
Images and videos courtesy of NASA/Chandra/HST unless otherwise noted

Adventures in Astrostatistics

Aneta Siemiginowska Chandra X-ray Center 



Images and videos courtesy of NASA/Chandra/HST unless otherwise noted

Adventures in Astrostatistics  
       High Energy Astrophysics

Aneta Siemiginowska Chandra X-ray Center 



Aneta Siemiginowska Nov. 4, 2021CfA Colloquium

X-ray Universe 
Supernova Remnants

Solar System

Radio Galaxies

Quasar Jets Clusters of Galaxies

   Hot  gas > 105 K

   Energetic particles
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Launch of Chandra X-ray Observatory
(23rd July 1999)

Launch of Chandra
(23rd July 1999)
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Outline
• Beginning 

• Adventures: 

• A1 Bayesian Framework: 

•  likelihood, priors, marginalization, MCMC, calibration uncertainties Why? 

• A2 Model Selection - hypothesis testing, Protassov et al, Park et al  - detecting spectral lines 

• A3 Hardness Ratio -  Upper limits, detection significance 

• A4 High resolution images - reconstruction, source boundaries, significance 

• Emerging Methodology and Future
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Scientific Experiment

Observations and Data Collection

Data Preparation: 

standard processing, instrument 
specific software, calibration

Data Analysis and Scientific Measurements 

Final Conclusion

Define the Experiment:

idea, proposal for observations, 
simulations, estimating required 
telescope time 

Statistics 



Beginning

• Astro-Statistics started in the ancient times with the 
statistical methodology developed and applied to 
astronomical data over thousands years.            


       Note: modern statistics is much more than calculating mean and std! 

• X-ray astronomy started in the ‘60s


• Methodology based on techniques developed in the 
past is not directly applicable to X-ray data -  several 
issues and potential approaches were noted in the early 
papers 


• Collaborations with Statisticians!
Determination of Confidence Limits for Experiments with Low Numbers of Counts

Kraft, R.P.; Burrows, D.N. Nousek, John, A. 
 1991, ApJ, 374, 344
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Beginning

•SCIMA 1996 - Chandra Data Challenges 

•Collaboration with the Harvard 
Department of Statistics 

•Workshops at the AAS HEAD meetings

CHASC web site:   http://hea-www.harvard.edu/AstroStat/
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People
http://hea-www.harvard.edu/AstroStat/people.html
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Astro-Stat Language
Appendix 5
Astrostatistics

aneta siemiginowska

We briefly describe here a number of terms normally used by statisticians,
with translations where appropriate into the terminology used in X-ray astro-
physics; this information is taken from the CHASC jargon page at http://hea-
www.harvard.edu/AstroStat/statjargon.html.

Background marginalization is integration of a background probability
over uninteresting parameters.

Bias is a systematic difference between an estimated and a true value of a
parameter.

Biased sample is a sample of objects selected from a population such that
some objects are more likely to be included than others.

Bootstrap is a method for estimating parameter variance or other proper-
ties using an approximation to a distribution created by resampling the
observed data themselves.

Cash statistic is a formulation of Poisson likelihood for a parametric model
in X-ray astronomy.

Chi-square statistic is a statistic applied in X-ray astronomy which pro-
vides a measure of the goodness-of-fit. The name comes from the χ2

distribution, however many of the “chi-square statistic” expressions do
not follow the χ2 distribution. Here are the most common expressions
used:

model variance χ2 D (D !M)2/M

data variance χ2 D (D !M)2/D

iterative Primini approximation χ2
i D (D !Mi)2/Mi!1, where i

is the iteration fitting step.

Conditional distribution (or probability density) is the probability distri-
bution of Y when X is known to be at a particular value and (X,Y ) are
variables in a joint distribution.
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X-ray data
• Collecting X-ray data means counting arriving 

photons (Poisson counts) - different from 
optical data 

• For each photon location on the sky, arrival 
time and energy are recorded (x,y,t,E) - events 

• X-ray observations take a long time - a short 
observation with Chandra last ~10 ksec (~3 
hours) while typical observations take a day or 
more.  Chandra Deep Field observations took 
about 23 days.  

