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Calibration Concordance Problem (Example: E0102)

@ Supernova remnant E0102

@ Four sources correspond to four spectral lines in E0102
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Measurements

Flux is the total amount of energy that crosses a unit area per unit time.

Flux at
distance r

Star with F=L/4ar
fuminosity L _.- -

Flux F is the amount
of energy crossing
unit area in unit Time

incident phetons

unit area oriented

perpendicular to surface area of
direction of photons sphere 4xr?

The flux of an astronomical source (F) depends on the luminosity of the

object (L) and its distance from the Earth (r), F = L/4nr?.
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Observatory and Instruments

Current X-ray Observatory

USA: Chandra X-ray Observatory Europe: XMM-Newton
High angular resolution (~0.5) High throughput (large effective area)
And
*Rossi X-ray Timing Explorer
«Swift 5
*INTEGRAL etc. 2
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Observatory and Instruments
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CHANDRA INSTRUMENTS AND CALIBRATION
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Observatory and Instruments

CHANDRA

X-RAY DBSERVATORY

CHANDRA INSTRUMENTS AND CALIBRATION

(©x0)
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A AGIS of HAC,
Advanced CCD lmnglng Spectrometer High Resolution Camera
(HRC)

S hastug arays of CODs,ane (ACIS) optmizod o maging wid flcs (16616 aro e The HRC comprises two micro-channel plte imaging detectors, and offers the highest spatial (<05 arc
e ome« (ACIS'S) optmzed as a eadou o the HETG transmisson rating, One chip o he ACIS-S second) and temporal (16 msec) resolutions. The HAC-l has the largest fied-ol-view (31331 arc
) Gaed o v (8 arc intes) magng an ot The HAC-
A

from the LETG,

High Energy 'lhnsml&ion Grating Low Energy 'lhnsmission Grating
TG) (LE

e HETG is apiize o higheslton spctuscopy of brght surces over e snergy band 0410 ETG provides the highest spectral resolving power (E/AE > 1000) on Chandra at low energies
it ACIS-S. The E/AE) SkeVio m rn 0.2 koV). The LETGHHRC. S combination s used sxtensivey for igh resouion spectioscopy of
oarorev.

Each of these instruments has a different photon collection efficiency —
Effective Area. Reflectivity and vignetting, among other effects, cause the
geometric area of a telescope to be reduced to a smaller “effective area”
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|
Calibration Concordance Problem (Example: E0102)
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12F =
N T — R 1
g U, 1 |
S0 | I bty )
@ i Il
< | ]
e 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000 Relicscsscnssescssccsnnn greseeseseeepateseseseitiiiniiininin -
S ||
°
€ 08 —
RGS1 RG?Z HETG-MEG ACIS_—S3 MOS1 MqS? pn )(I'ISO XIS1 xl‘iT AVG
0 2 4 6 8 10 12
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@ Four spectral lines observed with 11 X-ray detectors

@ Main challenge — the data/instruments do not agree
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Outline

@ Introduction
@ Scientific and Statistical Models
© Concordance Model

@ Advantages of Our Approach
@ Multiplicative Shrinkages
@ Benefits of fitting the variances
@ Extentions to handle outliers
@ Results from Astronomy Data

© Summary
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Introduction

© Introduction
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Introduction

Notation

@ NN Instruments with true effective area A;, 1 < i < N.

e For each instrument i, we know estimated a; (& A;) but not A;.
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Introduction

Notation

@ NN Instruments with true effective area A;, 1 < i < N.

e For each instrument i, we know estimated a; (& A;) but not A;.
@ M Sources with fluxes Fj, 1 < j < M.

o For each source j, F;j is unknown.
@ Photon counts cj: from measuring flux F; with instrument /.

@ Lower cases: data / estimators.

Upper cases: parameter / estimand.
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Introduction

Calibration Concordance Problem

@ Astronomers' Dilemma:

Cii  Cu: o
i#'—ufor/#/'.

a; aj’

Different instruments give different estimated flux of the same object!
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Introduction

Calibration Concordance Problem

@ Astronomers’ Dilemma:
Cii Cir: o
AL fori £
aj aj’

Different instruments give different estimated flux of the same object!

@ Scientific Question:
o Are there systematic errors in ‘known’ effective areas?
o Can we derive properly adjusted effective areas?

e Can we unify estimates of the same flux with different instruments?

Calibration Concordance September 8, 2020 10 / 39



Scientific and Statistical Models

@ Scientific and Statistical Models
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Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.

