
Introduction and application of a new 
blind source separation method for 

extended sources in X-ray astronomy

Adrien Picquenot

Cassiopeia A supernova 
remnant Perseus galaxy clusterGalactic center



Summary

2

Methodology :

Applications :

An introduction to SNRs

• Introduction of wavelets and GMCA 
• Tests on toy models 
• Introduction of pGMCA 
• Error bars

• Asymmetries in Cassiopeia A 
• Synchrotron rim widths in Cassiopeia A 

Conclusion and perspectives

=>  Picquenot et al. (2019)

=>  Picquenot et al. (2021)

=>  Bobin J., El Hamzaoui I., Picquenot A., Acero F. (2020)



Introduction



Nova Stella
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Map of the sky from Tycho 
Brahe’s De nova stella

« Last night of all, 
When yond same star that’s westward from the pole 
Had made his course to illume that part of heaven »

—Shakespeare’s Hamlet, Act 1 Scene 1  



Supernovae types
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Thermonuclear (Type Ia) Core Collapse

Single/double degenerate scenarii (white dwarves)

Simulation, from 
Wongwathanarat et al. (2015)



Core Collapse Supernovae
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Asymmetries in the explosion proved necessary in 
the simulations. 

Simulation, from 
Wongwathanarat et al. (2015)

• Nuclear fusion does not 
counter gravity anymore : 
core collapse 

• Shock revival by neutrino 
h e a t i n g ( b o o s t e d b y 
instabilities) 

• Outer layers are ejected 
• Asymmetries induce the 

neutron star kick
Janka and Mueller 1994

Janka+2012

Nordhaus+2012



Linking the remnant to the supernova
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Cassiopeia A seen by Chandra

What can the remnant ejecta tell us about the initial 
asymmetry ?

t = 340 years

Simulation, from 
Wongwathanarat et al. (2015)

t = 6266 seconds
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Simulation about the evolution of a 
type Ia SNR from Ferrand et al. (2019). 
A similar work was done in Orlando et 
al. (2016) for CC SNR

Linking the remnant to the supernova

t = 1 year

t = 100 years

t = 500 years



Schematic supernova remnant
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Ejecta can trace the explosion mechanisms. 

Compact object

Ejecta

Reverse shock

Forward shock

Compressed
interstellar gas

cosmic 
rays



Real supernova remnant
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Si ejecta

Synchrotron filaments



Real supernova remnant
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Si ejecta

Synchrotron filaments

electron

X-ray 



Spectro-imaging instruments
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spatial : 0.5 arcsec ; spectral : 150 eV spatial : 6 arcsec ; spectral : 150 eV

For each photon, the 
instruments detect (x,y,E,t).

X E

Y

Chandra ACIS XMM-Newton EPIC
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Cas A data cube (x,y,E) 

Chandra data (1Ms, 2004), visualized with vaex

Supernova Remnants in X-rays

Colors show 
flux density

X

Y

E
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Cas A data cube (x,y,E) 

Chandra data (1Ms, 2004), visualized with vaex

Supernova Remnants in X-rays

Colors show 
flux density
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Fe

Si

S
Ar Ca

Mg
Ne

redshift -4000 km/s

blueshift +4000 km/s

Supernova Remnants in X-rays

E

Y

X



Supernova Remnants in X-rays
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• Thermal emission : continuum + line emission 
• Synchrotron emission continuum

How can we obtain distinct maps of the ejecta and 
synchrotron distributions ?



Part I : Methodology
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Integration around the peaks :

Traditional Analysis Methods

O Mg Si S Ar Ca Fe

From Lopez et al. (2011)



Traditional Analysis Methods
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Spectra are retrieved from 
small regions for fitting in 
Xspec (spectral modeling 
package), without leveraging 
Chandra ’ s g rea t spa t ia l 
resolution.

2D, then 1D

Abundances, temperature, 
nH… Many free parameters 
for each component in Xspec.



Traditional Analysis Methods
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The Astrophysical Journal, 746:130 (18pp), 2012 February 20 Hwang & Laming
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Figure 1. (Continued)

correlated with parameters such as the ionization age, which
shows similar distribution patterns in the west, and the column
density, which is very high in that region. It is clear, however,
that Ne and Mg both show a strikingly different morphology to
Si, S, and Ar, or to Fe, and are much more similar to each other
than to any of the other elements.

