROI (|b| > 1�), with � = 1.28; shown for comparison (solid line) is the spectrum predicted from
a 36.6 GeV dark matter particle annihilating to bb̄ with a cross section of �v = 0.75⇥ 10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]
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of the Galactic plane; masking the region with |b| < 2�

changes the preferred value to � = 1.25 in our default
ROI, and � = 1.29 over the whole sky. In contrast to
Ref. [8], we find no significant di↵erence in the slope pre-
ferred by the fit over the standard ROI, and by a fit only
over the southern half (b < 0) of the ROI (we also find
no significant di↵erence between the fit over the full sky
and the southern half of the full sky). This can be seen
directly from Fig. 5, where the full-sky and southern-
sky fits for the same level of masking are found to favor
quite similar values of � (the southern sky distribution
is broader than that for the full sky simply due to the
di↵erence in the number of photons). The best-fit values
for gamma, from fits in the southern half of the standard
ROI and the southern half of the full sky, are 1.13 and
1.26 respectively.

In Fig. 6, we show the spectrum of the emission cor-
related with the dark matter template in the default
ROI and full-sky analysis, for their respective best-fit
values of � = 1.18 and 1.28.6 We restrict to energies
50 GeV and lower to ensure numerical stability of the
fit in the smaller ROI. While no significant emission is
absorbed by this template at energies above ⇠10 GeV,
a bright and robust component is present at lower en-
ergies, peaking near ⇠1-3 GeV. Relative to the analy-
sis of Ref. [8] (which used an incorrectly smoothed dif-
fuse model), our spectrum is in both cases significantly
harder at energies below 1 GeV, rendering it more con-

6 A comparison between the two ROIs with � held constant is
presented in Appendix A.

sistent with that extracted at higher latitudes (see Ap-
pendix A).7 Shown for comparison (as a solid line) is the
spectrum predicted from (left panel) a 43.0 GeV dark
matter particle annihilating to bb̄ with a cross section
of �v = 2.25 ⇥ 10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]2,
and (right panel) a 36.6 GeV dark matter particle anni-
hilating to bb̄ with a cross section of �v = 0.75 ⇥ 10�26

cm3/s ⇥ [(0.4GeV/cm3)/⇢local]2. The spectra extracted
for this component are in moderately good agreement
with the predictions of the dark matter models, yielding
fits of �2 = 44 and 64 over the 22 error bars between 0.3
and 50 GeV. We emphasize that these uncertainties (and
the resulting �2 values) are purely statistical, and there
are significant systematic uncertainties which are not ac-
counted for here (see the discussion in the appendices).
We also note that the spectral shape of the dark matter
template is quite robust to variations in �, within the
range where good fits are obtained (see Appendix A).

In Fig. 7, we plot the maps of the gamma-ray sky
in four energy ranges after subtracting the best-fit dif-
fuse model, Fermi Bubbles, and isotropic templates. In
the 0.5-1 GeV, 1-3 GeV, and 3-10 GeV maps, the dark-
matter-like emission is clearly visible in the region sur-
rounding the Galactic Center. Much less central emission
is visible at 10-50 GeV, where the dark matter compo-
nent is absent, or at least significantly less bright.

7 An earlier version of this work found this improvement only in
the presence of the CTBCORE cut; we now find this hardening
independent of the CTBCORE cut.
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FIG. 7: Intensity maps (in galactic coordinates) after subtracting the point source model and best-fit Galactic di↵use model,
Fermi bubbles, and isotropic templates. Template coe�cients are obtained from the fit including these three templates and
a � = 1.3 DM-like template. Masked pixels are indicated in black. All maps have been smoothed to a common PSF of 2
degrees for display, before masking (the corresponding masks have not been smoothed; they reflect the actual masks used in
the analysis). At energies between ⇠0.5-10 GeV (i.e. in the first three frames), the dark-matter-like emission is clearly visible
around the Galactic Center.

V. THE GALACTIC CENTER

In this section, we describe our analysis of the Fermi
data from the region of the Galactic Center, defined as
|b| < 5�, |l| < 5�. We make use of the same Pass 7 data
set, with Q2 cuts on CTBCORE, as described in the pre-
vious section. We performed a binned likelihood analysis
to this data set using the Fermi tool gtlike, dividing
the region into 200⇥200 spatial bins (each 0.05�⇥0.05�),
and 12 logarithmically-spaced energy bins between 0.316-

10.0 GeV. Included in the fit is a model for the Galac-
tic di↵use emission, supplemented by a model spatially
tracing the observed 20 cm emission [45], a model for
the isotropic gamma-ray background, and all gamma-ray
sources listed in the 2FGL catalog [46], as well as the
two additional point sources described in Ref. [47]. We
allow the flux and spectral shape of all high-significance
(
p
TS > 25) 2FGL sources located within 7� of the

Galactic Center to vary. For somewhat more distant or
lower significance sources ( = 7� � 8� and

p
TS > 25,

Spectrum and spatial morphology consistent with DM expectation

Consistent with 
thermal cross 
section expectation

Dark Matter

Daylan et al [1402.6703]

Calore et al [1409.0042]

SM 

SM

DM

DM

→ γ

→ γ



Siddharth Mishra-Sharma (IAIFI) | CHASC Astrostatistics Seminar /4827

Possible explanations

10
1

10
2

m� [GeV]

10
�27

10
�26

10
�25

h�
v
i

[c
m

3
s
�

1
]

b̄b

⌧
+

⌧
�

Hooper & Slatyer 2013

Huang+ 2013

Daylan+ 2014

Abazaijan+ 2014

Gordon+ 2014

0.9 1.0 1.1 1.2 1.3 1.4 1.5

�

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

h�
v
i

[c
m

3
s
�

1
]

⇥10
�26

�� ! b̄b

m� = 49GeV
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channels, from a fit to the spectrum shown in figure 14 (cf. table 4). Colored points (squares) refer to
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Right panel: Constraints on the h�vi-vs-� plane, based on the fits with the ten GCE segments.
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mass fixed at 49 GeV. This plot is based on the fluxes from the segmented GCE template,
see figure 16. As expected, the cross-section is strongly correlated with the profile slope. We
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FIG. 6: Left frame: The spectrum of the dark matter component, extracted from a fit in our standard ROI (1� < |b| < 20�,
|l| < 20�) for a template corresponding to a generalized NFW halo profile with an inner slope of � = 1.18 (normalized to the
flux at an angle of 5� from the Galactic Center). Shown for comparison (solid line) is the spectrum predicted from a 43.0 GeV
dark matter particle annihilating to bb̄ with a cross section of �v = 2.25⇥10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]

2. Right frame:
as left frame, but for a full-sky ROI (|b| > 1�), with � = 1.28; shown for comparison (solid line) is the spectrum predicted from
a 36.6 GeV dark matter particle annihilating to bb̄ with a cross section of �v = 0.75⇥ 10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]

2.

of the Galactic plane; masking the region with |b| < 2�

changes the preferred value to � = 1.25 in our default
ROI, and � = 1.29 over the whole sky. In contrast to
Ref. [8], we find no significant di↵erence in the slope pre-
ferred by the fit over the standard ROI, and by a fit only
over the southern half (b < 0) of the ROI (we also find
no significant di↵erence between the fit over the full sky
and the southern half of the full sky). This can be seen
directly from Fig. 5, where the full-sky and southern-
sky fits for the same level of masking are found to favor
quite similar values of � (the southern sky distribution
is broader than that for the full sky simply due to the
di↵erence in the number of photons). The best-fit values
for gamma, from fits in the southern half of the standard
ROI and the southern half of the full sky, are 1.13 and
1.26 respectively.