Chandra Deep Field North

https://chandra.harvard.edu/photo/2003/goods/

The faintest sources - one X-ray photon every 4 days!
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P(
k)

k - counts

µ = 6.53 cts

Light curve of a steady source HZ 43 binned in 1 sec time bins

Notice asymmetry scatter around the mean Distribution of counts (k) in a light curve with


Poisson rate λ = 6.53 ct/s

p(k|λ) = (1/k!) λk e–λ 

‣ + integers

‣ asymmetry

‣ distribution

Poisson Counts

 Time  t = 1sΔ
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/

t
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• Spectral fitting: 
• Includes instrument response directly -> calibration impact on 

the results  Counts(i)= Int [arf (E) * rmf( E,i ) * Model( p, E) dE]

• Non-linear astrophysical models, computer generated models 

• Appropriate fit statistics, no binning/grouping data, no 
background subtraction 

• Modification to the fit statistics (weighted chi2) still not good for 
low number of counts, e.g. Gehrels (1986) 

• Formulations for the Poisson likelihood - Cash (1979), cstat, wstat 

• Why important?  

• bias, negative data if subtracting background or false spectral 
features, loss of information with binning, optimization with 
high number of parameters (e.g. finding the best-fit)

Adventure 1 
 Issues in Modeling low counts X-ray Spectra

channel

log( Energy ) [keV]

keV
convert


matrix (RMF)
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Fit Statistics and Bias

Distribution of photon index parameter

obtained by fitting simulated X-ray spectra 

using different fit statistics: 

Gaussian likelihood (χ2 data, χ2 model) 

and Poisson likelihood (Cash).

The assumed photon index =1.28 is marked.

Chapter 7 on Statistics
Handbook of X-ray Astronomy (Arnaud, Smith, Siemiginowska): https://doi.org/10.1017/CBO9781139034234.008 


True

Xi - data

Mi  - model

Simulations:
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Adventure 1 
Bayesian Model for Low Counts X-ray Spectra

Van Dyk et al 2001

Poisson likelihood and application of Markov Chain 
Monte Carlo (MCMC) and Gibbs Sampler

Bayesian framework: 
- probability of the model given the data

- takes into account all information 


(data, instruments, model etc.)

- no binning of data

- background as part of the statistical model

- non-biased results

- full information on the posterior distribution (probability of 

the model given the observation)

- can take into account calibration uncertainties (see Lee et 

al 2011, Xu et al 2014, Marshall et al 2021)

Note:  
   Included in Sherpa https://cxc.harvard.edu/sherpa/ 

Applied in processing of the Chandra Source Catalog (Evans et al 2010) 

pyBLoXCS
posterior 

distribution likelihood prior on model 
parameters
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Systematic (Calibration) Uncertainties
Data

Model

Compute Likelihood

prior

Draw parameters

Accept/Reject 
Update parameters

Calibration

Draw effective area

non-linear uncertainties - non-additive

The Astrophysical Journal, 794:97 (21pp), 2014 October 20 Xu et al.

the quantities that are to be estimated and I is the information
we have before seeing the data, including that used to estimate
the calibration products and/or their uncertainty. We compare
methods that treat only θ as unknown with others that treat both
θ and A as unknown, so either ψ = θ or ψ = (θ, A), while R
(and sometimes A) is part of I. In this setting Bayes’s theorem
states that the posterior distribution of ψ given Y and I is

p(ψ |Y, I) = L(Y |ψ, I) p(ψ |I)
p(Y |I)

, (2)

where p(ψ |I) is the prior distribution of ψ , L(Y |ψ, I) is the
likelihood of Y given ψ , and p(Y |I) =

∫
p(Y |ψ, I)p(ψ |I)dψ

is the normalizing constant that ensures that p(ψ |Y, I) integrates
to 1. We includeI here to emphasize that analyses always rely on
some information external to Y. To simplify notation, however,
we assume that all probability distributions are conditional on
I and omit it from our notation for the remainder of the article.
We also implicitly assume that the adopted spectral model is
appropriate. Its misspecification can lead to biases in addition
to those caused by misspecification of the calibration products.

Substituting ψ = (θ, A) into Equation (2) and assuming that
the prior distributions for θ and A are independent, we can write
the posterior distribution as

p(θ, A|Y ) ∝ L(Y |θ, A) p(θ ) p(A), (3)

where we have omitted the denominator of Equation (2) because
it is determined by the numerator. We typically use a diffuse prior
distribution on θ representing prior ignorance and an informative
prior distribution on A representing the information obtained
from calibration studies.

