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Likelihoods

The likelihood measures the extent to which a sample provides support for
particular values in a statistical model.

Much of statistical inference is predicated on the likelihood:

- Maximum likelihood estimates
- likelihood ratio

- posteriors

- Bayes factor



Gaussian likelihoods

Gaussian likelihoods are very
widespread: well understood, only
need a covariance matrix, CLT...

CMB power spectra (Planck 2018)

maps. Specifically, the low-¢ temperature (TT) likelihood is con-
structed by approximating the marginal distribution of the tem-
perature angular power spectrum derived from Gibbs sampling-
based component separation. The low-¢ polarization (EE) like-
lihood is built by comparing a cross-frequency power spectrum

of two foreground-corrected maps to a set of simulations.The
temperature and polarization high-¢ likelihoods (TT, TE, and
EE) uses multiple cross-frequency spectra estimates, assum-
ing smooth foreground and nuisance spectra templates and a
Gaussian likelihood approximation.

Shear 2pt function (HSC)
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Galaxy power spectrum (SDSS-IIl BOSS)
Dyrfd/r, = 1493 + 28,1913 + 35, and 2133 & 36 Mpc. As-

suming Gaussian likelihood, we provide a covariance matrix
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which contains the parameter constraints as well as their
correlations (see appendix El

Galaxy clustering + weak lensing (KiDS-1000)

6.2. Gaussian likelihood assumption

Along with the vast majority of large-scale structure cosmolog-
ical analyses, we adopt a multivariate Gaussian likelihood. This
is expected to be a generally excellent approximation if the sum-
mary statistics entering the likelihood have been averaged over

many modes in the underlying fields. Exact likelihood expres-



Gaussian likelihoods

However,

- CLT isn’t always applicable (e.g. power spectra at small wavenumbers)
- If the covariance matrix is an estimated quantity, have to marginalize over the true
covariance (Gaussian = t-distribution)

- Systematic effects can introduce non-Gaussian correlations
- Physics giving rise to an observable: a nonlinear function of Gaussian RVs is not
Gaussian distributed (CMB vs. galaxy distributions, cosmic shear)



Gaussian likelihoods

There isn’t always a clear alternative/better likelihood:

ACT Thermal SZ one-point PDF (Hill+, 2015)

parameters to be broken. In this analysis, the data are not quite at the level needed to strongly break the cosmology—
ICM degeneracy. The problem is made more challenging by the highly correlated, non-Gaussian nature of the PDF

likelihood function (see Section [V|below), which we simplify by combining many of the bins in the tail of the tSZ
PDF. With a more sophisticated approach to the likelihood function and wider, deeper maps, future measurements
of the tSZ PDF should allow for a stronger breaking of the cosmology—ICM degeneracy.

CFHTLenS shear correlation (Sellentin+, 2018)

As demonstrated in the previous section, the correlations
between various data points of CFHTLenS give rise to non-
Gaussianities at a 30% level according to our definition.
Here, we present a preliminary study of how these non-
Gaussianities might impact parameter constraints, by ex-
cluding the most contaminated data points from the likeli-

hood. However, as essentially the entire CFHTLenS dataset
is contaminated (see Fig. 3), such exclusions are clearly
a suboptimal strategy. We nonetheless report our findings
as intermediate results and postpone an update to a non-
Gaussian likelihood to future work.




An alternative: data-driven likelihoods (DDLs)

Data-driven likelihoods are learned directly from the data:

- We can think of mock data* as independent draws from the underlying true
likelihood function.
- We can estimate the data’s PDF with sufficient samples from it.

The hope is that DDLs can accurately capture non-Gaussianities in the data.



An alternative: data-driven likelihoods (DDLs)

Gaussian Mixture Models (GMM) K Gaussians

unknown
parameters

weights

Use expectation maximization to find parameters, BIC to determine K.



An alternative: data-driven likelihoods (DDLs)

Independent Component Analysis (ICA)

1. Decorrelate data (project onto PCs)
2. Normalize PCs
3. Rotate components to maximize independence

prea(x) = ][ pn(x)

n=1




An alternative: data-driven likelihoods (DDLs)

Flow-based Likelihoods (FBLs, Diaz Rivero & Dvorkin 2020)
= | will introduce flow-based generative models (esp. FFJORD)

= Their minimization objective is what we will call a flow-based likelihood



Flow-based generative models

Generative models aim to learn the probability distribution that gave rise to data x,
such that new samples can be drawn.

