

Investigating Nonlinear and Stochastic Variability of Accreting Compact Objects via Recurrence Analysis

Rebecca A. Phillipson

University of Washington

Collaborators: Padi Boyd, Alan Smale, Brian Powell (NASA Goddard); Michael Vogeley, Gordon Richards (Drexel); Eric Bellm (UW); ZTE Collaboration

April 20, 2021 CHASC Seminar

NASA Grant: NNX16AT15H (Drexel) NSF Grant: AST-1812779 (UW) Advisor/PI: Dr. Eric Bellm (UW)

Outline

Motivation:

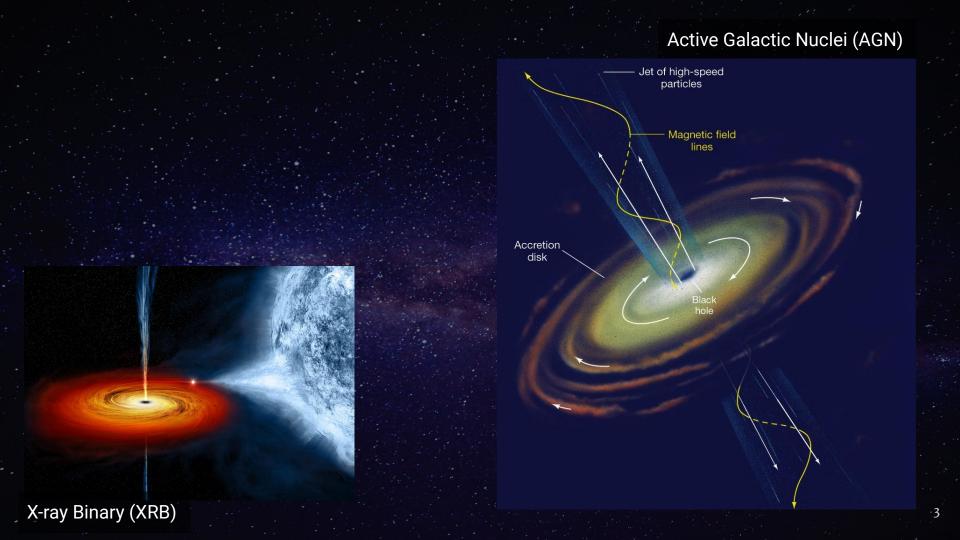
- Long-term monitoring of X-ray Binaries and Active Galaxies
- Traditional time series analysis

Methods:

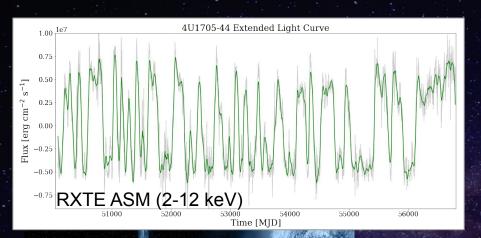
- Phase Space and Topology
 - Example: 4U 1705-44
- **Recurrence Plots**
- Quantitative recurrence analysis

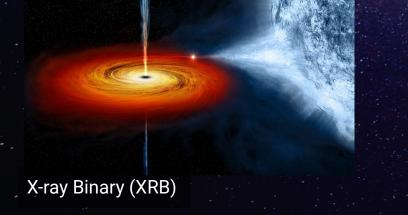
Applications:

- Distinguishing between stochastic and deterministic behavior
- Identifying chaos
- Outstanding challenges

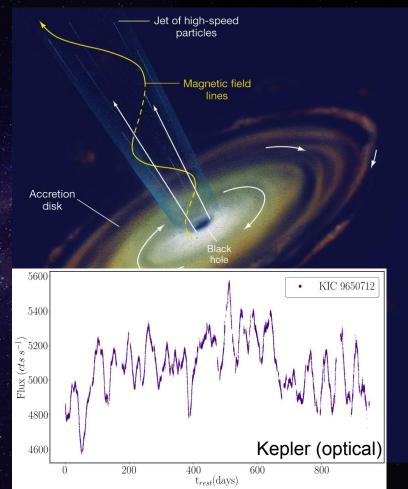


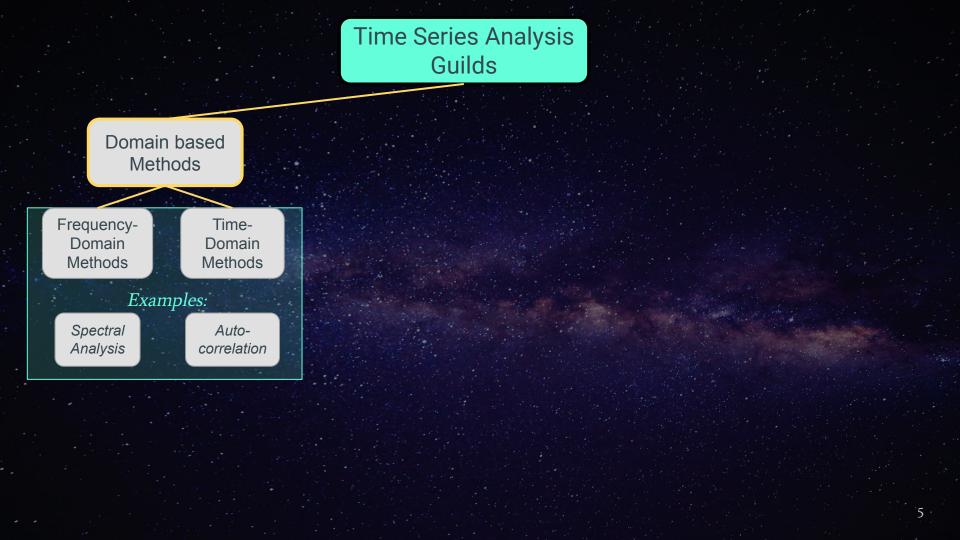
Long-term variability provides a window into the dynamics of accretion