In Fig. 6, we show the spectrum of the emission cor-
related with the dark matter template in the default
ROI and full-sky analysis, for their respective best-fit
values of � = 1.18 and 1.28.6 We restrict to energies
50 GeV and lower to ensure numerical stability of the
fit in the smaller ROI. While no significant emission is
absorbed by this template at energies above ⇠10 GeV,
a bright and robust component is present at lower en-
ergies, peaking near ⇠1-3 GeV. Relative to the analy-
sis of Ref. [8] (which used an incorrectly smoothed dif-
fuse model), our spectrum is in both cases significantly
harder at energies below 1 GeV, rendering it more con-

6 A comparison between the two ROIs with � held constant is
presented in Appendix A.

sistent with that extracted at higher latitudes (see Ap-
pendix A).7 Shown for comparison (as a solid line) is the
spectrum predicted from (left panel) a 43.0 GeV dark
matter particle annihilating to bb̄ with a cross section
of �v = 2.25 ⇥ 10�26 cm3/s ⇥ [(0.4GeV/cm3)/⇢local]2,
and (right panel) a 36.6 GeV dark matter particle anni-
hilating to bb̄ with a cross section of �v = 0.75 ⇥ 10�26

cm3/s ⇥ [(0.4GeV/cm3)/⇢local]2. The spectra extracted
for this component are in moderately good agreement
with the predictions of the dark matter models, yielding
fits of �2 = 44 and 64 over the 22 error bars between 0.3
and 50 GeV. We emphasize that these uncertainties (and
the resulting �2 values) are purely statistical, and there
are significant systematic uncertainties which are not ac-
counted for here (see the discussion in the appendices).
We also note that the spectral shape of the dark matter
template is quite robust to variations in �, within the
range where good fits are obtained (see Appendix A).

In Fig. 7, we plot the maps of the gamma-ray sky
in four energy ranges after subtracting the best-fit dif-
fuse model, Fermi Bubbles, and isotropic templates. In
the 0.5-1 GeV, 1-3 GeV, and 3-10 GeV maps, the dark-
matter-like emission is clearly visible in the region sur-
rounding the Galactic Center. Much less central emission
is visible at 10-50 GeV, where the dark matter compo-
nent is absent, or at least significantly less bright.

7 An earlier version of this work found this improvement only in
the presence of the CTBCORE cut; we now find this hardening
independent of the CTBCORE cut.
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FIG. 7: Intensity maps (in galactic coordinates) after subtracting the point source model and best-fit Galactic di↵use model,
Fermi bubbles, and isotropic templates. Template coe�cients are obtained from the fit including these three templates and
a � = 1.3 DM-like template. Masked pixels are indicated in black. All maps have been smoothed to a common PSF of 2
degrees for display, before masking (the corresponding masks have not been smoothed; they reflect the actual masks used in
the analysis). At energies between ⇠0.5-10 GeV (i.e. in the first three frames), the dark-matter-like emission is clearly visible
around the Galactic Center.

V. THE GALACTIC CENTER

In this section, we describe our analysis of the Fermi
data from the region of the Galactic Center, defined as
|b| < 5�, |l| < 5�. We make use of the same Pass 7 data
set, with Q2 cuts on CTBCORE, as described in the pre-
vious section. We performed a binned likelihood analysis
to this data set using the Fermi tool gtlike, dividing
the region into 200⇥200 spatial bins (each 0.05�⇥0.05�),
and 12 logarithmically-spaced energy bins between 0.316-

10.0 GeV. Included in the fit is a model for the Galac-
tic di↵use emission, supplemented by a model spatially
tracing the observed 20 cm emission [45], a model for
the isotropic gamma-ray background, and all gamma-ray
sources listed in the 2FGL catalog [46], as well as the
two additional point sources described in Ref. [47]. We
allow the flux and spectral shape of all high-significance
(
p
TS > 25) 2FGL sources located within 7� of the

Galactic Center to vary. For somewhat more distant or
lower significance sources ( = 7� � 8� and

p
TS > 25,
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FIG. 1. Constraints on the DM annihilation cross section at 95% CL for the bb̄ (left) and ⌧+⌧� (right) channels derived from
a combined analysis of 15 dSphs. Bands for the expected sensitivity are calculated by repeating the same analysis on 300
randomly selected sets of high-Galactic-latitude blank fields in the LAT data. The dashed line shows the median expected
sensitivity while the bands represent the 68% and 95% quantiles. For each set of random locations, nominal J-factors are
randomized in accord with their measurement uncertainties. The solid blue curve shows the limits derived from a previous
analysis of four years of Pass 7 Reprocessed data and the same sample of 15 dSphs [13]. The dashed gray curve in this and
subsequent figures corresponds to the thermal relic cross section from Steigman et al. [5].

FIG. 2. Comparison of constraints on the DM annihilation cross section for the bb̄ (left) and ⌧+⌧� (right) channels from this
work with previously published constraints from LAT analysis of the Milky Way halo (3� limit) [34], 112 hours of observations
of the Galactic Center with H.E.S.S. [35], and 157.9 hours of observations of Segue 1 with MAGIC [36]. Pure annihilation
channel limits for the Galactic Center H.E.S.S. observations are taken from Abazajian and Harding [37] and assume an Einasto
Milky Way density profile with ⇢� = 0.389 GeV cm�3. Closed contours and the marker with error bars show the best-fit cross
section and mass from several interpretations of the Galactic center excess [16–19].
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scaling by luminosity. The red line is the average of the
spectra with and without weighting by L−1/2, i.e, as-
suming volume-limited and flux-limited samples, respec-
tively. The blue and orange hatching show the 1σ and
2σ uncertainties in the red spectrum as estimated from
bootstrap resampling of the 45 MSPs. For this exer-
cise, we have adopted the fitted spectra in Table I of
Cholis et al. (2014) and have neglected measurement er-
rors, fitting errors, and distance errors.
The difference in Figure 4 between the scaled and un-

scaled spectra results from a correlation between lumi-
nosity and spectral index. Distance errors will tend to
blur this correlation; the MSP spectrum of a population
at a single distance is likely to be slightly harder than the
red line in Figure 4. Including this effect and adding mea-
surement errors would not bring the MSP spectrum into
perfect agreement with the Galactic center excess, but it
could bring the 1σ discrepancy to as little as ∼20–30%
at 500 MeV. Selecting only those MSPs with |b| > 10◦