Counts = Exposure x Effective Area x Flux,
Cj = TjAiFj, < log(Cyj =B+ G,

where log area = B; = log A;, log flux = G; = log F;; let Tj; = 1.
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Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.

Counts = Exposure x Effective Area x Flux,
C,'j = T,'J'A,'Fj, = |Og C,'j = B; + Gj,

where log area = B; = log A;, log flux = G; = log F;; let Tj; = 1.

Statistical Model
log counts y;; = logcjj — ajj = B; + Gj + €, ej e N(O,a,-zj);
where ajj = —0.50,-2j to ensure E(c;j) = Cj = AiF;.
e Known Variances: o/; known.

@ Unknown Variances: o;; = o; unknown.

v
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Concordance Model

© Concordance Model
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

. indep . L .
log counts |area & flux &variance ~~" Gaussian distribution,

ind
Yij ’ Bia Gj7 01'2 mr\?p N(BI+@a 01'2)7
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

indep
~Y

log counts |area &flux &variance Gaussian distribution,

ind
Yij ’ Bia Gj7 01'2 mr\?p N(BI+@a 01'2)7

ind

B; P N(bi7 7—1'2)7
ind

G; "SSP flat prior,
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area & flux &variance
yii | Bi, Gj, 01‘2

B

Gj

2

If variance unknown: o7

Setting the prior parameters.

indep
Y
indep
~Y
indep
Yy
indep
v

indep
~J

Q b; = logaj, 7; are given by astronomers.
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Gaussian distribution,
N(B,’ + Gj, U,-2),
N(bi7 7—1'2)7
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Inv-Gamma(dfg, Bg).
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Concordance Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area & flux &variance
yii | Bi, Gj, 01‘2

B

Gj

If variance unknown: ¢?

Setting the prior parameters.

indep
Y
indep
~Y
indep
Yy
indep
v

indep
~J

Q b; = logaj, 7; are given by astronomers.

Gaussian distribution,
N (B;+ G, ).
N(b;, 7),

flat prior,

Inv-Gamma(dfg, Bg).

@ dfg, B¢ are given based on the variability in data.
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Posterior Propriety and ldentifiability

Posterior Propriety. The posterior is proper if each source is measured by
at least one instrument, i.e., |[;}| > 1 forall 1 <j < M.
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Concordance Model

Posterior Propriety and ldentifiability

Posterior Propriety. The posterior is proper if each source is measured by
at least one instrument, i.e., |[;}| > 1 forall 1 <j < M.

Identifiability

e 72 = 0o: same posteriors with {B;, G;} and {B; + 6, G; — d};
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Concordance Model

Posterior Propriety and ldentifiability
Posterior Propriety. The posterior is proper if each source is measured by
at least one instrument, i.e., |[;}| > 1 forall 1 <j < M.
Identifiability
e 72 = 0o: same posteriors with {B;, G;} and {B; + 6, G; — d};

e the condition number of Q(o?) (conditional variance of B, G) is

Anax(@(?) | 0 Q0P v _ | AXE o
)‘min(Q(Uz)) = VTQ(O'Z) v =1 W’ (1)

i=17Ti

where u = (1y,1y)" and v = (1n, —1p)".
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Concordance Model

Posterior Propriety and ldentifiability
Posterior Propriety. The posterior is proper if each source is measured by
at least one instrument, i.e., |[;}| > 1 forall 1 <j < M.
Identifiability
e 72 = 0o: same posteriors with {B;, G;} and {B; + 6, G; — d};

e the condition number of Q(o?) (conditional variance of B, G) is

Anax(@(?) | 0 Q0P v _ | AXE o
)‘min(Q(Uz)) = VTQ(O'Z) v =1 W’ (1)

i=17Ti

where u = (1y,1y)" and v = (1n, —1p)".

o {72} >> {0?}: elongated posterior contours.
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Concordance Model

Posterior Propriety and ldentifiability

Posterior Propriety. The posterior is proper if each source is measured by
at least one instrument, i.e., |[;}| > 1 forall 1 <j < M.

Identifiability
e 72 = 0o: same posteriors with {B;, G;} and {B; + 6, G; — d};

e the condition number of Q(o?) (conditional variance of B, G) is

Aax(R(0?)) ' Qo) u A oy

— 14 =t 9 1
)\min(Q(Uz)) VTQ(UZ) v ZINZI 7-i_2 ( )
where u = (1y,1y)" and v = (1n, —1p)".
o {72} >> {0?}: elongated posterior contours.
Alternative: setting By =0 or 4 = 0.
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Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.
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Concordance Model

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.
@ Gibbs Sampling: update parameters one-at-a-time.