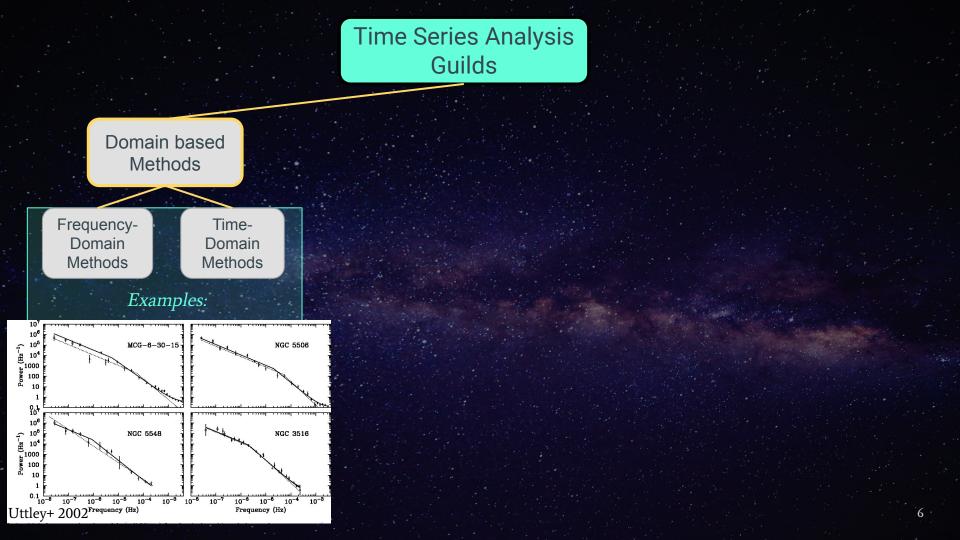


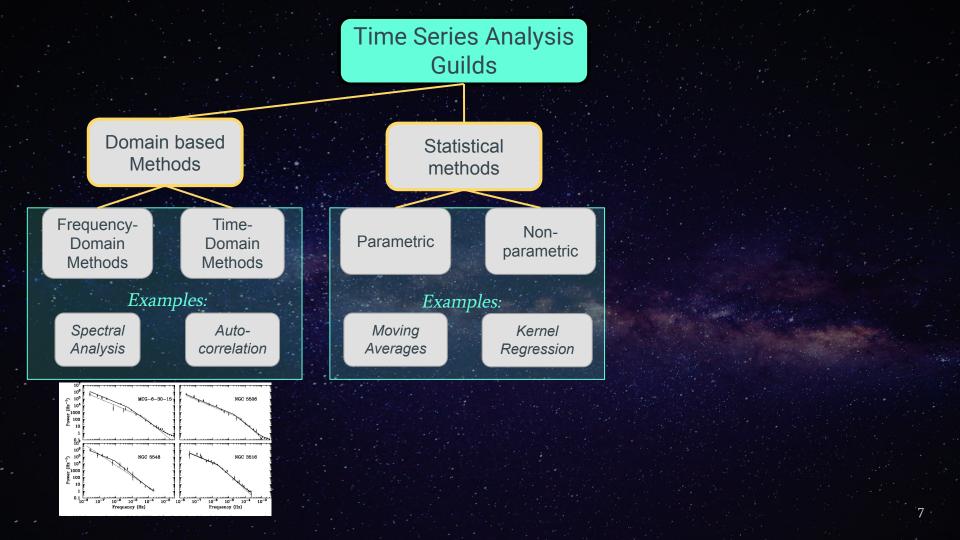


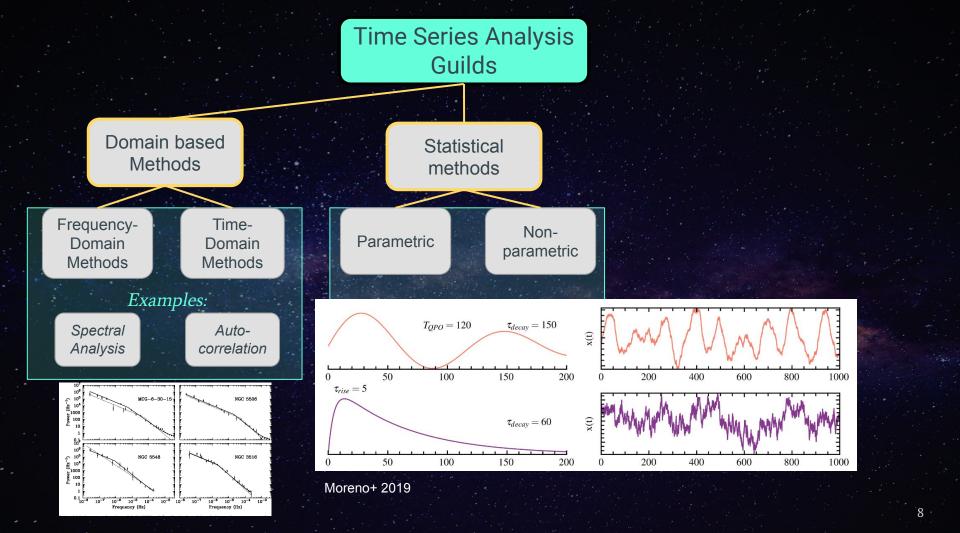
Active Galactic Nuclei (AGN)