Whereas our primary goal is to consider methods for joint
inference for θ and A using Equation (3), we also compare such
methods with the standard approach that treats A as fixed and
known. For clarity we refer to this approach as the standard
method. For example, in a Bayesian analysis (e.g., van Dyk
et al. 2001), the standard method involves estimating θ using its
posterior distribution given the observation, Y, and the nominal
effective-area curve associated with this observation, A∗

0, that
is, using

pstd(θ | Y,A∗
0) ∝ L(Y | θ, A∗

0) p(θ ). (4)

Because this approach assumes that A = A∗
0, it does not account

for calibration uncertainty. Paper I illustrates that this can lead to
misleading estimates of θ and can significantly underestimate
the error bars associated with these estimates. Nevertheless,
because this is the standard approach in practice, we treat it as
a baseline in our numerical comparisons.

1.3. Quantifying Calibration Uncertainty

The specification of the posterior distribution in Equation (3)
requires that we formulate a prior distribution on A that en-
capsulates the calibration uncertainty. Although they were not
working in a Bayesian setting, Drake et al. (2006) generated a
library of ACIS effective-area curves. This was accomplished
by explicitly including uncertainties in each of the subsystems
of the telescope (UV/ion shield transmittance, CCD quantum
efficiency, and the telescope mirror reflectivity) using truncated
Gaussian distributions for the parameters of different instrument
models and by modifying a spline correction curve that multi-
plies a default curve. More recently, we compiled a second cal-
ibration library to represent uncertainty in the LETGS+HRC-S
grating/detector system (J. Drake et al., in preparation).

This includes corrections applied to the telescope mirror reflec-
tivity, grating obscuration and efficiency, UV/ion shield trans-
mittance, micro-channel plate quantum efficiency and unifor-
mity, etc. Additionally, spline knots were set at all prominent
spectral edges due to materials that were used in the construction
of the telescope, grating, and detector. In our numerical studies,
we illustrate how either of these libraries can be incorporated
into a fully Bayesian analysis. Both consist of L = 1000 sim-
ulated effective-area curves, each of length 1078 in the ACIS
library and each of length 16,384 in the LETGS+HRC-S li-
brary. The former is used in Sections 4.1 and 4.2, and the latter
in Section 4.3. In our general notation, we represent a calibration
library by A = {A1, A2, . . . , AL}, define Ā to be the arithmetic
mean curve of the calibration library, and let A0 denote the de-
fault effective-area curve associated with the library; Ā and A0
are similar but not necessarily equal.

In practice, the calibration library must be large to fully rep-
resent the uncertainty in high-dimensional calibration products.
To summarize this sample into a concise and usable form,
Paper I implemented a PCA on the mean-subtracted calibra-
tion sample, {A1 − Ā, . . . , AL − Ā}. PCA is a mathematical
procedure that uses orthogonal transformations to convert a set
of possibly correlated variables into a set of linearly uncorre-
lated variables called principal components. Approximately 8
(20) principal components (out of 1000) account for 97% (99%)
of the variability in the ACIS calibration library.

As in Paper I, we conduct a Bayesian analysis that treats A
and θ as unknown. We use the PCA summary of the calibration
library to formulate the prior distribution for A, p(A). In
particular, we suppose that under p(A),

A(e) = A∗
0 + (Ā − A0) +

J∑

j=1

ej rj vj , (5)

where A∗
0 is the user-generated observation-specific effective-

area curve, r2
j and vj are the principal component eigenvalues

and eigenvectors, and ej are independent standard normal
deviations.9 Since Ā ≈ A0, we can view Equation (5) as starting
with the user-specified effective area, A∗

0, and adding the random
term

∑J
j=1 ej rj vj to account for uncertainty; Ā − A0 adjusts

for the necessary mean subtraction of A when conducting
PCA. To simulate replicate effective-area curves under the
prior distribution given in Equation (5), we only need to draw
J independent standard normal deviations, (e1, . . . , eJ ), and
evaluate Equation (5). We treat A(e) as the generic notation for
the effective-area curve and continue to simply write A when its
explicit dependence on e is not pertinent.

Using Equation (5) to summarize the calibration library in-
volves several assumptions. First, we assume that the uncertainty
in A can be described by a multivariate normal distribution. The
similarity of the effective-area curves in A means that most of
the correlations among the components of this distribution are
very strong (i.e., near 1). Equation (5) stipulates that the distri-
butions associated with calibration uncertainty for observation-
specific effective-area curves differ only in their means and that
they have the same variance. This means that we can use the

9 An additional residual term, ξ =
∑L

j=J+1 rj vj , may also be included in
Equation (5). Adding eJ+1ξ can help to account for the full range of calibration
uncertainty when J is small, or for components that contribute significantly
over small energy ranges, yet make up a small fraction of the overall variance
of A.
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Whereas our primary goal is to consider methods for joint
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the error bars associated with these estimates. Nevertheless,
because this is the standard approach in practice, we treat it as
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working in a Bayesian setting, Drake et al. (2006) generated a
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of the telescope (UV/ion shield transmittance, CCD quantum
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models and by modifying a spline correction curve that multi-
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This includes corrections applied to the telescope mirror reflec-
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mean curve of the calibration library, and let A0 denote the de-
fault effective-area curve associated with the library; Ā and A0
are similar but not necessarily equal.

