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Cosmological  Inference 
from large-scale 
structure

new galaxy / redshift surveys:
• Euclid + SKA ~1 billion galaxies 

each 



Cosmological  Inference 
from large-scale 
structure

What is the probability of a given 
parameter, 𝜽, being a good 
descriptor of observed large 
scale structure ?

model (likelihood / 
simulator)𝜃

observed universe



Cosmological  Inference 
from large-scale 
structure

Inverse problem: What is the 
probability of a given parameter, 
𝜽, being a good descriptor of 
observed large scale structure ?

𝜃

observed universe

model (likelihood / 
simulator)



Cosmological  Inference 
from large-scale 
structure

Questions:

1) Can we estimate distributions for  
cosmological parameters using 
the full overdensity field ?

2) Can we quantify the information 
content of the field ?



Cosmological  Inference 
from large-scale 
structure ?



ILI: Implicit Likelihood Inference

𝑝 𝜽 𝐝 ∝ 𝑝 𝐝 𝜽 𝑝(𝜽)

ℒ 𝐝 𝜽 = 𝑝 𝐝 𝜽 : likelihood (simulator)

𝑝 𝜽 : prior
o Pros o Cons

o Can forward-simulate 
everything ! Universe 
+ dust + telescope 
effects …

o No analytic 
description needed

o Sims are huge ! How 
do we compare the 
distance from one 
simulation to a target 
observation ?



Approximate 
Bayesian 

Computation
1) Compress observed 𝐝 to 𝜇

2) For i simulation, compute distance
𝜌(𝜇, 𝜇̂)

if 𝜌 < 𝜖, keep simulation. 

PRO: can sample arbitrary distributions

CON: very expensive for large simulations 
and wide prior ranges

Adapted from https://en.wikipedia.org/wiki/Approximate_Bayesian_computation



Approximate 
Bayesian 

Computation
1) Compress observed 𝐝 to 𝜇

2) For i simulation, compute distance
𝜌(𝜇, 𝜇̂)

if 𝜌 < 𝜖, keep simulation. 

PRO: can sample arbitrary distributions

CON: very expensive for large simulations 
and wide prior ranges

HOW DO WE DEFINE OUR SUMMARY 
STATISTIC FOR LARGE SCALE 
STRUCTURE ?

Adapted from https://en.wikipedia.org/wiki/Approximate_Bayesian_computation



Large Scale Structure Compression ?

power spectrum

𝐱

𝐝

density field

+ noise 
+ survey effects ?



Large Scale Structure Compression ?

power spectrum

𝐱

𝐝

density field

DOES THIS 
CAPUTURE ALL THE 

INFORMATION ? 
(NO)

+ noise 
+ survey effects ?



Large Scale Structure Compression ?

𝐱

𝐝

density field

neural compression to summaries

+ noise 
+ survey effects ?



Fisher information: tells us (on average) how 
informative some data 𝐝 is about a parameter 𝜃 of 
a distribution, ℒ 𝐝 𝜃 that models 𝐝

𝐅"# = −
𝜕$ln ℒ
𝜕𝜃"𝜕𝜃# %&%*+,

Think of this as the curvature of the 
log-likelihood, ln ℒ at 𝜃!"#
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Fisher information: tells us (on average) how 
informative some data 𝐝 is about a parameter 𝜃 of 
a distribution, ℒ 𝐝 𝜃 that models 𝐝

Example: draw n𝐝 independent datapoints from a normal 
distribution, 𝒩(𝜇, 𝜎) . Then the likelihood is:

ℒ 𝐝 𝜇, 𝜎 =1
"#$

%! 1
2𝜋𝜎

exp −
1
2
𝑑" − 𝜇 &

𝜎&

And the Fisher matrix is:

𝐹 = −
𝜕&ln ℒ
𝜕𝜃'𝜕𝜃( )"#$

=

−𝑛*
𝜎 0

0
−𝑛*
2𝜎& +"#$



Fisher information: tells us (on average) how 
informative some data 𝐝 is about a parameter 𝜃 of 
a distribution, ℒ 𝐝 𝜃 that models 𝐝

Cramer-Rao bound:
⟨ 𝜃" − 𝜃" 𝜃# − 𝜃# ⟩ ≥ 𝐅𝜶𝜷B𝟏

Gives us a lower bound for the (average) variance 
of a parameter estimate



What if we could compress the universe 
down to a handful of numbers with the 

same information content as the full 
field ?



