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Outline
● Motivation: 

○ Long-term monitoring of X-ray Binaries and Active Galaxies
○ Traditional time series analysis

● Methods:
○ Phase Space and Topology

■ Example: 4U 1705-44
○ Recurrence Plots
○ Quantitative recurrence analysis

● Applications:
○ Distinguishing between stochastic and deterministic behavior
○ Identifying chaos
○ Outstanding challenges



33X-ray Binary (XRB)

Active Galactic Nuclei (AGN)



44X-ray Binary (XRB)

Active Galactic Nuclei (AGN)

RXTE ASM (2-12 keV)

Kepler (optical)

Long-term variability provides a window into the 
dynamics of accretion
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Uttley+ 2002
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Goal: 
● Connect power spectrum 

and statistical features to 
intrinsic physical properties 
(black hole mass, spin, etc)

Challenges:
● Assumptions of stationarity, 

linearity; inconsistencies 
across bandwidth; influence 
of noise
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Examples:

Moving 
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Phase-Space 
based methods

Descriptive 
Diagrams

Attractor 
Invariants

Poincaré Plots 
(return maps)

Recurrence 
Plots

Advantages:
Analysis for nonlinear & linear 
systems; more direct probe of 
dynamics; can be applied to 
nonstationary, stochastic & 
deterministic time series



Phase Space

Simple harmonic oscillator Damped harmonic oscillator

Classically: position versus velocity (or 
coordinate vs. first derivative)



Phase Space

Damped & Driven Oscillator (Duffing equation):

https://docs.google.com/file/d/1c5kCAPVm-YQQA2PIhpg6mTx7er6P26gz/preview
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Phase Space encodes dynamical information
Time-delay embedding
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Phase Space encodes dynamical information
Time-delay embedding

A
B

Relative Rotation Rates: How two trajectories (A and B) in 
phase space ‘wind’ around each other:

The set of RRRs (a set of integers) are unique to each 
class of differential equations.
(Solari & Gilmore 1988)

If the set of RRRs are the same 
for two systems -- they likely 
are produced by the same 
underlying attractor.
(Birman-Williams Theorem)



1717

Phase Space encodes dynamical information
Time-delay embedding

A
B

Relative Rotation Rates: How two trajectories (A and B) in 
phase space ‘wind’ around each other:

The set of RRRs (a set of integers) are unique to each 
class of differential equations.
(Solari & Gilmore 1988)

If the set of RRRs are the same 
for two systems -- they likely 
are produced by the same 
underlying attractor.
(Birman-Williams Theorem)
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Phase Space encodes dynamical information
4U 1705-44: a low-mass neutron star X-ray binary; preface: has evidence for nonlinearity

Left: light curve from RXTE All-sky monitor (2-12 keV)
Right: 2D phase from the numerical derivative of the flux

Phillipson+2018
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Phase Space encodes dynamical information

Phillipson+2018
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Phase Space encodes dynamical information

Phillipson+2018
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Phase Space encodes dynamical information

Phillipson+2018
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Phase Space encodes dynamical information

Q: How to generate phase space of unknown or 
stochastic systems?

Q: Are there ways to automate the extraction of 
information encoded in phase space?
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Phase Space encodes dynamical information

The Recurrence Plot

The Time Delay Method

Q: How to generate phase space of unknown or 
stochastic systems?

Q: Are there ways to automate the extraction of 
information encoded in phase space?



Time Delay Embedding 
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Rossler Attractor 
(in 3D differential 

state space)
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Rossler Attractor 
(in 3D differential 

state space)



Time Delay Embedding 

26

Rossler Attractor 
(in 3D differential 

state space)

Takens 1981:

For right choice of  time delay 
and dimension (n) recovers 
original attractor



Time Delay Embedding 
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Rossler Attractor 
(in 3D differential 

state space)

Kaveh+ 2018

https://www-sciencedirect-com.ezproxy2.library.drexel.edu/science/article/pii/S0960077918300596#!


Given a dynamical system represented by the trajectory “x” in a d-dimensional phase space, the 
recurrence matrix is defined as:

The following condition holds for two states less than the threshold distance apart:

The result is a binary 2D matrix -- the positions of each entry corresponds to two points in time.

Translation:
Non-zero entries tell us when two points in time are close to each other in phase space.
The recurrence plot is the visualization of this binary matrix.
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The Recurrence Plot:
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The Recurrence Plot:
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The Recurrence Plot:

Garciá & Romo 2013
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Time Series

Phase Space

Recurrence Plot

Analog: the 
autocorrelation 

function
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The Recurrence Plot:
Example: X-ray Binaries!
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The Recurrence Plot:
Quantify the structure in the RP:

○ Recurrence Quantification Analysis (RQA)
○ Examples: longest diagonal line, average length of diagonal or vertical lines, # lines part of a 

diagonal feature versus isolated points
○ A total of 16 quantities

■ Diagonal features: periodicities, determinism
■ Vertical features: time invariance, state changes

White Noise Sinusoidal Logistic Map + Drift Duffing
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Significance of Recurrence Features
The Surrogate Data method (Theiler et al. 2002): 

● Data-driven null hypothesis testing
● Generate surrogate light curves that have:

○ the same power spectrum (phase), 
■ i.e. take Fourier transform of time series, randomize the phases, and then inverse 

Fourier transform to obtain the surrogate
○ the same flux distribution (shuffled), 
○ or both (IAAFT)

● Apply statistical test to data and ensemble of surrogates : 
○ if the data is significantly different, we rule out the hypothesis of the surrogates (e.g. 