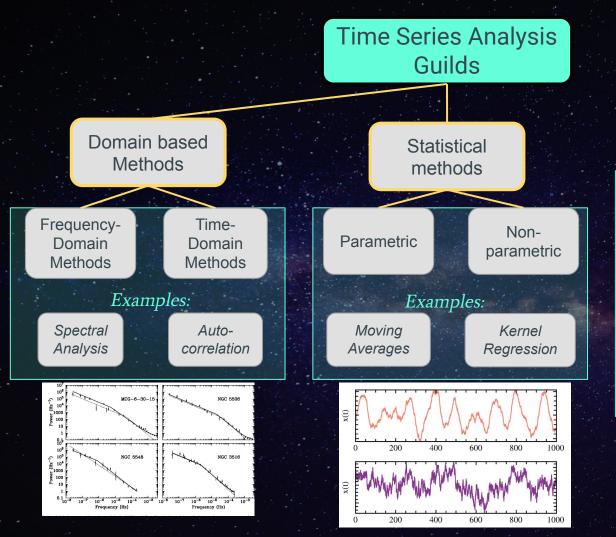






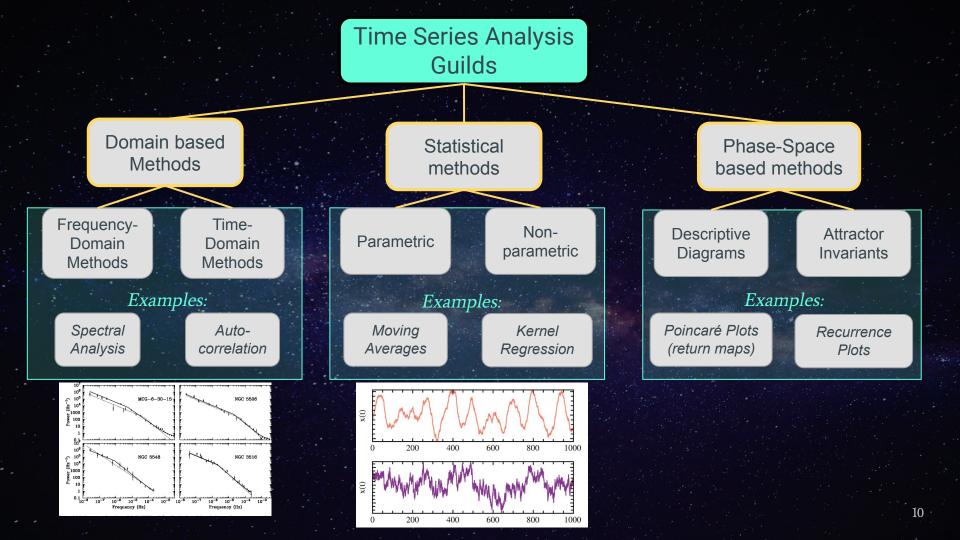


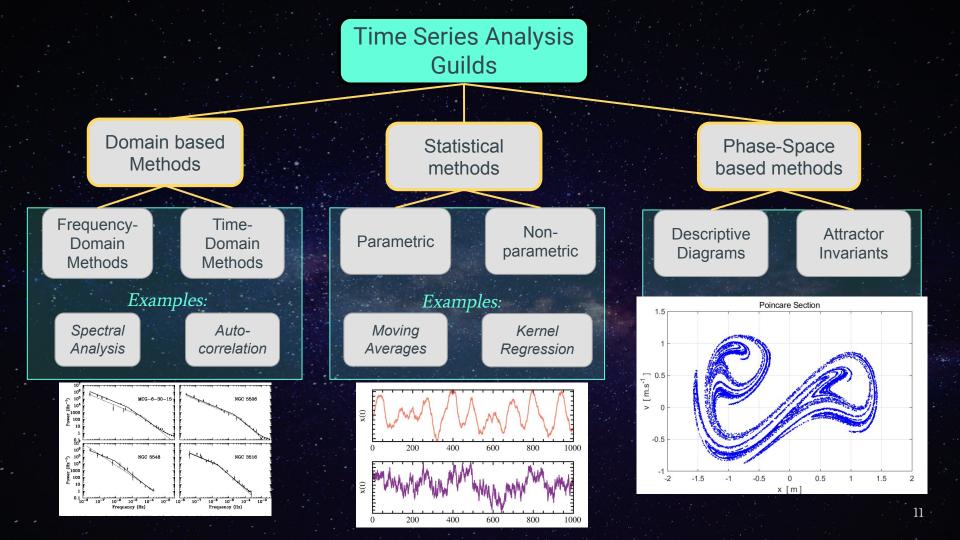


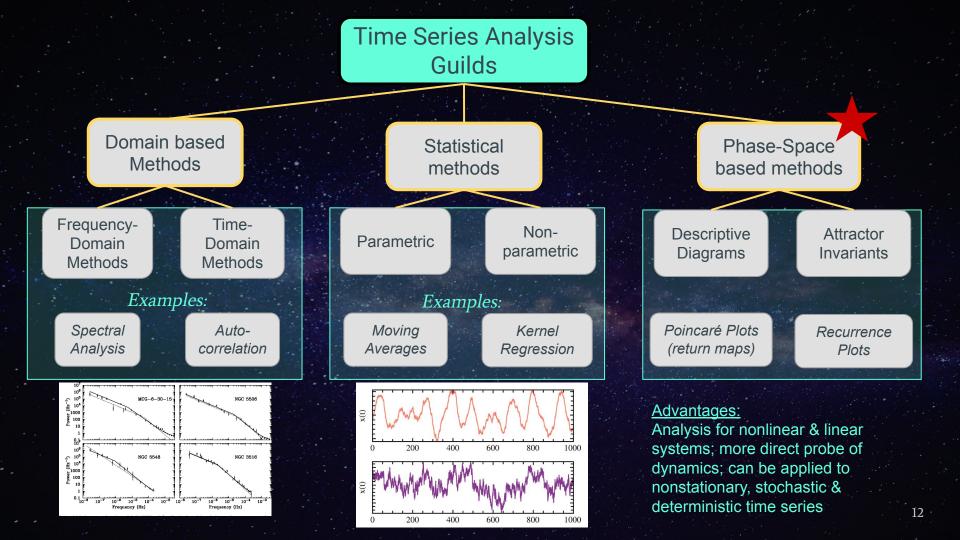


Goal:

- Connect power spectrum and statistical features to intrinsic physical properties (black hole mass, spin, etc)
 Challenges:
 - Assumptions of stationarity, linearity; inconsistencies across bandwidth; influence of noise



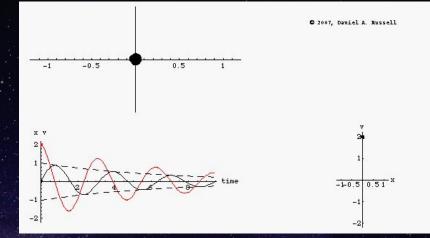




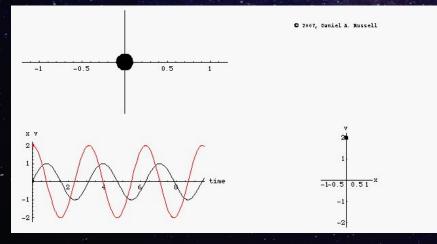
Phase Space

Classically: position versus velocity (or coordinate vs. first derivative)