(38 of the 45 that pass our 1–3 GeV signal-to-noise cut)
would also marginally improve the agreement with the
spectrum of the GeV excess.
The discrepancy between our estimated average MSP

spectrum and the GeV excess is only significant at the
lowest energies (<800 MeV) where Fermi’s sensitivity is
rapidly falling. Uncertainties in Galactic diffuse emis-
sion are largest here (Calore et al. 2015). As a result,
there are spectrally correlated systematic errors in the
spectrum of the GeV excess not shown in the black
stars of Figure 4. Systematic errors can be quite large,
and can also arise from the method of masking point
sources and from the assumed morphology of the excess,
among other aspects of the fitting (Daylan et al. 2014;
Calore et al. 2015). Figure 4 also shows the systematic
errors from varying the diffuse backgrounds as estimated
by Calore et al. (2015). These gray and gold hatched
regions neglect statistical errors.

7. PROSPECTS FOR RADIO DETECTIONS

Our results show that a population of disrupted glob-
ular clusters, which must exist to explain the current
clusters, naturally predicts a field population of MSPs in
the Galaxy’s inner few kpc. These MSPs satisfy the spa-
tial, spectral, and luminosity requirements imposed by
the Fermi observations. A large population of MSPs in
a nuclear star cluster is another necessary consequence
of a population of disrupted massive globular clusters.
Such a population explains the 20–40 keV X-ray emis-
sion seen by NuSTAR (Perez et al. 2015) and implies
that many of the unidentified Chandra point sources may
be MSPs (Muno et al. 2004; Perez et al. 2015). Astro-
H (Takahashi et al. 2010) will also be sensitive to high-
energy X-rays, and could confirm the NuSTAR results.
A population of ∼1000 MSPs around Sgr A* can also
explain the observed TeV emission by inverse Comp-
ton scattering of the dense interstellar radiation field
(Bednarek & Sobczak 2013).
Radio observations could individually detect our pre-

dicted MSPs and confirm their identities. However,
the bulk of the radio observations to date have fo-
cused not on scales of tens to thousands of pc, where
most of our predicted MSPs lie, but in the inner-
most pc. This was motivated by theoretical estimates
predicting ∼100–1000 pulsars formed in situ within

Fig. 4.— The average spectrum of Fermi-detected field MSPs
adopting the fitted spectral parameters of Cholis et al. (2014). The
dotted-dashed blue line is the unweighted average spectrum. The
red line has selected only those MSPs detectable based only on
their 1–3 GeV flux (45 of 59 MSPs), and is the average of the spec-
tra expected for a population at uniform distance assuming the
Cholis et al. (2014) to be volume-limited and flux-limited. These
scenarios almost certainly bracket the truth. The blue and or-
ange hatching show 1σ and 2σ sample variances as estimated us-
ing bootstrap resampling. We have neglected errors in the MSP
distances and in the spectral measurements; both would tend to
alleviate the discrepancy with the observed Galactic center excess
(Daylan et al. 2014). The error bars on the Daylan et al. (2014)
fits are only statistical; systematic errors (which are spectrally cor-
related) are neglected. The gold and gray hatching show 1σ and 2σ
systematic uncertainties (neglecting statistical errors) as estimated
by Calore et al. (2015).

0.02 pc of Sgr A* (Pfahl & Loeb 2004). More re-
cently, Faucher-Giguère & Loeb (2011) noted that the
encounter rate in the inner 1 pc of the central star clus-
ter is comparable to that of the globular cluster Terzan 5
(which has many MSPs), and estimated that up to ∼1200
MSPs may be present in this region due to the deeper
gravitational potential well of Sgr A*. The disrupted
globular cluster scenario instead predicts these MSPs to
be found over a larger region: we predict ∼1,000 MSPs
within 3 pc of Sgr A*, and a further ∼1,000 MSPs within
300 pc (2◦, see Figure 1).
MSP observations towards the Galactic center are ex-

tremely challenging because of the large dispersion mea-
sures. Radio pulses at a frequency ν are broadened by
an amount τ = (1.3 ± 0.2)(ν/GHz)−3.8±0.2 (with τ in
seconds, Spitler et al. 2014), implying that MSPs may
not be observed below ∼8 GHz. The radio intensity of
pulsars scales steeply with frequency (I ∝ ν−1.6 to ν−1.8,
Kramer et al. 1998), so high-frequency detections require
extended integration times.
While discovering and timing MSPs 0.001 pc from

the central supermassive black hole would offer tanta-
lizing measurements of general relativity and tests of
alternative theories of gravity (Wex & Kopeikin 1999;
Kramer et al. 2004; Cordes et al. 2004; Pfahl & Loeb
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Figure 1: Left panel: Fermi -LAT data above 1 GeV in the inner 40�
⇥ 40� around the Galactic center. Other panels:

Spatial templates used to fit the GCE, with arbitrary normalization. From left to right: DM profile (NFW126),
boxy-bulge, nuclear bulge, X-shaped bulge.

rived using the runs with fixed spectra.
We emphasize that, given the large modeling uncer-

tainties of cosmic-ray induced �-ray emission from the
inner Galaxy, we do not explicitly include a source of
cosmic rays at the GC when modeling the di↵use com-
ponents. However, such sources are expected, e.g., from
star formation in the central molecular zone (CMZ, Gag-
gero et al. 2015; Carlson et al. 2016a,b). The associated
emission will depend on the e�ciency of cosmic-ray accel-
eration, the e↵ects of potentially strong advective winds
or anisotropic di↵usion, which are di�cult to model in
detail. In our analysis, the expected hard emission would
be instead absorbed by our Fermi Bubbles component
(see supplemental material, B.4, for a discussion).

3. RESULTS AND DISCUSSIONS

3.1. Comparison of templates

Run �2 lnL
free spectrum MSP spectrum

r5 RCG NB X 647808.1 648020.2

r5 RCG NB 647831.2 648027.5

r5 RCG 647884.7 648061.7

r5 BulgeGC 647916.5 648140.3

r5 Einasto 647961.4 648188.6

r5 NFW126 648021.8 648242.4

r5 NFW100 648049.8 648278.6

Table 1: Log-likelihood values for fits with various GCE
templates. Column 2 shows results for a unconstrained
GCE spectrum, and column 3 for a spectrum fixed to
stacked MSPs.

