
Deconvolution of images in the
presence of Poisson noise

August 2nd, 2022

RISE-CHASC Workshop, Cambridge MA

Axel Donath
 Aneta Siemiginowska, Vinay Kashyap, DvD

1

The problem of “unblind” deconvolution

2

Low counts astronomical images…

?
Reconstruction

The problem of “unblind” deconvolution

3

“Unblind”: PSF and exposure are
known or can be simulatedLow counts astronomical images…

?
Reconstruction

The problem of “unblind” deconvolution

4

!

Needs to be reconstructed using
statistical methods

λ = x ⊛ PSF
λi = ∑

k
(ei ⋅ (xi + bi)) pi−k

Low counts astronomical images…

ℒ (d |λ) =
N

∏
i

λdi
i e−di

di!

“Unblind”: PSF and exposure are
known or can be simulated

Webb’s First Deep Field…sorry couldn’t resist…:-)

Reconstruction

The problem of “unblind” deconvolution

5

!

Needs to be reconstructed using
statistical methods

“Ill-posed inference problem”

λ = x ⊛ PSF
λi = ∑

k
(ei ⋅ (xi + bi)) pi−k

Low counts astronomical images…

ℒ (d |λ) =
N

∏
i

λdi
i e−di

di!

“Unblind”: PSF and exposure are
known or can be simulated

Webb’s First Deep Field…sorry couldn’t resist…:-)

Reconstruction

Some math…

6

ℒ (d |λ) =
N

∏
i

λdi
i e−di

di!

For the counts image assume per
pixel Poisson likelihood:

Some math…

7

𝒞 (d |λ) =
N

∑
i

(λi − di log λi)

As usual: take the negative log-
likelihood, in Astronomy often call

“Cash” statistics

ℒ (d |λ) =
N

∏
i

λdi
i e−di

di!

For the counts image assume per
pixel Poisson likelihood:

Some math…

8

𝒞 (d |λ) =
N

∑
i

(λi − di log λi)

As usual: take the negative log-
likelihood, in Astronomy often call

“Cash” statistics

λ = x ⊛ PSF

 are the “model counts”λ

x is the reconstructed image we are looking
for. Consider each pixel xi as independent

parameter in the model…

ℒ (d |λ) =
N

∏
i

λdi
i e−di

di!

For the counts image assume per
pixel Poisson likelihood:

Some math…

9

𝒞 (d |λ) =
N

∑
i

(λi − di log λi)

As usual: take the negative log-
likelihood, in Astronomy often call

“Cash” statistics

xn+1 = xn − α ⋅
∂𝒞 (d |x)

∂xi

E.g. could be solved by “Gradient Descent”…

λ = x ⊛ PSF

 are the “model counts”λ

x is the reconstructed image we are looking
for. Consider each pixel xi as independent

parameter in the model…

ℒ (d |λ) =
N

∏
i

λdi
i e−di

di!

For the counts image assume per
pixel Poisson likelihood:

Some math…

10

ℒ (d |λ) =
N

∏
i

λdi
i e−di

di!

For the counts image assume per
pixel Poisson likelihood:

𝒞 (d |λ) =
N

∑
i

(λi − di log λi)

As usual: take the negative log-
likelihood, in Astronomy often call

“Cash” statistics

xn+1 = xn
d

xn ⊛ PSF
⊛ PSFT

…or using Expectation Maximisation (EM)
Proposed by [Richardson 1972] &

 [Lucy 1974]

λ = x ⊛ PSF

 are the “model counts”λ

x is the reconstructed image we are looking
for. Consider each pixel xi as independent

parameter in the model…

https://ui.adsabs.harvard.edu/abs/1972JOSA...62...55R/abstract
https://ui.adsabs.harvard.edu/abs/1974AJ.....79..745L/abstract

RL reconstruction quality

11
Uses [skimage.restoration.richardson_lucy]

https://scikit-image.org/docs/stable/api/skimage.restoration.html?highlight=richardson#skimage.restoration.richardson_lucy

RL reconstruction quality

12All show good residuals and model counts. But reconstructions very different…

LIRA method

13

ℒ (λ |d) = 𝒞 (d |λ) + 𝒫(x)

Log-LikelihoodLog-Posterior

Objective function extended by a
log-prior term, only depending on :λ

(L)ow counts (I)mage (R)econstruction and (A)nalysis

Developed in the CHASC group ~20 yrs ago…

LIRA method

14

A special “multi-scale”prior to achieve smoothness on multiple scales.
Initial idea and implementation by [Esch et al. 2004].