@ Block Gibbs Sampling: update vectors of parameters.

o The joint distribution of the B; and G; is Gaussian.

@ Hamiltonian Monte Carlo (HMC) — Stan package.

e Highly correlated parameters, high-dim parameter space.
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Advantages of Our Approach

@ Advantages of Our Approach
Multiplicative Shrinkages
Benefits of fitting the variances
Extentions to handle outliers
Results from Astronomy Data
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Advantages of Our Approach Multiplicative Shrinkages
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© Concordance Model
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Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model = Shrinkage estimators (weighted averages of evidence
from 'Prior’ and evidence from 'Data’).

Calibration Concordance September 8, 2020 19 /39



Multiplicative Shrinkages
Shrinkage Estimators: Known Fluxes and Errors

Hierarchical model = Shrinkage estimators (weighted averages of evidence
from 'Prior’ and evidence from 'Data’).

(1) When fluxes and variances are known,

Original Scale Log-Scale
Bi = Wib; + (1 — W;)(yi. — G),
where
. UMy 1/M _ & —
& =]]cj ,f—H;j. G="= 7 v
J

are arithmatic means.

%
I
g
S

are geometric means.

The ‘weights', W; = % represents the direct information in b;
relative to indirect information in fluxes.

—2
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Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Errors

(2) When fluxes are unknown and variances are known,

Bi = Wibj + (1- Wi)(7i. - Gi), G =7~ B,
- et _ 5.2 i _ o2
where G; = Z,Jw -, B= 7%318‘;7’2 Vi = Z,Jwyj, yj= 7%';;!2 -
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Advantages of Our Approach Multiplicative Shrinkages

Shrinkage Estimators: Known Errors

(2) When fluxes are unknown and variances are known,

~ -

B = Wb + (1 - W) (7. — G;), G =y;— B,

~ Z B ~2 = Z'yl“ - i
where G; = M , zzzzaa,z,)/l— [ija Y_/—%:y;

(3) When variances are unknown, shrinkage estimator of variance,

N 2 1 L4
Gl=—F—— S, Si=— ) (- Bi-G)+5

I Vs Vi ,
1+4,/1+4 52, il +a |
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Advantages of Our Approach Benefits of fitting the variances
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Bencfits of fittng the variances
. . . 2
Benefits of Fitting o

e Tolerance to model/error model misspecification.

Calibration Concordance September 8, 2020 22 /39



Benefis o fiting the variances
Benefits of Fitting o2

e Tolerance to model/error model misspecification.
o Pitfalls of assuming ‘known’ variances:

e Overly optimistic ‘known variances’
= overly narrow confidence intervals

= possible false discoveries
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Benefis o fiting the variances
Benefits of Fitting o2

e Tolerance to model/error model misspecification.
o Pitfalls of assuming ‘known’ variances:
e Overly optimistic ‘known variances’
= overly narrow confidence intervals
= possible false discoveries
e ‘known variances’ > true variability

= noninformative results
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Advantages of Our Approach Extentions to handle outliers
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@ Advantages of Our Approach

@ Extentions to handle outliers

© Summary

Calibration Concordance September 8, 2020 23 /39



el
Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?
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el
Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

yii | Bi, Gj, &

Zij
B;

Yang Chen

0'2 Z,'j

= A BI+G+ ’
e

2¢jj
P60, 02)

"SSP N (by, 7R).
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el
Extentions: Log-t Model

Question: Outliers? Less restrictions on the variances?

o2

Z;
2 VEi

Zjj P N(0, 02),

B "X N(bi,7?).

yii | Bi, Gj, &

d . . .
If §,Jm~epx,/, i.e. independent chi-squared distributions, the error term

Zij/+/¢&jj follows independent student-t distributions, i.e.
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Advantages of Our Approach Extentions to handle outliers

A Numerical Example with Outliers

Simulation: N =10,M =40, G; = —1and G; =3,j > 1.
Asymptotic variance of log-counts: e~ 8=% = outliers.
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Advantages of Our Approach Extentions to handle outliers

A Numerical Example with Outliers

Simulation: N =10,M =40, G; = —1and G; =3,j > 1.
Asymptotic variance of log-counts: e~ 8=% = outliers.
vi— Bi— G +05x &/

Ry =
~ ) I%j 21/2
gi “/f;j/

ﬁU:y,,-—B,—c:j+o.5><&,?
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Advantages of Our Approach Extentions to handle outliers

A Numerical Example with Outliers

Simulation: N =10,M =40, G = —1 and G; =3,j > L.