In Tab. 1 we compare the values of the total (Poisson
plus constraints; see Storm et al. (2017) for details) log-
likelihood, �2 ln L, from the SkyFACT runs, of the vari-
ous modifications of Run5 with di↵erent GCE templates
with constrained morphology. We find that, formally,
the combination of boxy bulge as traced by RCG and
NB (r5 RCG NB) provides a better fit to the data than

the other runs (except the one including the X-shaped
bulge, see below). The total flux associated with the
bulge is (2.1 ± 0.1) ⇥ 10�9 erg cm�2 s�1 for the compo-
nent traced by RCG and (2.3 ± 0.4)⇥10�10 erg cm�2 s�1

for the NB component (in the range 0.1–100 GeV). The
quoted errors are statistical; we emphasize that typical
systematic uncertainties from modeling assumptions (the
range of allowed modulation parameters, etc.) are gen-
erally smaller than a factor ⇠ 2.

We find that the addition of the X-shaped bulge can
only mildly improve the fit quality. Its total flux is (3 ±

1)% of that of the boxy bulge for the fixed spectrum run
(r5 RCG NB X msp). This value is only slightly smaller
than the expectations from Li & Shen (2012) and Cao
et al. (2013), who find the X-shape to be, by mass, about
6–7% of the boxy bulge (although fractions of 20–30%
(Portail et al. 2015b) and ⇠ 45% (Portail et al. 2015a)
have also been argued). We find that this component
is not critical for providing a good fit to the data (2.7�
improvement), and will concentrate subsequently on the
RCG+NB model. For a more detailed discussion of the
X-shaped bulge and the from Macias et al. (2016) see the
supplementary material B.3.

We find that RCG+NB model provides a significantly
better fit than any of the DM models. These DM profiles
can be excluded with a high significance of about 12.5�.

In Fig. 2, we show the longitudinal and latitudinal de-
pendences of the various model components compared
with Fermi -LAT data, for two di↵erent GCE models,
namely the r5 NFW126 and r5 RCG NB runs. The solid
lines correspond to the components of the r5 RCG NB run,
while the dashed lines of the same color correspond to
the r5 NFW126 components, except for the GCE com-
ponent, which is red (RCG) and orange (NB) for the
r5 RCG NB run and brown (NFW126) for the r5 NFW126

run. The dotted black and yellow lines are point sources
and extended sources, respectively, which have the same
total flux in both runs. There is very little variation in
any components except those of the GCE (in the lati-
tude profile, the extended source flux peaks just below
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Figure 1: (left panel) Maps of simulated photon counts in a 20� ⇥ 20� region centered at the GC (clipped at
5 counts), for two scenarios consistent with the excess: 1) WIMP annihilation in the Galactic halo, and 2)
MSP-like point sources. These scenarios could potentially be distinguished by their photon statistics. (right
panel) The same, but now including a simulated di↵use background (and clipping at 15 counts). Since the
excess comprises only ⇠10% of the total flux in the Inner Galaxy, it is clear that a statistical analysis is
required to test the point-source hypothesis. All maps have been convolved with a � = 0.18� Gaussian PSF
and use a HEALPix pixelization with resolution parameter nside = 256. The luminosity function taken for
the point sources is explained in Sec. 3.2, and has a maximum luminosity cuto↵ Lmax = 5⇥ 1036 ph s�1.

for example. However, the point-source excess gives rise to more pixels with either low or high photon counts.

Our goal is to capitalize on such di↵erences in the photon-count statistics to distinguish the two scenarios.

However, the presence of the dominating di↵use background obscures these di↵erences, as is demonstrated

in the right panel of Fig. 1. Nevertheless, as we will show, a careful statistical analysis may still be able to

distinguish the two scenarios.

In this work, we concentrate on the simplest photon-count statistic: the flux probability density function

(PDF), or one-point function, which yields a histogram of the number of pixels with a given photon count.

The use of flux PDFs—sometimes referred to as “fluctuation analysis” or “P(D) analysis”—is standard in

astronomical studies. They have been used, for example, to identify active galactic nuclei (AGN) in the

x-ray band [40] and star-forming galaxies in the infrared [41]. This statistic has also been studied in the

context of gamma-ray observations—for example, its ability to place limits on the presence of AGN [42,43],

MSPs [44], and dark-matter subhalos [45,46] at high Galactic latitudes, where the di↵use background is less

dominant, has been examined.1

By focusing on the flux PDF, our analysis is largely independent of the detailed astrophysics of the point

sources. That is, while we are motivated by the MSP explanation of the excess, the point-source population

may be comprised of other astrophysical compact objects. Furthermore, unresolved extended structures—

such as dark-matter subhalos, molecular clouds, etc.—could also be possible “point-source” candidates. The

tests we propose will be equally applicable to all of these populations.

Our paper presents the first detailed study of the viability of the flux PDF to distinguish unresolved

gamma-ray point sources in the Inner Galaxy. In Sec. 2, we describe a general formalism for the calculation

of the flux PDF for emission from both di↵use components and point sources. We next give specific dark-

matter and point-source models of the excess in Sec. 3, calculating the flux PDFs for these models and

verifying our results with simulated data. Then, in Sec. 4, we use Bayesian model comparison to show that

over a wide range of well-motivated point-source luminosity functions, our procedure is able to distinguish

dark-matter and point-source explanations of the excess. Finally, in Sec. 5, we examine issues that may

1
The use of a similar statistic to constrain point-source populations in gamma-ray observations was also discussed in Ref. [47].
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Status c.2015: Evidence for unresolved point sources

Bartels et al [PRL 2016] Lee et al [PRL 2016]

Credit: C. Weniger
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NPTF analysis of Lee et al (c. 2015)

Lee et al [PRL 2016]
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FIG. 2: (Left) Best-fit source-count functions within 10� of the GC and |b| � 2�, with the 3FGL sources unmasked. The
median and 68% confidence intervals are shown for each of the following PS components: NFW (dashed, orange), thin-disk
(solid, blue), and isotropic (dotted, green). The number of observed 3FGL sources in each bin is indicated. The normalization
for the di↵use emission in the fit is consistent with that at high latitudes, as desired. (Right) Posteriors for the flux fraction
within 10� of the GC with |b| � 2� arising from the separate PS components, with 3FGL sources unmasked. The inset shows
the result of removing the NFW PS template from the fit. Dashed vertical lines indicate the 16th, 50th, and 84th percentiles.

FIG. 3: Same as Fig. 2, except with 3FGL sources masked.

sources. When the NFW PS template is omitted (inset),
the fraction of flux absorbed by the disk PS population is
essentially unchanged at 6.8+0.7

�0.9%, and the DM template

absorbs 7.7+0.7
�0.8% of the flux. The DM flux obtained in

absence of an NFW PS template is consistent with other
estimates in the literature [12, 14]. The model including
the NFW PS contribution is preferred over that without
by a Bayes factor ⇠106.4

When the 3FGL sources are masked, the NPTF proce-
dure yields a best-fit source-count function given by the
orange band in the left panel of Fig. 3. Below the break,
the source-count function agrees well with that found by
the unmasked fit. In this case, the contributions from the
isotropic and disk-correlated PS templates are negligible.