Log-Prior
Log-LikelihoodLog-Posterior

ℒ (λ |d) = 𝒞 (d |λ) + 𝒫(x)

Objective function extended by a
log-prior term, only depending on :λ

(L)ow counts (I)mage (R)econstruction and (A)nalysis

https://ui.adsabs.harvard.edu/abs/2004ApJ...610.1213E//abstract

LIRA method

15

A special “multi-scale”prior to achieve smoothness on multiple scales.
Initial idea and implementation by [Esch et al. 2004].

ℒ (λ |d) = 𝒞 (d |λ) + 𝒫(x)

Log-Prior
Log-LikelihoodLog-Posterior

Objective function extended by a
log-prior term, only depending on :λ

λ = [(x + b) ⋅ e] ⊛ PSF

Model counts extend by exposure e
and optional baseline (“background”)
component b by [Connors et al. 2011]

(L)ow counts (I)mage (R)econstruction and (A)nalysis

https://ui.adsabs.harvard.edu/abs/2004ApJ...610.1213E//abstract
https://ui.adsabs.harvard.edu/abs/2011ASPC..442..463C/abstract

LIRA method

16

A special “multi-scale”prior to achieve smoothness on multiple scales.
Initial idea and implementation by [Esch et al. 2004].

ℒ (λ |d) = 𝒞 (d |λ) + 𝒫(x)

Log-Prior
Log-LikelihoodLog-Posterior

Objective function extended by a
log-prior term, only depending on :λ

λ = [(x + b) ⋅ e] ⊛ PSF

Model counts extend by exposure e
and optional baseline (“background”)
component b by [Connors et al. 2011]

Change from EM to MCMC sampling from the
log-posterior. Basically sampling a series

of images…

(L)ow counts (I)mage (R)econstruction and (A)nalysis

https://ui.adsabs.harvard.edu/abs/2004ApJ...610.1213E//abstract
https://ui.adsabs.harvard.edu/abs/2011ASPC..442..463C/abstract

Pylira Python package
• The LIRA method was initially implemented as an R package by [Connors et al. 2011].

Original code available at https://github.com/astrostat/LIRA

• Meanwhile Python has become the favored language of choice for astronomical data analysis.

• Pylira is a Python wrapper around the initial C implementation implemented via [pybind11] and
based on the [Astropy affiliated package template]

• Additional dependencies are Numpy, Scipy, Astropy, Matplotlib, …

• Github: https://github.com/astrostat/pylira

• Docs: https://pylira.readthedocs.io/en/latest/

17

https://ui.adsabs.harvard.edu/abs/2011ASPC..442..463C/abstract
https://github.com/astrostat/LIRA
https://github.com/pybind/pybind11
https://github.com/astropy/package-template
https://github.com/astrostat/pylira
https://pylira.readthedocs.io/en/latest/

A short code example…

18

import numpy as np
from pylira import LIRADeconvolver
from pylira.data import point_source_gauss_psf

random_state = np.RandomState(372)

load built in test dataset
data = point_source_gauss_psf()

data["flux_init"] = random_state.gamma(10, size=(32, 32))

sklearn inspired API, take config on init
deconvolve = LIRADeconvolver(
 alpha_init=np.ones(5),
 n_iter_max=5_000,
 n_burn_in=500,

random_state=random_state,
)

run algorithm
result = deconvolve.run(data=data)

serialise to FITS
result.write(“pylira-result.fits”)

[From Simple Point Source Tutorial]

https://pylira.readthedocs.io/en/latest/pylira/user/tutorials/notebooks/point_source.html

A short code example…

19

import numpy as np
from pylira import LIRADeconvolver
from pylira.data import point_source_gauss_psf

random_state = np.RandomState(372)

load built in test dataset
data = point_source_gauss_psf()

data["flux_init"] = random_state.gamma(10, size=(32, 32))

sklearn inspired API, take config on init
deconvolve = LIRADeconvolver(
 alpha_init=np.ones(5),
 n_iter_max=5_000,
 n_burn_in=500,

random_state=random_state,
)

run algorithm
result = deconvolve.run(data=data)

serialise to FITS
result.write(“pylira-result.fits”)

[From Simple Point Source Tutorial]

How much responsibility is on the
 CHASC members to provide implementations

 documentation and nice users APIs for
 statistical methods?

https://pylira.readthedocs.io/en/latest/pylira/user/tutorials/notebooks/point_source.html

20

An unlikely image A more likely image A likely image

Patch “prior”

• Intuitively we humans have a good understanding of what an actual astronomical image should
look like, because we learned it from seeing many images

• Learning a full image PDF in a “deep learning way” is hard, there is not enough training data,
we have no ground truth etc.