In practice, the calibration library must be large to fully rep-
resent the uncertainty in high-dimensional calibration products.
To summarize this sample into a concise and usable form,
Paper I implemented a PCA on the mean-subtracted calibra-
tion sample, {A1 − Ā, . . . , AL − Ā}. PCA is a mathematical
procedure that uses orthogonal transformations to convert a set
of possibly correlated variables into a set of linearly uncorre-
lated variables called principal components. Approximately 8
(20) principal components (out of 1000) account for 97% (99%)
of the variability in the ACIS calibration library.

As in Paper I, we conduct a Bayesian analysis that treats A
and θ as unknown. We use the PCA summary of the calibration
library to formulate the prior distribution for A, p(A). In
particular, we suppose that under p(A),

A(e) = A∗
0 + (Ā − A0) +
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where A∗
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deviations.9 Since Ā ≈ A0, we can view Equation (5) as starting
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0, and adding the random
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for the necessary mean subtraction of A when conducting
PCA. To simulate replicate effective-area curves under the
prior distribution given in Equation (5), we only need to draw
J independent standard normal deviations, (e1, . . . , eJ ), and
evaluate Equation (5). We treat A(e) as the generic notation for
the effective-area curve and continue to simply write A when its
explicit dependence on e is not pertinent.

Using Equation (5) to summarize the calibration library in-
volves several assumptions. First, we assume that the uncertainty
in A can be described by a multivariate normal distribution. The
similarity of the effective-area curves in A means that most of
the correlations among the components of this distribution are
very strong (i.e., near 1). Equation (5) stipulates that the distri-
butions associated with calibration uncertainty for observation-
specific effective-area curves differ only in their means and that
they have the same variance. This means that we can use the
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j=J+1 rj vj , may also be included in
Equation (5). Adding eJ+1ξ can help to account for the full range of calibration
uncertainty when J is small, or for components that contribute significantly
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Adventure 1 
Bayesian Model for Low Counts X-ray Spectra



• Spectral features - line detections  

• Additional model components
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Model A: PL Model B: PL + Gaussian

Model E: Mekal + PL Model F: scattered PLSiemiginowska+ 2016

Adventure 2 
Hypothesis testing and Model Selection
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Adventure 2 
Hypothesis testing and Model Selection

• Testing for a presence of an emission line 

• Standard LRT and F-test does not apply 

• Simulations needed to calibrate test statistics 

• Posterior Predictive p-values  
                       Protassov+2002 Park+2008

Protassov et. al.2002
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Bayesian Posterior Predictive P-values

Computing the p-value:   
the proportion of simulated test statistics LRT values larger (more extreme) 
than the observed LRT


Simulations: 

1  Simulate L data sets under null model (H0) and compute the 
test statistic for each of the L data sets fit with null (H0) and the 
complex model (H1)

2  A histogram of the simulated test statistics approximates  
the sampling distribution of the test statistic. 

3 Compute the p-value for the observed value of the test statistics


Adventure 2 
Hypothesis testing and Model Selection

Note:  
   Included in Sherpa https://cxc.harvard.edu/sherpa/

Protassov et al 2002
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Adventure 2 
Hypothesis testing and Model Selection

Searching for lines in low counts low resolution spectrum: 

- line locations and intensity 

Park et al 2008

High Posterior Density (HPD) - most likely line locations Evidence for the line

fixed line location at 2.84 keV location unknown
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Adventure 3 
Analysis of Faint Sources

• Upper limits in the source detection?        
Kashyap et al 2010  

• For faint sources - not enough counts for 
spectral modeling 

• Hardness Ratio calculations 

• What are the errors on the hardness ratios? 
BEHR - Park et al 2006

Kuraszkiewicz et al 2021
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Note:  
C-code available https://hea-www.harvard.edu/AstroStat/BEHR/ 
Applied in processing of the Chandra Source Catalog (Evans et al 2010, Primini et al. 2011)