Simple harmonic oscillator



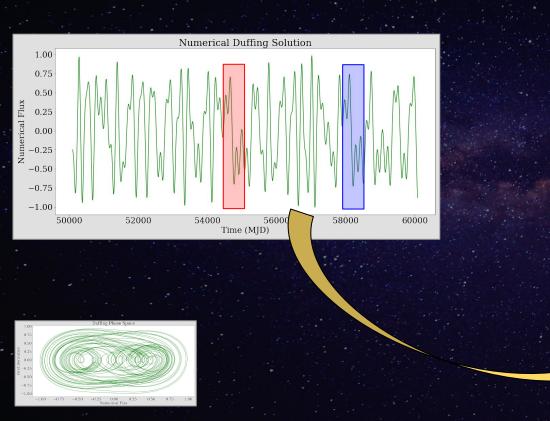
Damped harmonic oscillator

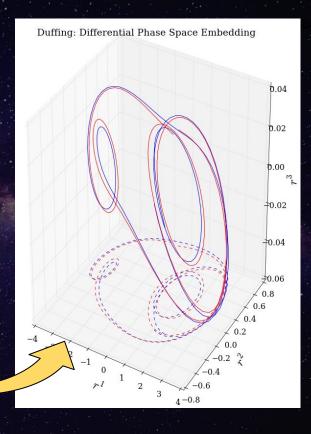


Phase Space

Damped & Driven Oscillator (Duffing equation):

$$\ddot{x} + \delta \dot{x} + lpha x + eta x^3 = \gamma \cos(\omega t)$$





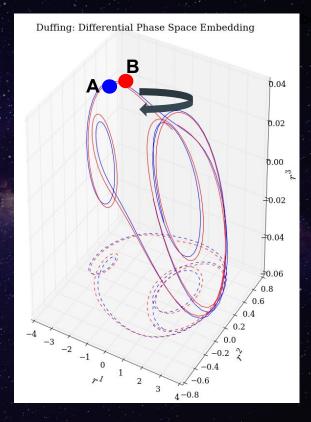
<u>Relative Rotation Rates</u>: How two trajectories (A and B) in phase space 'wind' around each other:

$$R_{ij}(A, B) = \frac{1}{2\pi p_A p_B} \oint \frac{\boldsymbol{n} \cdot (\boldsymbol{\Delta} \boldsymbol{r} \times d\boldsymbol{\Delta} \boldsymbol{r})}{\boldsymbol{\Delta} \boldsymbol{r} \cdot \boldsymbol{\Delta} \boldsymbol{r}}$$

where $\boldsymbol{\Delta} \boldsymbol{r} = [x_B(t) - x_A(t), y_B(t) - y_A(t)]$

The set of RRRs (a set of integers) are **unique** to each class of differential equations. (Solari & Gilmore 1988)

If the set of RRRs **are the same for two systems** -- they likely are produced by the same underlying attractor. (*Birman-Williams Theorem*)



<u>Relative Rotation Rates</u>: How two trajectories (A and B) in phase space 'wind' around each other:

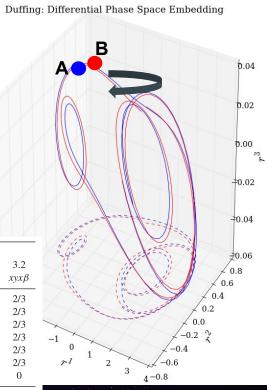
$$R_{ij}(A, B) = \frac{1}{2\pi p_A p_B} \oint \frac{\boldsymbol{n} \cdot (\boldsymbol{\Delta} \boldsymbol{r} \times d\,\boldsymbol{\Delta} \boldsymbol{r})}{\boldsymbol{\Delta} \boldsymbol{r} \cdot \boldsymbol{\Delta} \boldsymbol{r}}$$

where $\boldsymbol{\Delta} \boldsymbol{r} = [x_B(t) - x_A(t), y_B(t) - y_A(t)]$

The set of RRRs (a set of integers) are **unique** to each class of differential equations. (Solari & Gilmore 1988)

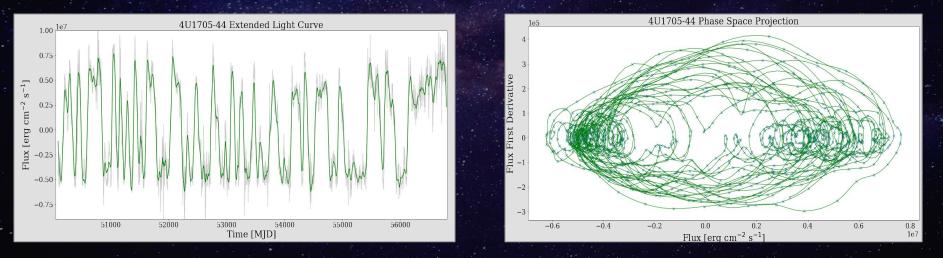
If the set of RRRs **are the same for two systems** -- they likely are produced by the same underlying attractor. (*Birman-Williams Theorem*)

Duffing relative rotation rates										
	1.1	1.2	1.5	2.1	2.2	3.1	3.2			
	xγ	xγ	xγ	ууα	ууβ	xyxα	$xyx\beta$			
1.1	0	1	1	1	1	2/3	2/3			
1.2		0	1	1	1	2/3	2/3			
1.5			0	1	1	2/3	2/3			
2.1				0	1/2	2/3	2/3			
2.2					0	2/3	2/3			
3.1						0	2/3			
3.2							0			

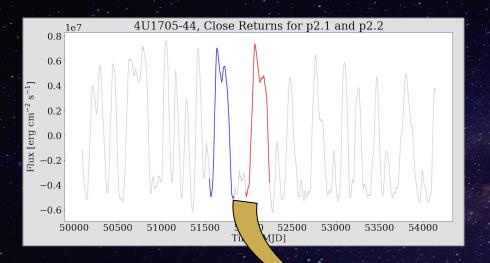


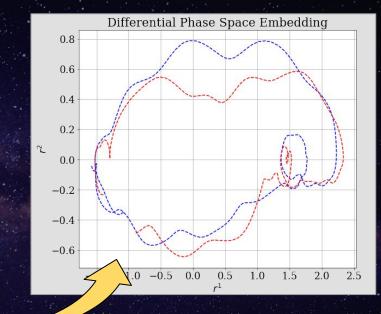
4U 1705-44: a low-mass neutron star X-ray binary; preface: has evidence for nonlinearity

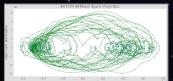
Left: light curve from RXTE All-sky monitor (2-12 keV) **Right:** 2D phase from the numerical derivative of the flux