4 For reference, this corresponds to test statistic 2� lnL ⇡ 36.

The flux fraction attributed to the NFW PS component
is 5.3+1.0

�1.1%, while the NFW DM template absorbs no
significant flux.

In the masked analysis, the Bayes factor for a model
that contains an NFW PS component, relative to one
that does not, is ⇠102, substantially reduced relative to
the result for the unmasked case. Masking the 3FGL
sources removes most of the ROI within ⇠5� of the GC,
reducing photon statistics markedly, especially for any
signal peaked at the GC. Furthermore, in the masked
ROI, non-NFW PS templates can absorb a substantial
fraction of the excess. For example, if only disk and
isotropic PS templates are added, the flux fraction at-
tributed to the disk template is 2.5+0.70

�0.62%, while that

attributed to NFW DM is 2.2+1.6
�2.2% (the flux attributed

to isotropic PSs is negligible). When no PS templates
are included in the fit, the NFW DM template absorbs
4.1+1.1

�1.2% of the total flux. As we will discuss later, this

• Excess flux is entirely accounted for 
by the NFW PS template


• Bayes factor in preference for NFW 
point sources is 107∼
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Dark matter strikes back? (c. 2019)

5

FIG. 2. Flux posteriors when an artificial DM signal with increasing normalization is injected into the Fermi data, and the
data are analyzed with NFW PS, Disk PS, Isotropic PS, DM, Bubbles, Isotropic and Galactic Di↵use templates (note if any
template has flux peaked below 0.1% (other than DM), it is omitted from the plots for simplicity). Vertical dashed lines
indicate posterior medians and 68% containment bands. Di↵erent amounts of DM flux have been injected in each plot, the
correct amount that should have been recovered is shown as the blue line labeled “Injected DM”. Top-Left: Zero DM injection.
Top-Right: 1.8% DM flux injection. No DM is recovered, and DM is instead attributed to NFW PS. Bottom-Left: 6.7%
DM flux injection. DM is still not recovered, and the NFW PS flux has been pushed up further. Bottom-Right: 15.2% DM
flux injection. Some DM flux is finally identified, albeit clearly not all of it.

sults of a fit on the real data, without any injected DM
signal, to serve as a baseline for comparison. By com-
parison with the no-injection case, we see two important
e↵ects: firstly that (as noted above) the flux attributed
to the DM template is consistent with zero and inconsis-
tent with the injected value, and secondly that the NFW
PS flux fraction increases, approximately absorbing the
injected DM signal. As the DM injection amount in-
creases, we see that the NFW PS flux fraction continues
to increase, until it reaches a saturation point and the
DM template begins to absorb some of the flux. In order

for the DM to be detected with non-zero flux, the in-
jected DM signal appears to require a total flux a factor
& 5 larger than the GCE itself.

Conclusions and Outlook. We have studied examples
of how NPTF methods can be biased in both real and
simulated gamma-ray data, and how this could impact
explanations of the GCE. We have showed a proof-of-
principle example in simulated data where a DM signal
can incorrectly be attributed to PSs by the NPTF, as
a result of PSs with a spatial distribution that is not
described by the standard templates.

17

FIG. S10. E↵ects of allowing the DM normalization posterior to float negative. Top-Left: No injection, analyzing the real
data, with the Fermi p6v11 di↵use model. Top-Right: No injection, analyzing the real data, with di↵use Model A. Bottom-
Left: Simulated data, using the Fermi p6v11 di↵use model, in the proof-of-principle case where PSs have been simulated in
the Fermi Bubbles, but the Bubbles PS template has been replaced with the NFW PS template in the analysis. Similarly to
the real data, there is a preference for a negative DM coe�cient. Bottom-Right: Simulated data, using the Fermi p6v11
di↵use model, in the proof-of-principle case where NFW PSs have been simulated, and the same templates are used at the
analysis stage. Over 20 simulated realizations, we observe some bias toward negative DM coe�cients (see text), but to a much
lesser degree than in the scenario where unmodeled PSs are present.

In all cases, when allowing the DM normalization to float to negative values, all prior ranges remain the same, but
the DM normalization prior range is taken to be linear flat, with ANFW = [�9, 9].

Performed a closure test: 

Inject a DM signal onto the real data, then try to recover it with the NPTF pipeline

Injected DM flux gets reconstructed as PSs DM flux can go negative if allowed to

Leane & Slatyer [PRL 2019]


+ Leane & Slatyer [PRL 2020, PRD 2020]
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Better diffuse models

Background 
“Model O”

Background 
Model p6v11

• Updated gas tracers


• 3D radiation field for IC


• Components fit in several Galactocentric rings

Macias et al [Nat. Ast. 2017]

Macias et al [JCAP 2019]
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FIG. 3. (Left) Spectrum of the average emission associated with the Poissonian GCE extracted as a function of energy within
our fiducial ROI (|b| > 2�, r < 25�) for the four di↵erent di↵use models studied: p6v11, as well as Models A (MA), F (MF ),
and O (MO). These are designated by the dashed lines in blue, green, orange, and red, respectively. The analyses performed
here are purely Poissonian, and include templates for di↵use emission, isotropic emission, the Fermi bubbles, 3FGL PSs, and
a fiducial GCE template (modeled assuming an NFW profile). We find evidence for the GCE across all di↵use models, though
the normalization can vary by as much as a factor of ⇠ 2 between them and is highest for Model O. As already underscored
in Ref. [10], care must be taken when interpreting the GCE because the systematic uncertainties from modeling the di↵use
emission are greater than the statistical uncertainties, indicated by the error bars. (Right) The TS in favor of a given di↵use
model over p6v11. The TS is computed by comparing the log-likelihoods at the best-fit points from the fits that go into the
left panel. Models A, F, and O outperform p6v11 across all energy bins above 2 GeV, and Model O provides the best fit to the
data.

Spectral and morphological studies of the dependence
of the GCE on di↵use models have been carried out be-
fore, such as in the dedicated study in Ref. [10]. However,
our focus here is to establish a few specific points that
go beyond these earlier works. One point is simply that
di↵use models are now available that provide a signifi-
cantly better fit to the data in the Inner Galaxy than
the p6v11 model, and that the evidence for the GCE is
robust even with these newer models. The second point
is that di↵use mismodeling can lead to over-subtraction
in the Poissonian template analyses. We show explicitly
that the p6v11 di↵use model in particular su↵ers from
over-subtraction in the outer region of the Inner Galaxy,
whereby the GCE template prefers large negative values.
However, the harmonic marginalization procedure is able
to mitigate the over-subtraction issue for p6v11.