Information Maximising Neural 
Networks

Can we train a neural network to compress a 
universe simulation down to a couple of numbers ?

𝑓: 𝐝 ↦ 𝐱

𝐝 ∈ ℝ𝑵𝐩𝐢𝐱 𝐱 ∈ ℝ𝟐

𝐝ata 𝐬𝐮𝐦𝐦𝐚𝐫𝐢𝐞𝐬

↦

𝜽 ∈ ℝ𝟐



Information Maximising Neural 
Networks

Can we train a neural network to compress a 
universe simulation down to a couple of numbers ?

𝑓: 𝐝 ↦ 𝐱

𝐝 ∈ ℝ𝑵𝐩𝐢𝐱 𝐱 ∈ ℝ𝟐

𝐝ata 𝐬𝐮𝐦𝐦𝐚𝐫𝐢𝐞𝐬

↦

𝜽 ∈ ℝ𝟐
See Alsing & Wandelt (2018) 
arXiv:1712.00012 for why 
summary space is taken to 
be the same dimension as 
parameter space



Information Maximising Neural 
Networks

1) adopt a Gaussian likelihood form to compute 
our Fisher information:

−2 lnℒ 𝐱 𝐝 = 𝐱 − 𝝁F 𝜽
G
𝑪FBH(𝐱 − 𝝁F(𝜽))

Mean and covariance of network outputs

Charnock et al (2018) arXiv:1802.03537



Information Maximising Neural 
Networks

1) adopt a Gaussian likelihood form to compute 
our Fisher information:

−2 lnℒ 𝐱 𝐝 = 𝐱 − 𝝁F 𝜽
G
𝑪FBH(𝐱 − 𝝁F(𝜽))

2) Compute IMNN Fisher:
F"# = tr[𝝁F,"G 𝐶FBH𝝁F,#]

3) train until Fisher information is maximised at a 
fiducial model Charnock et al (2018) arXiv:1802.03537



Main IMNN Scheme

Makinen et al (2021) arXiv:2107.07405



Main IMNN Scheme

Completely differentiable in Jax !
Makinen et al (2021) arXiv:2107.07405



Inference for Mock Dark Matter fields

1. Train IMNN compression on simulations of a 
fiducial universe with parameters 𝜃IJK

2. Observe + compress observed universe to get 
estimates for 𝜃LMNOPL

3. Using compression, simulate universes over prior 
distribution 𝑝 𝜽 to obtain posterior 𝑝 𝜽 | 𝐝



Inference for Mock Dark Matter fields

Train compression on 128x128 
fiducial lognormal field simulations 
generated from Eisenstein-Hu P(k) , 
with fiducial parameters:

𝜃IJK = ΩQ, 𝜎R = (0.6, 0.6)



Simulate a differentiable universe !



IMNN training: saturate known 
information content

(known) theoretical field 
information content (all pixels) !

Makinen et al (2021) arXiv:2107.07405



Compress observed universe

Next: observe universe + compress

Make score estimates of the 
parameters:
O𝜃" = 𝜃"IJK + F "#

BH 𝜕𝜇S
𝜕𝜃#

𝐂STBH x 𝐰; 𝐝 − 𝜇 T

𝐝

𝐱(𝐰; 𝐝)



Score Estimates + Fisher Contours

Fiducial (poor)

Score 
estimates

Fisher 
Gaussian 
Approximtion



Step 2: Make estimates + Re-train
𝐝

𝐱(𝐰; 𝐝)

retrain compression on IMNN score 
estimates: new fiducial model 
parameters

𝜃IJK,$ = ΩQ, 𝜎R = (0.28, 0.73)



Step 3: Neural Density Estimation

Goal: parameterize the posterior 𝑝(𝜽|𝐱) ∝ 𝑝 𝐱 𝜽 𝑝(𝜽) for 
ΩQ, 𝜎R with compressed simulations

Q: How do we parameterize 𝑝 𝐱 𝜽 whilst minimizing the 
number of simulations needed ?