Asymptotic variance of log-counts: e~ 8=% = outliers.
~ A 2 ~ ~ 2,2
N Yi—Bi—Gj+05x8; 4 yU—Bi—C-;j+0.5XIi/§,'J'
Rij = ~ 7RI'J' = S
gi n/ .1./2
i
6 Standardized Residuals (Log-Normal Model) .
4 . L
2 i
0 . ; ) ) a [ ’ . ;
-2 -
-4
-6 Instruments .
6 Standardized Residuals (Log-t Model)
4
2 . o
T S S
-4
-6 Instruments
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el
Coverage Properties With Outliers, Misspecification

Poisson

Coverage Probability

Length of Interval

Model | F2 [ Tog-Normal log-t log-Normal log-t
N=10| B | [0.941, 0.959] | [0.971, 0.975] | 0.067£0.005 | 0.073 % 0.002
N=10]| G 0.399 0.700 0.090+ 0.015 | 0.182+0.045
N=10 | Gum | [0.967, 0.977] | [0.996, 0.999] | 0.077+0.003 | 0.104+0.002
N=40 | B | [0.953 0.969] | [0.993, 0.998] | 0.041-£0.007 | 0.050-£0.001
N=40| G 0.398 0.686 0.045+0.003 | 0.093+0.013
N=40 | Gow | [0.965,0.977] | [0.996,0.999] | 0.038+0.001 | 0.051+0.001

Table 1: M = 40. Coverage of nominal 95% posterior intervals calculated from
2000 datasets simulated under a Poisson model. The intervals in columns 3 and 4
give the smallest and largest coverage observed for the corresponding parameter.
The last two columns give the lengths of nominal 95% intervals in the format:
mean =+ standard deviation.
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Advantages of Our Approach Results from Astronomy Data
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Resuls from Astronomy Data
Numerical Results (E0102)

Recap: Supernova remnant E0102.

Four sources are four spectral lines in E0102.
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Results from Astronomy Data
Estimates of B; = log A; (M = 2 each panel)

0.15
0.10

L 4]
e HH”H*U ””” I l

-0.10
-0.15
—-0.20
-0.25

RGS1 MOS1 MOS2 pn ACIS-S3 ACIS-I3  HETG XISO XIs1 XIs2 XIS3  XRT-WT XRT-PC

0.15
0.10

- o o 1
e

-0.10

-0.15 {

—-0.20

RGS1 MOS1 MOS2 pn ACIS-S3 ACIS-I3  HETG XISO XIs1 XIs2 XIS3  XRT-WT XRT-PC

@ Adjusted so that default effective area, b; = log a; = 0.
@ 95% posterior intervals (black:7 = 0.05; blue: 7 = 0.025).
@ Some instruments systematically high, others low.
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Advantages of Our Approach Results from Astronomy Data

Prior Influence

Instrument Oxygen Neon
7=0.02 7=005|7=0.02 7=0.05

RGS1 0.570 0.205 0.063 0.016
MOS1 0.279 0.077 0.075 0.019
MOS2 0.355 0.065 0.077 0.017
pn 0.250 0.041 0.620 0.218
ACIS-S3 0.218 0.040 0.270 0.088
ACIS-I3 0.906 0.640 0.099 0.026
HETG 0.648 0.341 0.129 0.034
XIS0 0.180 0.051 0.069 0.018
XIS1 0.298 0.078 0.071 0.019
XIS2 0.463 0.140 0.063 0.016
XIS3 0.772 0.364 0.062 0.018
XRT-WT 0.726 0.278 0.154 0.026
XRT-PC 0.934 0.235 0.906 0.017

Table 2: Proportion of prior influence, as defined by 1 — W;, for E0102 data.
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Resuls from Astronomy Data
Numerical Results (2XMM)

o 2XMM catalog: used to generate large, well-defined samples of
various types of astrophysical objects; collected with the
XMM-Newton European Photon Imaging Cameras (EPIC).
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Resuls from Astronomy Data
Numerical Results (2XMM)

o 2XMM catalog: used to generate large, well-defined samples of
various types of astrophysical objects; collected with the
XMM-Newton European Photon Imaging Cameras (EPIC).