• But…

Basic motivation

21

Patch “prior”
• Split images(s) into “patches” of a given

size, e.g. 8x8 pixels

• Learn a 64 dimensional
Gaussian Mixture Model (GMM)
with N=200 components

• One can compute the likelihood
for a GMM and train them using EM

• Initial idea by [Zoran et al. 2011]

• Also used in EHT reconstruction “CHIRP”
algorithm [Bouman et al. 2016]

Some example patches from an astronomical image…

Main idea

𝒫(x) =
n

∑
i=1

log (
K

∑
k=1

πkN(xi; μk, σ2
k))

https://people.csail.mit.edu/danielzoran/EPLLICCVCameraReady.pdf
https://people.csail.mit.edu/klbouman/pw/papers_and_presentations/cvpr2016_bouman.pdf

22

GMM “Eigenimages”

GMM by [Zoran et al. 2011], trained on “real world” images

• GMM as clustering algorithm

• Patches are grouped in
different “base” structures
such as edges, curves, lines, etc.

https://people.csail.mit.edu/danielzoran/EPLLICCVCameraReady.pdf

Patch prior
• In each iteration split the image (which is reconstructed into overlapping patches

• For each patch evaluate the GMM and chose the component with the highest log-likelihood

• Sum up these “best” log-likelihood values for all patches in the image to compute the total log-prior value

• Optimize the total log-posterior to achieve a Maximum A Posteriori (MAP) estimate

23

Reconstruction

Nth

𝒫(x) = ∑
i

log p ̂k,GMM(Pix) Where Pi is the matrix that extracts
the i-th patch from x

• Python based framework for (Jo)int (Li)kelihood (Deco)nvolution in presence of Poisson noise

• “Joint” refers to an extended likelihood function, with M independent observations:

• Implements the Poisson likelihood function with flexible prior, such as a uniform prior (basically equivalent to RL) and patch
priors

• Optionally can reconstruct an upsampled image X

• Based on [Pytorch] for MAP estimation. Pytorch does automatic gradients (e.g. can compute the gradient of the GMM
prior). It also allows for “scalability” by moving computations to the GPU

• Not yet public code…

24

Jolideco

ℒ (dm |x) =
M

∑
m

𝒞 (dm |x) − β ⋅ 𝒫(x)

https://pytorch.org

25

Jolideco Comparison bg1 0.01 ct / pixel
bg2 0.1 ct / pixel
bg3 1 ct / pixel

=̂
=̂
=̂

Thanks Vinay for the test datasets!

26

Jolideco Comparison bg1 0.01 ct / pixel
bg2 0.1 ct / pixel
bg3 1 ct / pixel

=̂
=̂
=̂

27

Jolideco Comparison bg1 0.01 ct / pixel
bg2 0.1 ct / pixel
bg3 1 ct / pixel

=̂
=̂
=̂

28

Open questions / ToDos
• The GMM based patch prior is a very flexible prior that seems to deal with extended sources well, much less “decomposition”

into point sources

• Started to “experiment” with combining different observations. E.g. combine good angular resolution but bad statistics with
bad angular resolution and good statistics. Does it improve the reconstruction, if so in which case?

• What is a good way to quantify the reconstruction quality? Is there a single metric?

• Release test datasets as a benchmark / challenge?

• There is currently a user defined parameter , can we get rid of it?

• Could imagine learning from different images and creating a “library” of patch priors adapted to certain analysis scenarios,
e.g. Galactic Sources, AGN jets, point sources

• Change from MAP to MC sampling method, to get distributions and error estimates

• How to deal with image dynamics? The prior is needed for weak extended sources in an image,
but not for a bright point source. Can this be improved?

• Treat point sources as independent model component?

β