2.3.2. Forward-shocked Regions

Broadly speaking, the distinctions between ejecta- and FS-
dominated regions in Cas A are readily apparent, with differ-
ences in temperature, ionization age, and element abundances.
To carry out a survey of the ejecta mass, however, we must either
model both the ejecta and circumstellar medium (CSM) compo-
nents for each spectrum or else accurately identify the specific
regions where the reverse-shocked ejecta make the dominant
contribution to the emission. Given the scope of the spectral
analysis, we have adopted the latter approach. Multi-component
fits can be difficult to constrain reliably, particularly if one of
the components is relatively weak, and thus would require more
individual attention than is feasible for a sample of thousands.
Consequently, our next aim is to identify and eliminate regions
whose spectra can be completely associated with the forward
shock.

We evaluate the presence of thermal emission associated with
the forward shock by fitting a second set of plane-parallel shock
models to every spectrum, but this time with element abundances
appropriate for the CSM. The optically emitting quasi-stationary
flocculi (QSFs) in Cas A are understood to be circumstellar
mass loss from the progenitor. While abundance measurements
for QSFs are limited to a small number of knots, these generally
show an order-of-magnitude enhancement of N and sometimes
also of He (Chevalier & Kirshner 1978). Theoretical calculations
for the pre-supernova composition are also given by Arnett
(1996), where the models allow the elements H, He, and N, all
apparently present in Cas A, to exist simultaneously at a narrow
temperature range near log T (109 K) = −1.5 (their Figure 7.6).
At that temperature the abundance of He is 3 times the solar
value relative to H by number, and that of N about 15 times

the solar value. As these abundances for He and N are broadly
consistent with the observational measurements, we proceed to
adopt them for our fits, along with solar values for the remaining
elements, as representative CSM element abundances.

About 1209 regions gave reasonably good fitting results
(χ2 ! 1.2) with the vpshock model and these QSF element
abundances and are thus assigned to the forward shock. They
are distributed mainly in the remnant’s outer rim and southwest
interior, as would be expected based on the 4–6 keV X-ray
continuum image that highlights the forward-shocked regions
(Gotthelf et al. 2001). Their average temperature is 2.2 keV,
and their ionization ages are rather narrowly distributed with an
average value of 2 × 1011 cm−3 s. These values can be assessed
in the context of the models of Laming & Hwang (2003),
which give the current density of the CSM at the forward shock
at about 1.5–2 cm−3. Considering the r−2 dependence of the
circumstellar density, the forward shock will have encountered
much denser material in the past, and the present-day ionization
state of the forward-shocked material is expected to be relatively
advanced. The models give values of the ionization age in the
1011 cm−3 s range, approaching 1012 cm−3 s; they also indicate
that gas is rather hot, with temperatures from 2.5 to 4 keV. This
is reasonably close to the average values of the temperature
and ionization age that we find in our region, though the fitted
spectra do not show as broad a range in ionization age as is
predicted.

To the forward-shock regions identified solely by the thermal
emission model above, we must also add those that have a
strong nonthermal contribution. To identify these, we devise a
rough diagnostic for the smoothness of the X-ray spectrum. We
bin each background-subtracted spectrum at each significant
line feature and continuum interval (some of these cover only
a narrow energy range), compute the ratio of counts for each
major line feature relative to counts in an adjacent continuum
bin, and take the sum of these ratios for all the line features.
The distribution of this quantity for all the spectra has two
overlapping peaks; we take the spectra associated with the lower
peak (corresponding to weak lines in the spectrum) and perform

5

The region definition impacts 
the spectra.
Adaptative tiling (Voronoï) : 
defining cells thanks to 
surface brightness.

Si abundancy, Cassiopeia A, Hwang et 
al., 2012



Analogy with the CMB
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Planck survey of the sky

CMB

extraction

CMB



GMCA

22

Generalized Morphological Components Analysis

Blind Source Separation (BSS) algorithm retrieving  
entangled components from a data set

(Bobin et al. 2016)



GMCA
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Paris, 5th of Oct. 2015

BSS, a bit more formally

5

Standard approaches amount to model each observation as a linear mixture
of elementary components (i.e. CMB, SZ, Synchrotron, Free-Free, Dust ...) :

The objective is to estimate both A and S simultaneously !!

Prior information is required to distinguish between the components

data
image

spectrum spectrum

image

Blind Source Separation algorithm : The aim is to retrieve 
n images (x,y) and spectra (E) from the initial (E,x,y) data 
set without prior instrumental or physical knowledge.