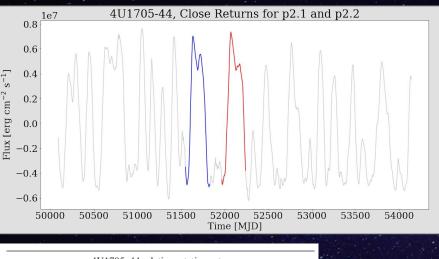
Phillipson+2018



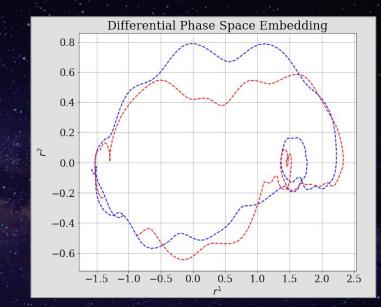




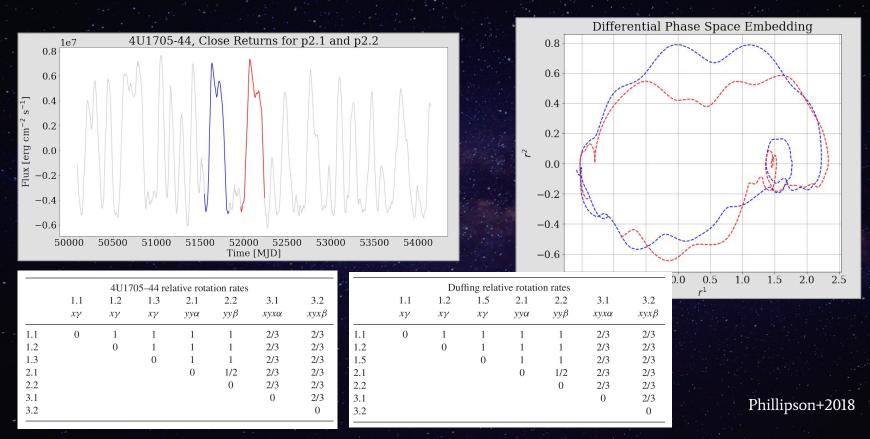
Phillipson+2018



	4U1705–44 relative rotation rates										
	1.1	1.2	1.3	2.1	2.2	3.1	3.2				
	xγ	xγ	xγ	yyα	ууβ	xyxα	$xyx\beta$				
1.1	0	1	1	1	1	2/3	2/3				
1.2		0	1	1	1	2/3	2/3				
1.3			0	1	1	2/3	2/3				
2.1				0	1/2	2/3	2/3				
2.2					0	2/3	2/3				
3.1						0	2/3				
3.2							0				



Phillipson+2018



Q: How to generate phase space of unknown or stochastic systems?

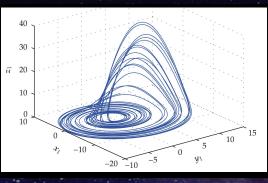
Q: Are there ways to automate the extraction of information encoded in phase space?

Q: How to generate phase space of unknown or stochastic systems?

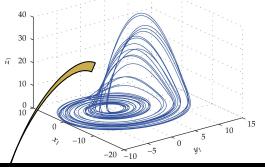
Q: Are there ways to automate the extraction of information encoded in phase space?

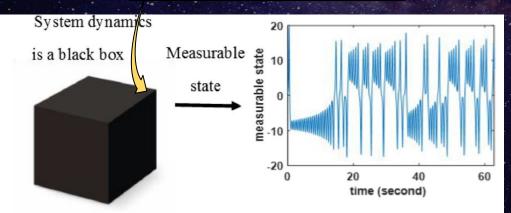
The Recurrence Plot

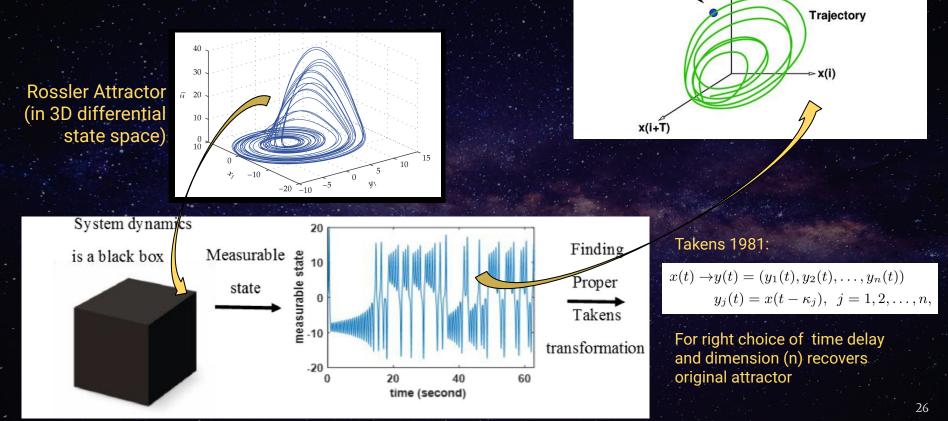
Rossler Attractor (in 3D differential state space)



Rossler Attractor (in 3D differential state space)





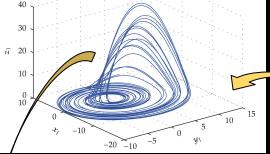


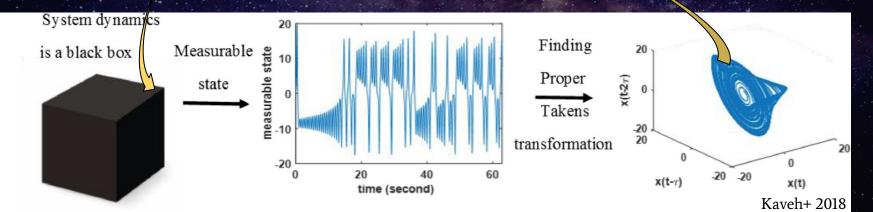
Time series

x(i+2T)

T

Rossler Attractor (in 3D differential state space)





x(i+2T) Trajectory x(i+T)

Time series

Given a dynamical system represented by the trajectory "x" in a d-dimensional phase space, the recurrence matrix is defined as:

 $\mathbf{R}_{i,j}(\epsilon) = \Theta(\epsilon - ||\vec{x}_i - \vec{x}_j||) \text{ for } i, j = 1, ..., N,$