A. GCE Spectrum for Varying Di↵use Models

To begin, we perform a standard Poissonian template
analysis to recover the GCE energy spectrum in ten log-
spaced bins from 2–20 GeV using the four benchmark dif-
fuse models: p6v11 and Models A, F, and O. We restrict
ourselves to the fiducial ROI (r  25�, |b| � 2�, with
3FGL PSs masked). In addition to the templates associ-

ated with the di↵use emission, we also include templates
for isotropic emission, the Fermi bubbles, and 3FGL PSs
(to absorb any emission beyond the PS mask). Addi-
tionally, we include the fiducial GCE template, modeled
using the NFW DM profile previously discussed.

The left panel of Fig. 3 shows the energy spectra that
we recover, normalized with respect to the fiducial ROI.
Consistent with previous studies such as Ref. [10], we
see that while the normalization of the GCE depends
on the di↵use model used in the analysis, it is always
non-zero between ⇠2–8 GeV, within statistical uncer-
tainties. However, the normalization of the GCE can
vary by as much as a factor of two between the mod-
els we explore. In particular, Model O has the highest
normalization, while p6v11 has the lowest. This varia-
tion between models is perhaps not too surprising when
considering that the di↵use foregrounds make up the vast
majority of photon emission within the ROI. Still, this re-
sult underlines that care must be taken when interpreting
the GCE, considering that systematic uncertainties from
di↵use mismodeling are far greater than the statistical
uncertainties.

The right panel of Fig. 3 illustrates which di↵use model
provides a better fit to the data in the fiducial ROI. This
figure shows the TS in preference for a specific di↵use
model compared to p6v11. The TS is evaluated by com-
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FIG. 3. (Left) Spectrum of the average emission associated with the Poissonian GCE extracted as a function of energy within
our fiducial ROI (|b| > 2�, r < 25�) for the four di↵erent di↵use models studied: p6v11, as well as Models A (MA), F (MF ),
and O (MO). These are designated by the dashed lines in blue, green, orange, and red, respectively. The analyses performed
here are purely Poissonian, and include templates for di↵use emission, isotropic emission, the Fermi bubbles, 3FGL PSs, and
a fiducial GCE template (modeled assuming an NFW profile). We find evidence for the GCE across all di↵use models, though
the normalization can vary by as much as a factor of ⇠ 2 between them and is highest for Model O. As already underscored
in Ref. [10], care must be taken when interpreting the GCE because the systematic uncertainties from modeling the di↵use
emission are greater than the statistical uncertainties, indicated by the error bars. (Right) The TS in favor of a given di↵use
model over p6v11. The TS is computed by comparing the log-likelihoods at the best-fit points from the fits that go into the
left panel. Models A, F, and O outperform p6v11 across all energy bins above 2 GeV, and Model O provides the best fit to the
data.

Spectral and morphological studies of the dependence
of the GCE on di↵use models have been carried out be-
fore, such as in the dedicated study in Ref. [10]. However,
our focus here is to establish a few specific points that
go beyond these earlier works. One point is simply that
di↵use models are now available that provide a signifi-
cantly better fit to the data in the Inner Galaxy than
the p6v11 model, and that the evidence for the GCE is
robust even with these newer models. The second point
is that di↵use mismodeling can lead to over-subtraction
in the Poissonian template analyses. We show explicitly
that the p6v11 di↵use model in particular su↵ers from
over-subtraction in the outer region of the Inner Galaxy,
whereby the GCE template prefers large negative values.
However, the harmonic marginalization procedure is able
to mitigate the over-subtraction issue for p6v11.

A. GCE Spectrum for Varying Di↵use Models

To begin, we perform a standard Poissonian template
analysis to recover the GCE energy spectrum in ten log-
spaced bins from 2–20 GeV using the four benchmark dif-
fuse models: p6v11 and Models A, F, and O. We restrict
ourselves to the fiducial ROI (r  25�, |b| � 2�, with
3FGL PSs masked). In addition to the templates associ-

ated with the di↵use emission, we also include templates
for isotropic emission, the Fermi bubbles, and 3FGL PSs
(to absorb any emission beyond the PS mask). Addi-
tionally, we include the fiducial GCE template, modeled
using the NFW DM profile previously discussed.

The left panel of Fig. 3 shows the energy spectra that
we recover, normalized with respect to the fiducial ROI.
Consistent with previous studies such as Ref. [10], we
see that while the normalization of the GCE depends
on the di↵use model used in the analysis, it is always
non-zero between ⇠2–8 GeV, within statistical uncer-
tainties. However, the normalization of the GCE can
vary by as much as a factor of two between the mod-
els we explore. In particular, Model O has the highest
normalization, while p6v11 has the lowest. This varia-
tion between models is perhaps not too surprising when
considering that the di↵use foregrounds make up the vast
majority of photon emission within the ROI. Still, this re-
sult underlines that care must be taken when interpreting
the GCE, considering that systematic uncertainties from
di↵use mismodeling are far greater than the statistical
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(Large-scale) harmonic marginalization

8

FIG. 2. Depiction of how the harmonic di↵use maps are constructed. For the example of p6v11 (left), we combine the map
with the l = 2, m = 1 spherical-harmonic map (middle), to produce the hybrid harmonic di↵use sky map (right).

D. Harmonic Marginalization

In this paper, we present a new method to account
for large-scale mismodeling of di↵use emission templates
in a data-driven fashion. The basic idea is that for PS
searches, we can marginalize over uncertainties at larger
angular scales without a↵ecting our ability to find the
small-scale structures of interest. Large-scale mismodel-
ing of e.g., the di↵use foreground may a↵ect our ability to
find PSs because when large-scale mismodeling is present
then the di↵use model will both over- and under-predict
the data at various locations.

There are multiple ways in which the di↵use model may
be given more degrees of freedom to account for large-
scale uncertainties. In Ref. [46], the di↵use emission was
given independent degrees of freedom above and below
the Galactic plane, leading to a significantly improved
fit. In Ref. [49], the di↵use model was divided into in-
dependent spatial regions and each component was given
its own nuisance parameter. Refs. [29, 60] included a
large number of nuisance parameters to allow spatial and
spectral modulation of the di↵use emission, using regu-
larization techniques to impose physicality conditions. In
this work, we consider an alternate method that accom-
plishes the same goal. We construct a sequence of spa-
tial templates by multiplying the original di↵use model
(or any other Poissonian template that may su↵er from
large-scale mismodeling e↵ects) T di↵(✓,�) by spherical
harmonics Y `,m(✓,�) to construct the set of templates.
Of course, as both maps are pixelized, the combined tem-
plate is Y `,m

p T di↵
p . An example of a template constructed

in this manner is shown in Fig. 2. In this case, the p6v11
template (left panel) is multiplied by the l = 2,m = 1
spherical-harmonic map (middle panel) to yield the final
template (right panel) used in the analysis.