Generalized Morphological Components Analysis (Bobin et al. 2016)



GMCA
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Without any information on A and S,  
this problem is ill-posed (infinite number of solutions).

We need a constraint : sparsity

n is user defined



GMCA
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Finding a sparse representation :

Analogy with 1-D :

The Four ier transform 
allows to describe periodic 
signals with only a few non 
zero coefficients.

It makes the different components easier to 
disentangle by diminishing the overlapping.



GMCA
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In 2-D :

Starlet transform of the Fe structure in Cassiopeia A

Wavelet transforms give sparse representations of 
images. In particular, Starlets are well adapted for 
astrophysical images.

Small scales Large scales

The concept of sparsity



GMCA
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In 2-D :

On the right, Starlet transform third scale coefficients of gaussians of 
different sizes

W
av

el
et
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oe

ff 
(E

2)

Wavelet coeff (E1)

The concept of sparsity

large gaussian
small gaussians



GMCA
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A grid of small gaussians with a constant spectrum

A  large gaussian with a gaussian spectrum

Noise



GMCA
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Without any information on A and S,  
this problem is ill-posed.



GMCA
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With a sparsity constraint term :

A constraint using morphological diversity.



GMCA
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The algorithm is iterative, each iteration 
containing two steps :



GMCA
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Generalized Morphological Components Analysis (Bobin et al. 2016)

First hypothesis : linear decomposition

Third hypothesis : the noise is gaussian additive

Second hypothesis : different components have 
different morphology



GMCA
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Generalized Morphological Components Analysis (Bobin et al. 2016)

First hypothesis : linear decomposition

Third hypothesis : the noise is gaussian additive

Second hypothesis : different components have 
different morphology

Is it appropriate for X-ray studies ?



GMCA on X-ray data
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Generalized Morphological Components Analysis (Bobin et al. 2016)

First hypothesis : linear decomposition

Third hypothesis : the noise is gaussian additive

Second hypothesis : different components have 
different morphology

=> No, the noise is Poissonian in X-rays

=> Yes for extended sources (filaments, clumps, knots…)

=> Associates mean spectra to retrieved images : every 
pixel has the same spectrum. Consistent ?



Test on toy models
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Instrumental 
Background

X

Y

E

* *
Total Spectrum:

Our two toy models have two components :

The first component is a synchrotron emission, the 
second one is either a thermal emission or a line 
emission. We generate Poisson noise.



Test on toy models
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Both components are entangled in our toy model



Test on toy models
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Components disentangled  
by GMCA



Reconstructed image accuracy
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SSIM coefficients of the images of the retrieved second component in both toy models

Examples of Structural similarity index (SSIM) coefficients associated with the corresponding images



Spectral accuracy
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Spectra of second component retrieved by GMCA in both toy models

Dashed lines : theoretical models. On the right, we can see 
important deviations in high energy from the model.



Test on real data of Cas A
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Integration on 3.75-3.95 keV

Ca line emission :

Image in square 
root scale



Test on real data of Cas A
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GMCA on 3.6-4.1 keV

Ca line emission :

Image in square 
root scale



Application on real data of Cas A

Synchrotron

Red-shifted Fe structure

Blue-shifted Fe structure

Noise

Application to the data cube 
between 5 and 8 keV :

42



GMCA
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Generalized Morphological Components Analysis (Bobin et al. 2016)

First hypothesis : linear decomposition

Third hypothesis : the noise is gaussian additive

Second hypothesis : different components have 
different morphology

=> No, the noise is Poissonian in X-rays. 
But the results are consistent nonetheless.

=> Yes for extended sources (filaments, clumps, knots…)

=> Associates mean spectra to retrieved images. 
Consistent results !



Akaike Information Criterion
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How can we choose n, the number of components to 
retrieve ?



Akaike Information Criterion
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How can we choose n, the number of components to 
retrieve ?

The algorithm being fast-running, the best solution is to try 
different values of n.

The minimum of the Akaike Information Criterion (AIC) can 
help to determine a good number of components :

AIC = n x C - 2ln(L)
complexity of the model 
proportional to n

goodness of fit



Akaike Information Criterion
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Components retrieved in the real data of Cas A depending on n, and the 
corresponding AIC

n

n



pGMCA
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A brand new version of GMCA has been developed 
during this thesis to take into account Poissonian noise.