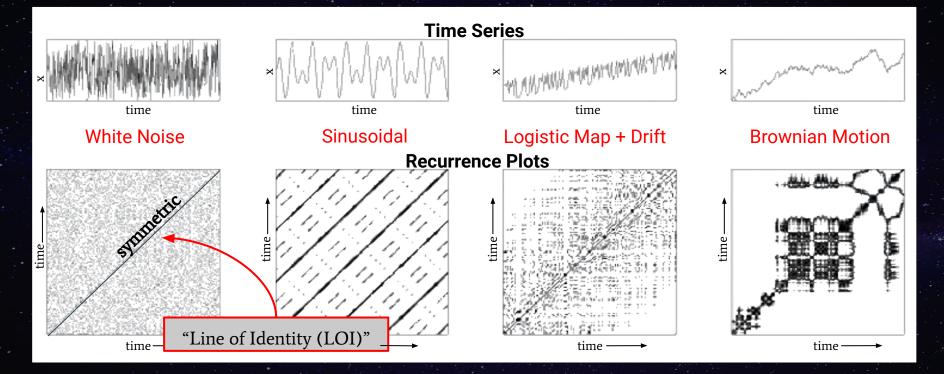
 ϵ is a threshold distance $-\Theta(\cdot)$ is the Heaviside function

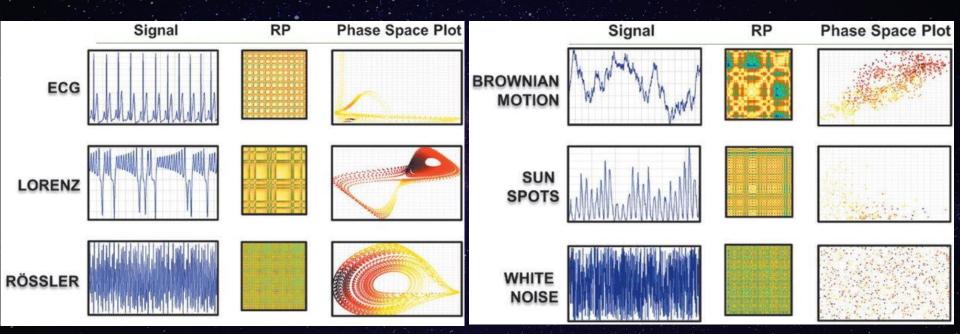
The following condition holds for two states less than the threshold distance apart:

 $\vec{x}_i \approx \vec{x}_j \Leftrightarrow \mathbf{R}_{i,j} = 1.$

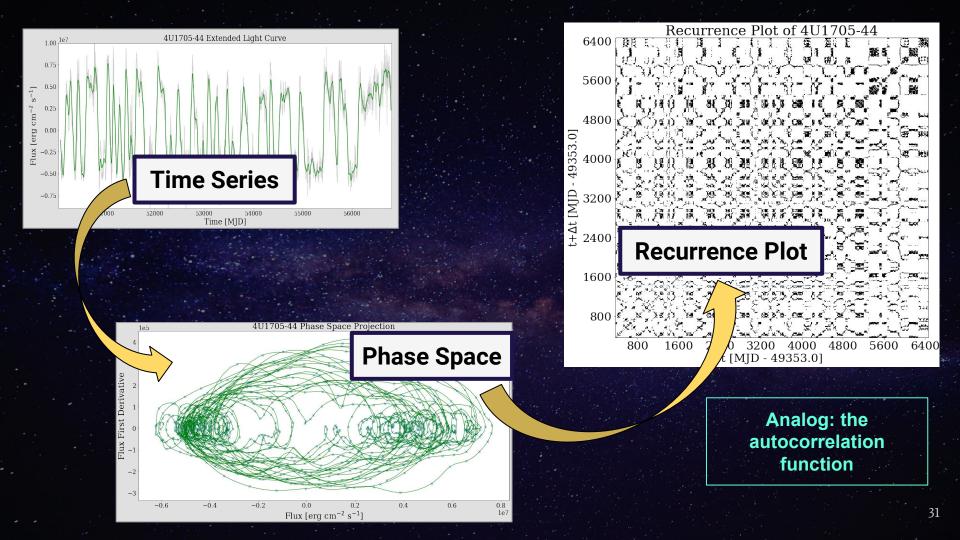
The result is a binary 2D matrix -- the positions of each entry corresponds to two points in time.

<u>Translation:</u> Non-zero entries tell us when two points in time are close to each other in phase space. The recurrence plot is the visualization of this binary matrix.

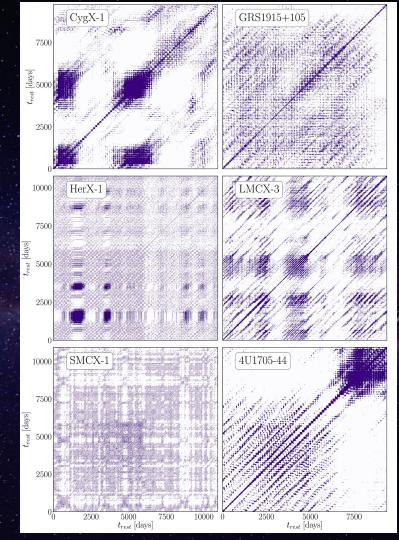




Garciá & Romo 2013 ³⁰

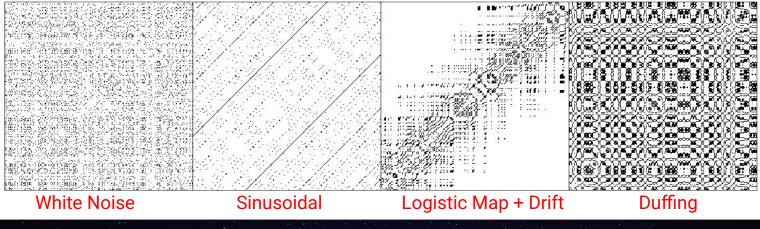


The Recurrence Plot: Example: X-ray Binaries!