@ Three EPIC instruments: the EPIC-pn, and the two EPIC-MQOS
detectors (pn, MOS1, and MOS2).
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Resuls from Astronomy Data
Numerical Results (2XMM)

o 2XMM catalog: used to generate large, well-defined samples of
various types of astrophysical objects; collected with the
XMM-Newton European Photon Imaging Cameras (EPIC).

@ Three EPIC instruments: the EPIC-pn, and the two EPIC-MOS
detectors (pn, MOS1, and MOS2).

@ Three datasets: hard (2.5 - 10.0 keV), medium (1.5 - 2.5 keV) and
soft (0.5 - 1.5 keV) energy bands. The three instruments (pn, MOS1
and MOS2) measured 41, 41, and 42 sources respectively in hard,
medium, and soft bands. Faint sources.
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Resuls from Astronomy Data
Numerical Results (2XMM)

S 01 Hard band Medium band Soft band

o .

< |

3 i | i !
5 0.05 i ! i i i i
3 i i | i i . i !
] i ° l | i l ! ° i 1 i °
2 00 i i ] |.i o i L s !
S B ‘ (I | : i | 1 | | i | | T :
- . ! i ¢ i 1 $ | i
£-0.05 } i i i i [

£ i ! !

3 i i i

5 -0.1

2 pn MOS1  MOS2 pn MOS1 MOS2 pn MOS1 MOS2

Figure 1: Adjustments of the log-scale Effective Areas for hard band (left),
medium band (middle) and soft band (right) of the 2XMM datasets.
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Resuls from Astronomy Data
Numerical Results (XCAL)

@ XCAL data: Bright active galactic nuclei from the XMM-Newton
cross-calibration sample.

o Observed in hard (n = 94), medium (n = 103), soft (n = 108) bands.

o Pileup: Image data are clipped to eliminate the regions affected by
pileup, determined using epatplot.

@ Three detectors: MOS1, MOS2 and pn.

@ We fit our model and show results on
Sources: M=103 (in medium band).

The hard and soft bands data are fitted similarly — treating
hard/medium /soft band as three different data sets.
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Resuls from Astronomy Data
Numerical Results (XCAL): Calibration Concordance

315 PKS2155-304 34 3C120

-3.20 -35

-3.25 -3.6

-330 ‘z-;

-3.35 { oo i {

-3.40 a0

-3.45 _a1

-3.50 -4.2

—355 pn MOSI  MOS2 7,-0.025 7—0.05 43 pn MOS1T  MOS2 7,-0.025 7—0.05

_5.50 MS0737.9+7441 225 _ PKS2155-304

_5.55 -2.30

-5.60 -2.35

ses ~2.40 { J
—2.45

-5.75 255

—5.80 J -2.60

—585 pn MOSI  MOS2 7,=0.025 7=0.05 —2.65 pn MOSI  MOS2 7,=0.025 7=0.05

4 out of 103 Sources in medium band. y-axis: G (log flux); vertical bars
(left 3 in each panel): mean + 2 s.d. based on observed fluxes, vertical
bars (right 2 in each panel): 95% posterior intervals based on our model.
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Advantages of Our Approach Results from Astronomy Data

Prior Influence

Data Name 7; = 0.025 7; = 0.05

pn mosl  mos2 pn mosl  mos2

hard band 2XMM 0.093 0.075 0.082 | 0.025 0.020 0.022
medium band 2XMM | 0.250 0.216 0.222 | 0.076 0.065 0.067
soft band 2XMM 0.093 0.075 0.069 | 0.025 0.020 0.018
hard band XCAL 0.010 0.019 0.031 | 0.003 0.005 0.008
medium band XCAL | 0.023 0.016 0.028 | 0.006 0.004 0.007
soft band XCAL 0.021 0.011 0.007 | 0.005 0.003 0.002

Table 3: Proportion of prior influence.
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© Summary
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Statistics
@ Multiplicative mean modeling:

log-Normal hierarchical model.

@ Shrinkage estimators.
© Bayesian computation: MCMC & Stan.

@ The potential pitfalls of assuming 'known' variances.

Astronomy

© Adjustments of effective areas of each instrument.

@ Calibration concordance.

v
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Discussions: Ongoing and Future Work

o Correlations among instruments.

o Estimated correlations based on theoretical simulations.

o Prior? Extra data? Uncertainty?
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Discussions: Ongoing and Future Work

o Correlations among instruments.

o Estimated correlations based on theoretical simulations.

o Prior? Extra data? Uncertainty?

@ Robustness = Misspecified models.

Better quantification of prior influence.

Coverage properties when outliers exist.
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