(Bobin J., El Hamzaoui I., Picquenot A., Acero F.)

The linear model
probability for a given sample to take the value             ,                     
given by the Poisson law :

is replaced by the



pGMCA
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The term is replaced by the

Poisson likelihood

The implementation is still iterative, but a preliminary 
GMCA is needed to make a first guess, as pGMCA is 
very sensitive to the initial conditions.

pGMCA needs every wavelet scale to reconstruct S in 
the pixel domain between each iteration in order to 
calculate the likelihood.
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First hypothesis : linear decomposition

Second hypothesis : different components have 
different morphology

Now the Poissonian noise is properly handled !

=> Yes for extended sources (filaments, clumps, knots…)

=> Associates mean spectra to retrieved images : every 
pixel has the same spectrum. Consistent results !

pGMCA



Errorbars with real data
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In order to fit the spectra with physical models, we need 
errorbars associated with the retrieved spectra.



Errorbars with real data
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In order to fit the spectra with physical models, we need 
errorbars associated with the retrieved spectra.

How can we obtain errorbars from a single dataset ?

However, the count distribution of the disentangled 
components are not of a Poissonian nature.



Bootstrap
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The Bootstrap is a statistical method consisting of a 
random sampling with replacement from a current set of 
data. In our case, the events are the detected photon 
characterized by the triplet (x,y,E).

An example of Bootstrapping

Original data First bootstrap 
resampling

Second bootstrap 
resampling



Retrieving Error bars
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Applying bootstrap on a Poisson data set is exactly equivalent to 
adding Poisson noise to the Poisson data set :

Real data = Poisson realization 
of the image of a square Associated histogram and resampled histogram

In wavelet scales



Retrieving Error bars
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With a simulated image of Cassiopeia A :

Associated histogram and resampled histogram

In wavelet scales

Poisson realization of a 
simulated image of Cas A



Retrieving Error bars
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…which is reflected in the bias in the components retrieved by 
pGMCA on bootstrap resamplings

pGMCA is highly sensitive to the additional noise



Constrained bootstrap method
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How can we develop a method giving an appropriate histogram ?



Constrained bootstrap method
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How can we develop a method giving an appropriate histogram ?

By working directly on the histogram, rather than on the 
individual events !



Constrained bootstrap method
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Step 1 :Generating N 
histograms with a spread 

around the data mimicking 
that of a Monte-Carlo

Square example

Simulated Cas A



Constrained bootstrap method
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Step 1 :Generating N 
histograms with a spread 

around the data mimicking 
that of a Monte-Carlo

Square example

Simulated Cas A

Step 2 : Creating new 
images by imposing the 
new histograms on the 

original image



Constrained bootstrap method
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Simulated image of a 
Cas A

Histograms Associated standard deviation

Wavelet  
scales

Standard  
deviation

Black : Original data Red : Resampled data Green : Monte-Carlo



Constrained bootstrap method
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The constrained bootstrap corrects the bias in the pGMCA results

Classical bootstrap Constrained bootstrap



Constrained bootstrap method
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The constrained bootstrap corrects the bias in the pGMCA results

Classical bootstrap Constrained bootstrap

We removed the bias, but we do not control the variance



Constrained bootstrap method
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Retrieving errorbars on Poissonian data sets for non-linear 
estimators is an open and general question. 

Our constrained bootstrap : 

• gives unbiased results => test of robustness around initial 
conditions 

• gives inconsistent spread => no physical significance 



Part II : Applications



Asymmetries in Cassiopeia A

Synchrotron

Red-shifted Fe structure

Blue-shifted Fe structure

Noise

Our first application on real 
data :

65
=> 3D reconstruction of the ejecta



Velocity Asymmetries
Red-shift Blue-shift

Si

S

Ar

Ca

Fe K
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Velocity Asymmetries

Red-shift Blue-shift

Si

S

Ar

Ca

Fe K
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Red-shift Blue-shift

Si

S

Ar

Ca

Fe K

red-shifted Ar 

blue-shifted Ar 



Lighter elements

O

Mg

Fe L
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Probing the Fe at different 
ionization states 



Morphological Asymmetries
The Power-Ratio method characterizes 

the distribution asymmetries of 
elements in Cas A.