Each harmonic template map is assigned its own nui-
sance parameter A`,m, corresponding to the normaliza-
tion of these maps. We only consider templates up to
some maximum (`max,mmax) in order to marginalize over
uncertainties at large angular scales. We marginalize over
the A`,m when constraining the physical model parame-
ters of interest; the detailed procedure is described below.
In Sec. III, we show how this method allows for a more
consistent determination of the GCE spectra between dif-
fuse models in a purely Poissonian analysis, and then in

Sec. IV, we apply this method to the NPTF and show
that it gives a consistent PS interpretation of the GCE
amongst di↵use models considered. For larger values of
`max and mmax, the number of harmonic templates can
become considerable. In each instance, we perform an
initial purely Poissonian run using Minuit. From this
fit, we extract the template normalizations that achieve
the maximum likelihood, denoted Âdi↵ and Â`,m. From
these, a single harmonically improved template is formed
as follows:

T harm

p / Âdi↵T
di↵

p +
X

`,m

Â`,mY `,m
p T di↵

p , (6)

which we can then normalize as desired. This single im-
proved map is then what we use in the non-Poissonian
run.
When performing the harmonic marginalization, we

envision these corrections as being relatively small cor-
rections to the di↵use modeling rather than O(1) correc-
tions. To ensure this, we add a Gaussian penalty (reg-
ularization) term to the likelihood. In detail, for each
harmonic template we multiply the likelihood by

Lpenalty =
1

�
p
2⇡

exp

"
�
A2

`,m

2�2

#
, (7)

where we take � to be 20% of the best-fit p6v11 di↵use
model normalization in the case without harmonics. Note
that we are biasing the fit to prefer A`,m = 0, as the
spherical harmonics are both positive and negative across
the sky.

III. POISSONIAN ANALYSIS OF THE GCE

In this section, we show that properties of the GCE, as
recovered from a purely Poissonian template analysis, are
strongly a↵ected by the choice of di↵use model and ROI.
In particular, we show that certain di↵use models su↵er
from over-subtraction similar to what was observed by
Leane and Slatyer [35], but for the purely Poissonian case.
We then apply the harmonic marginalization procedure
described in the previous section and demonstrate that
these specific over-subtraction issues are resolved.

Tharm
p ∝ ̂AdiffTdiff

p + ∑
ℓ,m

̂Aℓ,mYℓ,m
p Tdiff

p

Extract large-scale harmonic components of diffuse model

Base model Modulation of large scales

Give each large-scale component an 
independent degree of freedom


Tdiff
p Yℓ,m

p

Buschmann et al incl. SM [PRD 2020]
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Gadgets 13

Table 1: An example table.

1

Posterior distribution
✓ ⇠ p(✓) = ⇡

�
f�1(✓)

�
| detrf |�1

Normalizing flow

✓ = f(u)
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· · · · · ·

· · · · · ·

··
·

··
·

�

42

Modeling the posterior with normalizing flows
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Review: Papamakarios et al [arXiv:1912.02762]
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FIG. 2. Results of the analysis on simulated Fermi data where the GCE consists of purely DM-like emission, with di↵erent rows
corresponding to five di↵erent simulated realizations. The left column shows the inferred source-count distribution posteriors
for GCE-correlated (red) and disk-correlated (blue) PSs. Dashed vertical lines corresponding to the flux associated with 1
expected photon per source and the approximate 1-� threshold for detecting individual sources are shown for reference. Solid
lines correspond to the inferred posterior median, and the lighter and darker bands represent the middle-68% and 95% posterior
containments respectively, evaluated point-wise in flux F . The middle column shows the posteriors for the Poissonian templates.
The right column shows the joins posterior on the flux fractions of DM-like and PS-like emission. The dotted lines (in the left
two columns) and the stars (in the right column) correspond to the true simulated quantities. DM-like emission is successfully
inferred in each case, with the other parameter posteriors corresponding faithfully to the true simulated values.

emission from resolved 3FGL PSs as the posterior in that
case is largely unconstrained owing to the fact that re-
solved PSs are masked out in the analysis. The right
column shows the joint posterior on the fraction of DM-
and PS-like emission in proportion to the total inferred
flux in the ROI. The true underlying parameter values
from which the data was generated are represented by
dotted lines in the left and middle columns, and by star
markers in the right column. We see that, in all cases
shown, the pipeline successfully recovers the presence of
DM-like emission, with little flux—. 10% of the total
inferred GCE emission in all cases—attributed to PSs.

Figure 3 shows the corresponding results for simu-
lated data containing PS-like emission correlated with
the GCE. We see that PS-like emission is successfully in-
ferred in each case, while at the same time exemplifying
some degeneracy with the Poissonian component. Fur-
thermore, as seen in the left column, the method is able
to characterize the contribution of the two modeled PS
components through the inferred source-count distribu-
tion. The inferred posteriors for the contribution of the
DM-like component are seen to be compatible with zero.
The overall flux of all modeled components, both PS and
di↵use, is seen to be consistent with the true values used
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FIG. 2. Results of the analysis on simulated Fermi data where the GCE consists of purely DM-like emission, with di↵erent rows
corresponding to five di↵erent simulated realizations. The left column shows the inferred source-count distribution posteriors
for GCE-correlated (red) and disk-correlated (blue) PSs. Dashed vertical lines corresponding to the flux associated with 1
expected photon per source and the approximate 1-� threshold for detecting individual sources are shown for reference. Solid
lines correspond to the inferred posterior median, and the lighter and darker bands represent the middle-68% and 95% posterior
containments respectively, evaluated point-wise in flux F . The middle column shows the posteriors for the Poissonian templates.
The right column shows the joins posterior on the flux fractions of DM-like and PS-like emission. The dotted lines (in the left
two columns) and the stars (in the right column) correspond to the true simulated quantities. DM-like emission is successfully
inferred in each case, with the other parameter posteriors corresponding faithfully to the true simulated values.

emission from resolved 3FGL PSs as the posterior in that
case is largely unconstrained owing to the fact that re-
solved PSs are masked out in the analysis. The right
column shows the joint posterior on the fraction of DM-
and PS-like emission in proportion to the total inferred
flux in the ROI. The true underlying parameter values
from which the data was generated are represented by
dotted lines in the left and middle columns, and by star
markers in the right column. We see that, in all cases
shown, the pipeline successfully recovers the presence of
DM-like emission, with little flux—. 10% of the total
inferred GCE emission in all cases—attributed to PSs.