Quantify the structure in the RP:

- Recurrence Quantification Analysis (RQA)
- Examples: longest diagonal line, average length of diagonal or vertical lines, # lines part of a diagonal feature versus isolated points
- A total of 16 quantities
 - Diagonal features: periodicities, determinism
 - Vertical features: time invariance, state changes

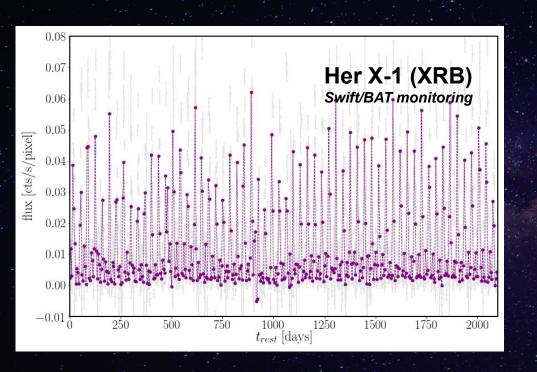


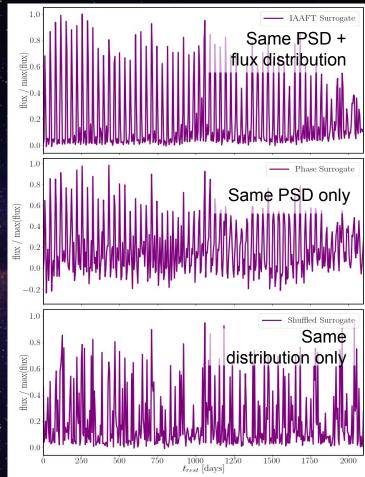
Significance of Recurrence Features

The Surrogate Data method (Theiler et al. 2002):

- Data-driven null hypothesis testing
- Generate surrogate light curves that have:
 - the same power spectrum (phase),
 - i.e. take Fourier transform of time series, randomize the phases, and then inverse Fourier transform to obtain the surrogate
 - the same flux distribution (shuffled),
 - or both (IAAFT)
- Apply statistical test to data and ensemble of surrogates :
 - if the data is significantly different, we rule out the hypothesis of the surrogates (e.g. correlated noise)
 - Surrogates *do not* retain dynamical information and carry the same noise and systematics as the original light curve

The Surrogate Data Method

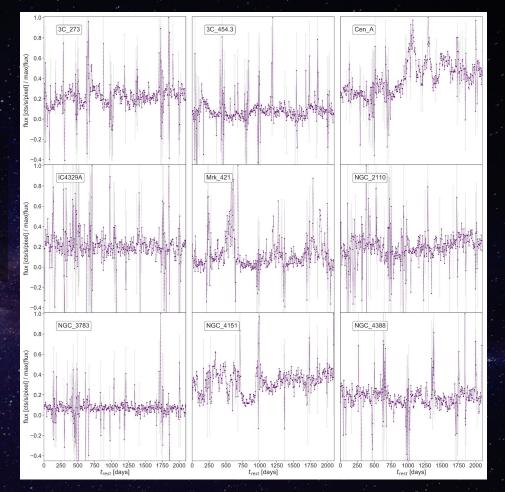




Swift/BAT AGN

Hard X-ray (14 - 150 keV) monitoring of 46 AGN from the 70-month catalog, previously observed by power spectra analysis:

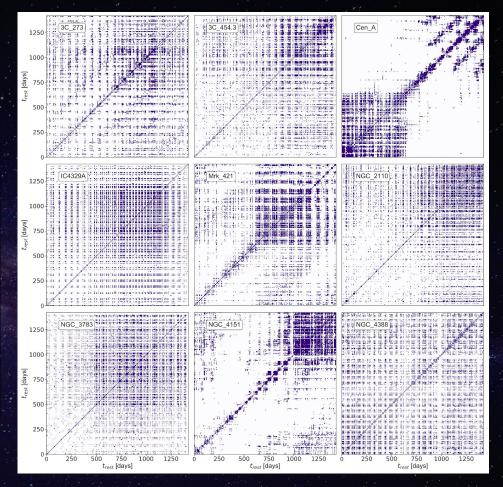
 PSD slope of -0.8 for all sources but one; Shimizu & Mushotzky 2013



Swift/BAT AGN RPs

Variety of behaviors evident in RPs:

- diagonal structures: repeating behavior
- vertical/horizontal lines: trapped states
- large scale inhomogeneities:
 - non-stationarity
- abrupt changes in texture: state changes



(Phillipson et al 2021a - in prep)

Swift/BAT AGN Recurrence Properties

Quantify the structure in the RP to find evidence for:

- Nonlinear behavior
 - Longest diagonal line length (Lmax)
- Determinism
 - Fraction of recurrences that are part of diagonal structures (DET)
- Stochastic behavior
 - Shannon entropy (randomness in the distribution of recurrences; Lentr)

Compare these measures to ensembles of surrogate data.

Are there correlations of significance of recurrence properties with physical characteristics:

- Type 1 vs. Type 2
- Obscured vs. unobscured
- Radio loud vs. radio quiet

Swift/BAT AGN Recurrence Properties

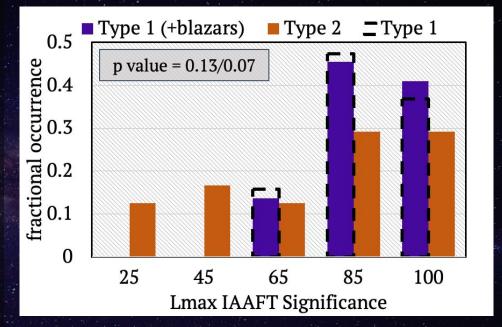
Quantify the structure in the RP to find evidence for:

- Nonlinear behavior
 - Longest diagonal line length (Lmax)
- Determinism
 - Fraction of recurrences that are part of diagonal structures (DET)
- Stochastic behavior
 - Shannon entropy (randomness in the distribution of recurrences; Lentr)

Compare these measures to ensembles of surrogate data.

Are there correlations of significance of recurrence properties with physical characteristics:

- Type 1 vs. Type 2
- Obscured vs. unobscured
- Radio loud vs. radio quiet



Swift/BAT AGN Recurrence Properties

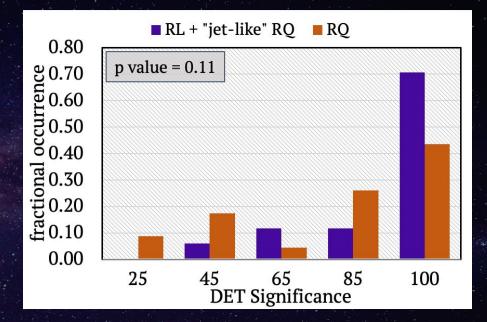
Quantify the structure in the RP to find evidence for:

- Nonlinear behavior
 - Longest diagonal line length (Lmax)
- Determinism
 - Fraction of recurrences that are part of diagonal structures (DET)
- Stochastic behavior
 - Shannon entropy (randomness in the distribution of recurrences; Lentr)

Compare these measures to ensembles of surrogate data.