The blue dots are the centroids

GMCA images 
(red+blue)

Si

Fe K
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PRM introduced by Buote et al. (1995) and for SNRs 
by Lopez et al. (2009)
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Morphological Asymmetries
Distribution asymmetries in Blue or Red shifted components :

Less asymmetric than total

More asymmetric than total (red+blue)

Relative fractions of red- and 
blue-shifted materials
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Ejecta and neutron star

Si

S
Ar

CaFe K

Si

S

Ar
Ca

Fe K

Center of explosion

20 arcsecNeutron star

Ti44

Directions of each red- and blue-shifted components 
from the center of explosion. 71

RA

DEC
centroid of the 
red-shifted Si



Ejecta velocities

Velocities retrieved 
by fitting gaussians : 
la rge ca l ibra t ion 
uncer ta in t ie s no t 
included

72

From 44Ti NuSTAR 
study of Grefenstette et 
al. (2017).  



Synchrotron filaments

Two main models to account for the filaments :

• Energy loss of the electrons. Energy dependent widths 
• Damping of the magnetic field. No energy dependent widths

73

0.4 - 1.7 keV 2.5 - 4 keV 5 - 8 keV



Synchrotron filaments in X-rays
box 1 box 2

box 3 box 4 box 5

box 6 box 7
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Profiles at the forward shock
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52 arcsec



Profiles at the reverse shock
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Synchrotron filaments in X-rays
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Conclusion and Perspectives
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Generalized Morphological Components Analysis (Bobin et al. 2016)

First hypothesis : linear decomposition

Second hypothesis : different components have 
different morphology

=>The Poissonian noise is properly handled by pGMCA

=> Without prior physical information, physically 
consistent components. No spurious artifacts.

=> Associates mean spectra to retrieved images : every 
pixel has the same spectrum. Consistent results, 

information on velocity asymmetries.

pGMCA
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Generalized Morphological Components Analysis (Bobin et al. 2016)

=> There is currently no way to retrieve physically 
significant error bars. Classical bootstrap introduces 
biases in the results. Our constrained bootstrap method 
is promising, as it gives unbiased results, but the spread 
cannot be trusted.

=> The performances of the algorithms are very case-
specific. They highly depend on the morphologies of the 
components to disentangle. Minimum count of roughly 
one million in total.

pGMCA



Cassiopeia A ejecta

• Application of pGMCA provided a 3D view of the distribution 
of individual elements. 
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• Most of the ejecta are red-shifted 
=> Proof of an asymmetric explosion 

• Red and blue components are not diametrically opposed, 
disfavouring the idea of a jet/counter jet mechanism.

Si

S
Ar

CaFe K

Si

S

Ar
Ca

Fe K

Center of explosion

20 arcsecNeutron star

Ti44

• Bulk of the ejecta opposite to the neutron star 
=> Neutron star kick possibly due to recoil



• Narrowing of the filaments with 
energy : 

=> First detection in Cas A 
=> Similar to SN1006 (Ressler et 
al., 2014) 
=> Disfavours damping mechanism
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Cassiopeia A filaments

• The dependency in energy of the filaments widths will allow 
us to constrain the diffusion properties and testing the 
damping hypothesis. 
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Constraining asymmetries on SNR population  
Type Ia v. Core-Collapse

• 10 SNRs with more than 250 ks observations (Chandra+XMM)

Perspectives



The Perseus galaxy cluster seen by Chandra

Perseus in X-rays
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data analysis region



Perseus in X-rays
Application of pGMCA :
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Perseus in X-rays
Application of pGMCA :

Simulation ZuHone et al., 2018Optical data 84



Perspectives

• Introduction of machine learning to constrain the spectral 
shapes of the components to retrieve (for example power laws 
or thermal models).
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• Using adaptive binning to reduce the dynamic range 
between high and low energies.

bayesian block rebinning



Perspectives
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• Taking into account the 
PSF. In X-rays, we can 
consider it constant, but 
it is energy dependent 
in CTA or Fermi-LAT.

• Using data of a different type than (x,y,E) cubes. For 
example, transient or other temporally variable 
sources (x,y,t) could be studied with our method.

• Taking into account mosaic observations ( large SNRs, 
Magellanic clouds or galactic center)
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• On future instruments, such as Lynx or Athena’s X-IFU to 
exploit fully the amazing data it will gather.

GMCA on the Fe complex in 
simulations of X-IFU data

Perspectives

Artist’s impression

spatial : 5 arcsec ; spectral : 2.5 eV

ejecta velocity = +/- 200km/s



THE END

THANK YOU