Adventure 3 
Hardness Ratios

Classical Approach

Issues with Classical Method: 
Background subtraction

R is positive - probability distribution skewed

HR  is within [-1,+1]  

C - asymmetric errors

with Gehrels errors 
on measured counts

Classical

Bayesian Bayesian 

Classical

Park et al 2006

BEHR
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Adventure 4 
High Resolution X-ray Images

• Chandra takes the highest resolution X-ray images of the Universe 

• Poisson counts - sparse images, with many empty pixels 

• PSF variable across the images cannot be described in an analytical form, 
the PSF image is a simulation from the computer model of the Chandra 
mirrors with calibration measurements 

• Some issues:  

• detection of features and upper limits 

• detecting and identifying low surface brightness structures 

• resolving source in crowded fields - overlapping sources, diffuse 
emission 

• finding source boundaries 

• PSF uncertainties 
Chandra Image of the Galactic Center

4C+29.30 
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Chandra Data

PSF

Point Source + Bkg 
Baseline Model 

Adventure 4 
High Resolution X-ray Images

Posterior Draws with MCMC 
Expected photon counts in each pixel 

given the observed counts

Posterior Mean

LIRA - Low-Counts Image Reconstruction and Analysis 
Bayesian Hierarchical Model

Esch et al 2004, Connors & Van Dyk 2007, Stein et al. 2015 

Note:  
Code available: https://github.com/astrostat/LIRA

McKeough et al 2016

McKeough et al 2016
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Adventure 4 
High Resolution X-ray Images

Finding the source boundary

McKeough et al (in prep)

Posterior Mean

ISING Prior  
Correlation between neighboring pixels 

Posterior Draws with MCMC 
probability distribution of pixel assignments Optimal Boundary

Boundary with maximum probability  
given LIRA-Ising posterior 
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Adventure 4 
High Resolution X-ray Images

Optimal Boundary

Posterior Draws with MCMC 
probability distribution of pixel assignments

Posterior Mean

ISING Prior  
Correlation between neighboring pixels 

Boundary with maximum probability  
given LIRA-Ising posterior 

 

Finding the source boundary

McKeough et al (in prep)

Aneta Siemiginowska Nov. 4, 2021CfA Colloquium



Adventure 4 
High Resolution X-ray Images

p < 0.006p < 0.79

Po
st

er
io

r D
en

si
ty

ξ c
γ

Tc(yobs)

c- threshold

null

Evaluate Significance of feature over pre-specified region

Radio Band Chandra LIRA

Stein et al. 2015,  McKeough et al. 2016
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Adventures  
so far….  

Low Counts Spectra  
- fitting complex spectral models 
- line detection 
- hardness ratio 

Sparse Poisson Images 
     - source detection and upper limits 
     - structures in high resolution Poisson images 
     - source boundaries 
     - significance
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X-ray Analysis Standard Domains
• X-ray image is made by binning events into images, 

e.g. accumulating photons in a selected energy 
band and fixed exposure time: 

              - no spectral or temporal information 

              - analysis require a point spread function 

• Spectra for selected regions are generated by 
binning the events in energy: 

               - no spatial or temporal information  

               - require additional calibration files 

• Lightcurves for selected region and energy band 
binning the events in time: 

               - no spatial or energy information

Cassiopeia A Supernova Remnant
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Analysis Description Current Method Challenges Emerging Methods

Spectral-Image loss of time

source detection 
(VTP), spectral-
image model,  

project, deproject in 
clusters, SNR

multi-spectra, 
averaging over 

image, overlapping 
sources, transients

BASCS

Spectral-Time loss of location multi-spectra, inter-
band correlation

low counts spectra, 
non-even sampling, 
different apertures, 
multi-components

cross-spectrum, 
ABC, JAVELIN, 

Auto-Mark

Image-Time loss of energy image difference, 
source detection

spectral information, 
evolving boundaries, 

PSF, averaging

eBASCS

4D-automark

Emerging Multi-Domain Analysis
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Emerging Multi-Domain Analysis
Full information: Image-Spectral-Time

Examples: 
Probabilistic separation of  photons  
from two close sources with eBASCS  
using location, spectrum and time (Meyer+ 2021) 

Change-points and Image Segmentation  
for Time series of Images - 4D_Automark  (Xu+ 2021)

Chandra X-ray Image of Orion Nebula 
Credit: NASA/CXC/Penn State/E.Feigelson & K.Getman et al.
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Emerging Multi-Domain Analysis
Full information: Image-Spectral-Time