Neural Density Estimation

Goal: parameterize the posterior 𝑝 𝜽 𝐱 ∝ 𝑝 𝐱 𝜽 𝑝 𝜽

A: Using Conditional Masked Autoregressive Flows

Alsing et al (2018): https://arxiv.org/abs/1903.00007

𝐬𝐮
𝐦
𝐦
𝐚𝐫
𝐢𝐞
𝐬

𝐩𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬



Conditional Masked 
Autoregressive Flows

Parameterize the summary data likelihood with a neural 
network with weights 𝐰 :

𝑝 𝐱 𝜽 = Y
S&H

KJ^ 𝐱

𝑝 ( xS | xH:SBH, 𝜽;𝐰)



Conditional Masked 
Autoregressive Flows

Parameterize the summary data likelihood with a neural 
network with weights 𝐰 :

𝑝 𝐱 𝜽 = Y
S&H

KJ^ 𝐱

𝑝 ( xS | xH:SBH, 𝜽;𝐰)

Minimize log-loss: -ln U = -∑S ln 𝑝 ( xS | xH:SBH, 𝜽;𝐰)



Conditional Masked 
Autoregressive Flows

Minimize log-loss: −ln U = ∑S ln 𝑝 ( x_𝑖 | xH:SBH, 𝜽;𝐰)

Alsing et al (2018): https://arxiv.org/abs/1903.00007
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1. Draw from 
prior

2. Compress 
simulations

3. Train CMAF
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5. Compress target 
data
6. Evaluate 
posterior
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7. Draw parameters 
from posterior, 
simulate, compress
8. Append new (𝜃, x) to 
training data & continue 
training



Final inference

Fiducial (poor)

Score estimates

Fisher Gaussian 
Approximation

Approximate 
Bayesian 
Computation

DELFI + IMNN
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Final inference
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-ABC requires 12,000 
simulations over prior
to obtain 350 accepted 
points

-DELFI requires 4000 
simulations sampled in 
batches of 1000 from 
posterior



Takeaways

• Optimal nonlinear compression means we can represent 
(losslessly) massive simulations with a handful of 
numbers

• Density estimation massively reduces the number of 
simulations needed for inference (only O(1000) versus 
O(10,000) for Approximate Bayesian Computation



CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, and infographics & images by Freepik. 
Please keep this slide for attribution.

Browser-based tutorial: https://bit.ly/imnn-cosmo

Github: https://github.com/tlmakinen/FieldIMNNs

get the code !

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://bit.ly/imnn-cosmo
https://github.com/tlmakinen/FieldIMNNs


CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, and infographics & images by Freepik. 
Please keep this slide for attribution.

(Stay tuned for questions)

lucas.makinen@gmail.com
timothy.makinen@cfa.harvard.edu

https://github.com/tlmakinen

@LucasMakinen

THANK YOU !

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:lucas.makinen@gmail.com
mailto:timothy.makinen@cfa.harvard.edu
https://github.com/tlmakinen


Verifying the pipeline

Want to learn “cosmological” 
parameters (𝐴, 𝐵) from 
Gaussian fields generated by 
power spectrum

𝑃 𝑘 = 𝐴𝑘Ba

Train until Fisher information is 
maximised at a fiducial model, 
𝜃IJK = (1.0, 0.5)

Theoretical field information content !



Verifying the pipeline

Want to learn “cosmological” 
parameters (𝐴, 𝐵) from fields 
generated by power spectrum

𝑃 𝑘 = 𝐴𝑘Ba

Run Approximate Bayesian 
Computation (ABC) on target 
data with 𝜃LMNOPL = (0.9, 0.6)

The piece of data we’re 
running inference on 



What do IMNN outputs look like ?

Here we’re actually 
plotting the score 

estimates of parameters 
computed from the 

network outputs. Score 
estimates for a 

simulation’s parameters 
should be easier for the 
CMAF to learn than raw 
neural network outputs



Approximate 
Bayesian 

Computation 
for IMNN 

summaries
for every i simulation, compute: 

𝜌 = 𝐱$ − 𝐱%&'()%
*F+,-- 𝐱$ − 𝐱%&'()%

if 𝜌 < 𝜖, keep simulation. 