Figure 3 shows the corresponding results for simu-
lated data containing PS-like emission correlated with
the GCE. We see that PS-like emission is successfully in-
ferred in each case, while at the same time exemplifying
some degeneracy with the Poissonian component. Fur-
thermore, as seen in the left column, the method is able
to characterize the contribution of the two modeled PS
components through the inferred source-count distribu-
tion. The inferred posteriors for the contribution of the
DM-like component are seen to be compatible with zero.
The overall flux of all modeled components, both PS and
di↵use, is seen to be consistent with the true values used
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FIG. 3. Same as Fig. 2, but for five simulated realization of Fermi data where the GCE consists of predominantly PS-like
emission. PS-like emission is inferred in each case, with the other posteriors corresponding faithfully to their true simulated
quantities. The GCE-correlated source-count distribution is also seen to be successfully recovered in the left panel. We note
that, as detailed towards the end of Sec. II A, PS flux below ⇠ 5 photons is partially accounted for by the smooth DM-like
component, which is responsible for the sharp turn-o↵ in the modeled as well as inferred GCE-correlated SCD with decreasing
flux.

neural network is re-trained on a new set of simulations
obtained using the alternative forward model before
applying it to Fermi data. Results of these analysis
variations are summarized in Tab. II.

Variation on the di↵use foreground model: In ad-
dition to di↵use Model O considered in the baseline anal-
ysis, we consider the alternative Models A and F from
Ref. [11] to model the di↵use foreground emission, again
including separate templates for gas-correlated emission
and inverse Compton scattering. While shown to be a
worse fit to the present dataset [32], these models have
been previously used in the GCE literature [32, 69, 70]
and provide a useful comparison point.

Results for these variations are shown in Figs. 6

and 7, respectively. In each case, results using the SBI
pipeline are shown in the top row, with corresponding
results using the NPTF pipeline in the bottom row. A
somewhat larger fraction of the GCE, 47.2+10.5

�24.6%, is
attributed to PSs when using di↵use Model A (Fig. 6)
compared to the baseline analysis using Model O.
The corresponding NPTF analysis finds a still larger
fraction of 74.9+6.6

�22.5%. Using Model F, 62.5+10.1
�26.9% of

the GCE is attributed to PSs, with qualitatively similar
results found by the NPTF analysis. The total emission
absorbed by the GCE in this case is about ⇠ 60% of
that found in the baseline scenario. This is consistent
with the results of Ref. [32], which found that the total
GCE flux could vary by up to a factor of ⇠ 2 between
analyses using di↵erent di↵use models.
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FIG. 2. Results of the analysis on simulated Fermi data where the GCE consists of purely DM-like emission, with di↵erent rows
corresponding to five di↵erent simulated realizations. The left column shows the inferred source-count distribution posteriors
for GCE-correlated (red) and disk-correlated (blue) PSs. Dashed vertical lines corresponding to the flux associated with 1
expected photon per source and the approximate 1-� threshold for detecting individual sources are shown for reference. Solid
lines correspond to the inferred posterior median, and the lighter and darker bands represent the middle-68% and 95% posterior
containments respectively, evaluated point-wise in flux F . The middle column shows the posteriors for the Poissonian templates.
The right column shows the joins posterior on the flux fractions of DM-like and PS-like emission. The dotted lines (in the left
two columns) and the stars (in the right column) correspond to the true simulated quantities. DM-like emission is successfully
inferred in each case, with the other parameter posteriors corresponding faithfully to the true simulated values.

emission from resolved 3FGL PSs as the posterior in that
case is largely unconstrained owing to the fact that re-
solved PSs are masked out in the analysis. The right
column shows the joint posterior on the fraction of DM-
and PS-like emission in proportion to the total inferred
flux in the ROI. The true underlying parameter values
from which the data was generated are represented by
dotted lines in the left and middle columns, and by star
markers in the right column. We see that, in all cases
shown, the pipeline successfully recovers the presence of
DM-like emission, with little flux—. 10% of the total
inferred GCE emission in all cases—attributed to PSs.

Figure 3 shows the corresponding results for simu-
lated data containing PS-like emission correlated with
the GCE. We see that PS-like emission is successfully in-
ferred in each case, while at the same time exemplifying
some degeneracy with the Poissonian component. Fur-
thermore, as seen in the left column, the method is able
to characterize the contribution of the two modeled PS
components through the inferred source-count distribu-
tion. The inferred posteriors for the contribution of the
DM-like component are seen to be compatible with zero.
The overall flux of all modeled components, both PS and
di↵use, is seen to be consistent with the true values used
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FIG. 9. E↵ect of mismodeling on a smooth GCE within our analysis framework. Each row shows aggregate posteriors collected
over 10 simulated samples; row-wise from top to bottom: (i) No mismodeling; simulated data is constructed with the same
templates as those used in the forward model for training. (ii) Mock data created with di↵use Model A, showing a possible
e↵ect of di↵use mismodeling. (iii) Mock data where the di↵use template, described by Model O, is modulated by draws from
a Gaussian process modeling large-scale mismodeling inferred from the real Fermi data. (iv) Mock data where the thick-disk
template is used in lieu of the thin-disk template. (v) Mock data where the GCE signal in the Northern hemisphere is twice as
large as that in the Southern hemisphere. While some PS-like emission is inferred, it is consistent with zero in all cases, and
evidence for a smooth GCE is robust.
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FIG. 9. E↵ect of mismodeling on a smooth GCE within our analysis framework. Each row shows aggregate posteriors collected
over 10 simulated samples; row-wise from top to bottom: (i) No mismodeling; simulated data is constructed with the same
templates as those used in the forward model for training. (ii) Mock data created with di↵use Model A, showing a possible
e↵ect of di↵use mismodeling. (iii) Mock data where the di↵use template, described by Model O, is modulated by draws from
a Gaussian process modeling large-scale mismodeling inferred from the real Fermi data. (iv) Mock data where the thick-disk
template is used in lieu of the thin-disk template. (v) Mock data where the GCE signal in the Northern hemisphere is twice as
large as that in the Southern hemisphere. While some PS-like emission is inferred, it is consistent with zero in all cases, and
evidence for a smooth GCE is robust.
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FIG. 9. E↵ect of mismodeling on a smooth GCE within our analysis framework. Each row shows aggregate posteriors collected
over 10 simulated samples; row-wise from top to bottom: (i) No mismodeling; simulated data is constructed with the same
templates as those used in the forward model for training. (ii) Mock data created with di↵use Model A, showing a possible
e↵ect of di↵use mismodeling. (iii) Mock data where the di↵use template, described by Model O, is modulated by draws from
a Gaussian process modeling large-scale mismodeling inferred from the real Fermi data. (iv) Mock data where the thick-disk
template is used in lieu of the thin-disk template. (v) Mock data where the GCE signal in the Northern hemisphere is twice as
large as that in the Southern hemisphere. While some PS-like emission is inferred, it is consistent with zero in all cases, and
evidence for a smooth GCE is robust.
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