Example:  
Probabilistic separation of  photons  
from two close sources with eBASCS  
using location, spectrum and time

Meyer et al 2021

locations of the events 
posterior mean of the locations of Aa and Bb with BASCS light curves of each component eBASCSspectra for each star with eBASCS

0.5 arcsec separation

Aneta Siemiginowska Nov. 4, 2021CfA Colloquium



Time
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Emerging Multi-Domain Analysis

Meyer et al 2021

Full information: Image-Spectral-Time

eBASCS:  
Bayesian model to separate events from each 
star using energy, timing and location to mark 
X-ray photons assigned to each star to 
calculate intensity and hardness ratio variation 
in time.

Time

Time
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Time

Emerging Multi-Domain Analysis
Full information: Image-Spectral-Time

Xu+ 2021

Change-points and Image Segmentation 
for Time Series Images  - 4D-Automark XMM data


Proxima Centauri

before @41

increase

after @43

decrease

data at 42 model at 42

Time

co
un

ts
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Analysis Description Current 
Methods Challenges Emerging 

Methodology

spectral-image-
time

use energy, 
location, time

multi-band 
images in 

several time 
bins 

non-binned events 
instrument 
response, 

background

eBASCS,

4D-automark

polarimetry new domain
simultaneous 
3D spectral 
modeling

no energy information, 
correlation between 

Stokes vectors

Future Full Multi-Domain Analysis
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Adventures Summary  

Low Counts X-ray Spectra 

- fitting complex spectral models

- line detection

- hardness ratio


Sparse X-ray Images

     - source detection and upper limits

     - structures in high resolution Poisson images

     - source boundaries

     - significance


Future  
   - full multi-domain analysis 
   - rising interest in methodology  
   - likelihood free simulation based methods 
   - application of Machine Learning and Artificial Inteligence methods 

Past
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Astro2020 White Papers


Siemiginowska et al (2019) AAS WGAA   The Next Decade of Astroinformatics and Astrostatistics  
https://ui.adsabs.harvard.edu/abs/2019BAAS...51c.355S/abstract

Eadie et al (2019) AAS WGAA  Realizing the potential of astrostatistics and astroinformatics
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.233E/abstract

Peek et al (2019) Robust Archives Maximize Scientific Accessibility
https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.105P/abstract

Fabbiano et al (2019)  Increasing the Discovery Space in Astrophysics - A Collation of Six Submitted White Papers
https://ui.adsabs.harvard.edu/abs/2019arXiv190306634F/abstract

Kurtz et al (2020) Enabling Synergy: Improving the Information Infrastructure for Planetary Science
https://ui.adsabs.harvard.edu/abs/2020arXiv200914323K/abstract 
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Future

• Steady growth of the field 
• Collaboration with statisticians and computer 

scientists necessary 
• Funding to support research in astrostatistics 
• Education and curriculum 
• Faculty jobs in Astrostatistics  
                        Note: 3 job postings on the AAS Job register

1957 refereed research papers in ApJ, MNRAS, A&A
with words “Bayesian & X-rays”
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Astrostatistics Organizations
• AAS Working Group on Astroinformatics and Astrostatistics (WGAA) - 2012   
                                                                                     https://aas.org/comms/working-group-astroinformatics-and-astrostatistics-wgaa  

• ASA Astrostatistics Interest Group   - 2014   https://astrostat.org/join.html 

• IAU Commision B3 on Astroinformatics and Astrostatistics - 2015   
                                                   https://www.iau.org/science/scientific_bodies/commissions/B3/  

• IAA International Astrostatistics Association - 2012   http://iaa.mi.oa-brera.inaf.it/IAA/home.html 

• ISI International Statistical Institute - 2010 Astrostatistics Network 

Newsletters 
Seminars 

https://sites.google.com/view/iau-iaa-seminar/home

http://hea-www.harvard.edu/AstroStat/CHASC_2122/

AIG Student Paper Competition 2022 
 deadline Dec.13, 2021Activities: https://astrostat.org/competition/

IAU-IAA
CHASC
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Thank you CHASC!
David Van Dyk   Imperial College London

Xiao-Li Meng     Harvard Statistics

Vinay Kashyap   CfA 


• Chandra X-ray Center NAS8-03060 

• NSF Division of Mathematical Sciences 15-3492 15-3484  15-3546 18-11308 
18-11083 18-11661  

• NASA APRA 80-NSSC21-K0285 
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