Are there correlations of significance of recurrence properties with physical characteristics:

- Type 1 vs. Type 2
- Obscured vs. unobscured
- Radio loud vs. radio quiet



Ongoing Research (& challenges)

Swift/BAT AGN:

- Only nominal results comparing to physical characteristics of AGN
- Strong evidence for nonstationary behavior
- Ongoing: application to 157-month catalog

Correlated Timing and Spectral variations for XRBs:

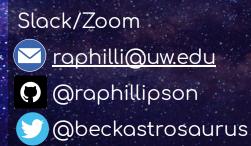
 Recurrence Plots as a moving window: uncovers changes in the variability as function of time; overlaps with spectral state transitions

Irregularly Spaced Time Series:

- The time delay method for embedding in phase space depends on evenly sampled time series
- Other methods for embedding:
 - Legendre polynomials, numerical differentiation
- Developing python package for recurrence analysis, including an alternative recurrence plot that handles irregularly spaced time series (coded for ZTF light curves)

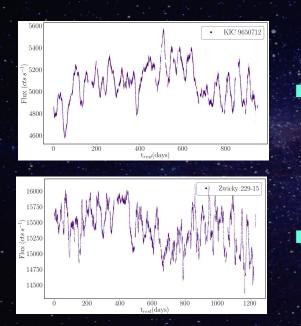
Generally: Classification of variable sources using recurrence quantities

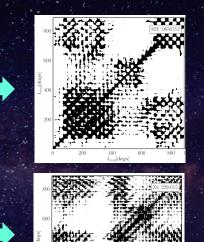
Rebecca Phillipson (she/her) Postdoctoral Scholar | University of Washington



Fun with recurrence plots: https://colinmorris.github.io/SongSim/#/rumourhasit

Example: Diverse Variability in Active Galaxies





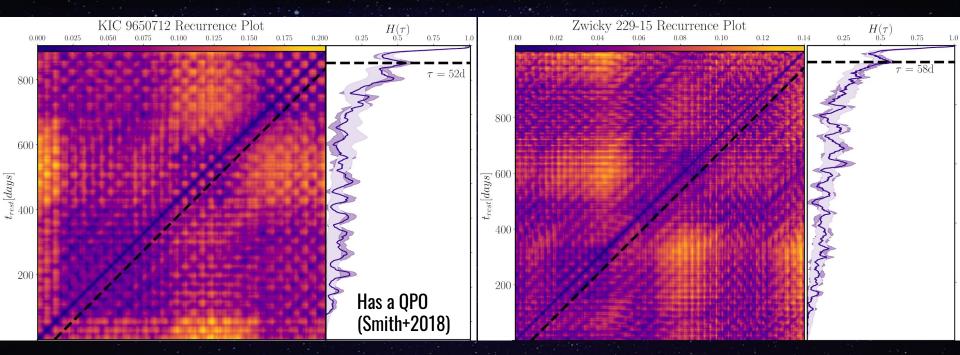
From distribution of diagonal lines, obtain 'correlation entropy', compare to stochastic surrogates – long-term variability distinguishable from stochastic, linear mechanisms

Obtain 'correlation entropy' – long-term variability **NOT** distinguishable from stochastic surrogates

(Phillipson et al 2020)

Diverse Variability in Active Galaxies

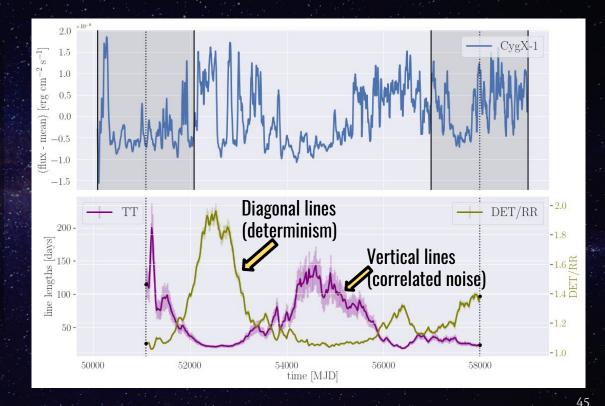
"Close Returns": pseudo-autocorrelation function -- quantifies diagonal lines as a function of time delay



(Phillipson et al 2021b - in prep)

Example: Changes in Variability States of XRBs

- Cyg X-1 experienced a series of failed state transitions and soft states (overall MJD 51,000 to MJD 53,900; Grinberg et al. 2013).
- A second, similar transition identified by DET/RR starts to occur at approximately MJD 56,000, where a second pro-longed, very soft X-ray period occurs in 2012 (Grinberg et al. 2013)

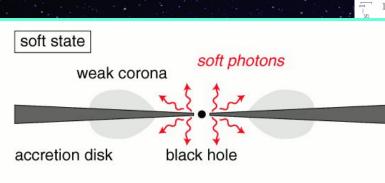


(Phillipson et al 2021b - in prep)

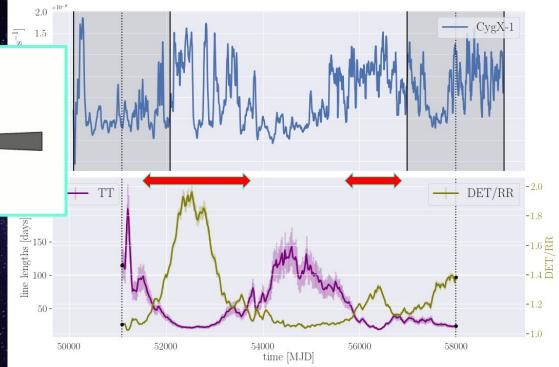
46

Example: Changes in Variability States of XRBs

ine

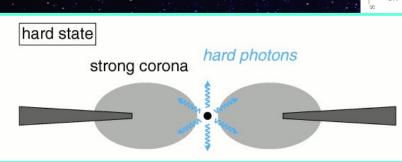


Possible Interpretation: Disk-dominated "soft" state corresponds to high determinism and regularity



(Phillipson et al 2021b - in prep)

Example: Changes in Variability States of XRBs



Possible Interpretation: Corona-dominated "hard" state corresponds to high trapping time (laminarity) and low determinism