correlated noise)
● Surrogates *do not* retain dynamical information and carry the same noise and systematics as 

the original light curve 
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The Surrogate Data Method Phillipson et al. 2020a

Her X-1 (XRB)
Swift/BAT monitoring

Same PSD + 
flux distribution

Same PSD only

Same 
distribution only
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Swift/BAT AGN 

3C 273

Hard X-ray (14 - 150 keV) monitoring of 46 AGN 
from the 70-month catalog, previously observed by 
power spectra analysis:

● PSD slope of -0.8 for all sources but one; 
Shimizu & Mushotzky 2013

(Phillipson et al 2021a - in prep)
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Swift/BAT AGN RPs

3C 273

Variety of behaviors evident in RPs:

● diagonal structures: repeating behavior
● vertical/horizontal lines: trapped states
● large scale inhomogeneities: 

non-stationarity
● abrupt changes in texture: state changes

(Phillipson et al 2021a - in prep)
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Swift/BAT AGN Recurrence Properties
Quantify the structure in the RP to find evidence for:

● Nonlinear behavior
○ Longest diagonal line length (Lmax)

● Determinism
○ Fraction of recurrences that are part of 

diagonal structures (DET)
● Stochastic behavior

○ Shannon entropy (randomness in the 
distribution of recurrences; Lentr)

Compare these measures to ensembles of surrogate 
data.

Are there correlations of significance of recurrence 
properties with physical characteristics:

● Type 1 vs. Type 2
● Obscured vs. unobscured
● Radio loud vs. radio quiet
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Swift/BAT AGN Recurrence Properties
(Phillipson et al 2021a - in prep)

Quantify the structure in the RP to find evidence for:

● Nonlinear behavior
○ Longest diagonal line length (Lmax)

● Determinism
○ Fraction of recurrences that are part of 

diagonal structures (DET)
● Stochastic behavior

○ Shannon entropy (randomness in the 
distribution of recurrences; Lentr)

Compare these measures to ensembles of surrogate 
data.

Are there correlations of significance of recurrence 
properties with physical characteristics:

● Type 1 vs. Type 2
● Obscured vs. unobscured
● Radio loud vs. radio quiet



40

Swift/BAT AGN Recurrence Properties
(Phillipson et al 2021a - in prep)

Quantify the structure in the RP to find evidence for:

● Nonlinear behavior
○ Longest diagonal line length (Lmax)

● Determinism
○ Fraction of recurrences that are part of 

diagonal structures (DET)
● Stochastic behavior

○ Shannon entropy (randomness in the 
distribution of recurrences; Lentr)

Compare these measures to ensembles of surrogate 
data.

Are there correlations of significance of recurrence 
properties with physical characteristics:

● Type 1 vs. Type 2
● Obscured vs. unobscured
● Radio loud vs. radio quiet
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Ongoing Research (& challenges)
(Phillipson et al 2021a - in prep)

Swift/BAT AGN:

● Only nominal results comparing to physical characteristics of AGN
● Strong evidence for nonstationary behavior
● Ongoing: application to 157-month catalog

Correlated Timing and Spectral variations for XRBs:
● Recurrence Plots as a moving window: uncovers changes in the variability as function of time; overlaps 

with spectral state transitions

Irregularly Spaced Time Series:
● The time delay method for embedding in phase space depends on evenly sampled time series
● Other methods for embedding:

○ Legendre polynomials, numerical differentiation
● Developing python package for recurrence analysis, including an alternative recurrence plot that handles 

irregularly spaced time series (coded for ZTF light curves)

Generally: Classification of variable sources using recurrence quantities
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Rebecca Phillipson 
(she/her)
Postdoctoral Scholar | University of Washington

Slack/Zoom
      raphilli@uw.edu
      @raphillipson
      @beckastrosaurus

Fun with recurrence plots: 
https://colinmorris.github.io/SongSim/#/rumourhasit

mailto:raphilli@uw.edu
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Example: Diverse Variability in Active Galaxies

(Phillipson et al 2020)

From distribution of diagonal 
lines, obtain ‘correlation entropy’, 
compare to stochastic surrogates 
— long-term variability 
distinguishable from stochastic, 
linear mechanisms

Obtain ‘correlation entropy’ — 
long-term variability NOT 
distinguishable from stochastic 
surrogates
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Diverse Variability in Active Galaxies
“Close Returns”: pseudo-autocorrelation function -- quantifies diagonal lines as a function of time delay

(Phillipson et al 2020)

Has a QPO 
(Smith+2018)
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Example: Changes in Variability States of XRBs

● Cyg X-1 experienced a series 
of failed state transitions and 
soft states (overall MJD 
51,000 to MJD 53,900; 
Grinberg et al. 2013). 

● A second, similar transition 
identified by DET/RR starts to 
occur at approximately MJD 
56,000, where a second 
pro-longed, very soft X-ray 
period occurs in 2012 
(Grinberg et al. 2013)

4U 1705-44 RXTE/ASM + MAXI/GSC

(Phillipson et al 2021b - in prep)

Diagonal lines 
(determinism)

Vertical lines 
(correlated noise)
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4U 1705-44 RXTE/ASM + MAXI/GSC

Possible Interpretation: 
Disk-dominated “soft” state 
corresponds to high determinism and 
regularity

(Phillipson et al 2021b - in prep)

Example: Changes in Variability States of XRBs
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4U 1705-44 RXTE/ASM + MAXI/GSC

(Phillipson et al 2021b - in prep)

Possible Interpretation: 
Corona-dominated “hard” state 
corresponds to high trapping time 
(laminarity) and low determinism

Example: Changes in Variability States of XRBs