In flow-based models, a simple distribution is repeatedly transformed to match p(x).



Flow-based generative models

Generative models aim to learn the probability distribution that gave rise to data x,
such that new samples can be drawn.

In flow-based models, a simple distribution is repeatedly transformed to match p(x).
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Flow-based generative models

Generative models aim to learn the probability distribution that gave rise to data x,
such that new samples can be drawn.

In flow-based models, a simple distribution is repeatedly transformed to match p(x).
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Flow-based generative models

Generative models aim to learn the probability distribution that gave rise to data x,
such that new samples can be drawn.

In flow-based models, a simple distribution is repeatedly transformed to match p(x).
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Flow-based generative models

Generative models aim to learn the probability distribution that gave rise to data x,
such that new samples can be drawn.

In flow-based models, a simple distribution is repeatedly transformed to match p(x).
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Flow-based generative models

Generative models aim to learn the probability distribution that gave rise to data x,
such that new samples can be drawn.

In flow-based models, a simple distribution is repeatedly transformed to match p(x).
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Flow-based generative models

Generative models aim to learn the probability distribution that gave rise to data x,
such that new samples can be drawn.

In flow-based models, a simple distribution is repeatedly transformed to match p(x).

log px(x) =




Flow-based generative models

The goal is to train a model to learn these transformations.

- Transformations can involve (invertible) neural networks to make them very
expressive
- The loss is the negative log-likelihood over the training set.

If training is successful, the learned likelihood == the true data likelihood == a DDL.




Flow-based generative models

BUT, transformations must

- be easily invertible,
- have an easy-to-compute Jacobian determinant (scales as n°),

which limits their expressivity.
Different tricks in the literature:

- Restrict the form of the transformation to exploit identities
- Make Jacobian triangular by making transformations auto-regressive or splitting
up dimensions and applying affine transformations

ldeally also want quick density estimation and sampling.



Flow-based generative models

Model performance is generally judged by bits per dimension (average negative

Glow (Kingma & Dhariwal 2018)

Time-permitting, | will show tests we ran to determine the relationship between sample
quality and likelihood quality.




FFJORD (Grathwohl+ 2018)

Transformation from prior to data is seen as
evolution in time.

p(z(t1))

Don’t have to restrict the form of the
Jacobian = very expressive.
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FFJORD (Grathwohl+ 2018)

Transformation from prior to data is seen as Densit
evolution in time.

Don’t have to restrict the form of the
Jacobian = very expressive.
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Quantifying NG in a dataset

We propose identifying non-Gaussianities (NG) in three ways:

1. t-statistic of skewness and excess kurtosis for every bin in the data
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Quantifying NG in a dataset

We propose identifying non-Gaussianities (NG) in three ways:

2. Transcovariance matrix (Sellentin+ 2018), which considers the Gaussianity of
all pairs of data points

Should be equal for
whitened Gaussian data

Total non-Gaussian
contamination for each bin




Quantifying NG in a dataset

We propose identifying non-Gaussianities (NG) in three ways:

3. KL divergence of (the data w.r.t. a MVN) vs (MVN with itself) (Wang+ 2009)

Dym(pllg) = / p(x) log 2% dx

q(x)

bn,m(pHQ) = .

Unbiased kNN estimator




Quantifying NG in a dataset

Our method is going to consist of:

1.  Applying these three tests to a mock dataset to look at the different ways in
which NG can manifest themselves.

2. Generating samples from the three DDLs to assess whether each likelihood
has successfully captured the NGs.



Simulated data

We consider the weak lensing convergence power spectrum.*

Simulated 75,000 mock convergence maps using LensTools (Petri 2016):
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NG in the weak lensing convergence power spectrum
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NG in the weak lensing convergence power spectrum
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NG in the weak lensing convergence power spectrum
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FBLs for the convergence power spectrum

Training the model and testing the likelihood

Epoch 75
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FBLs for the convergence power spectrum
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Conclusions

For our mock weak lensing data, GMM and ICA fail at capturing different NG, while
the FBL does so much better:

- ICA can capture NG in individual bins but not between bins.
-  GMM can capture NG between bins but not individual bins.
- FBL can capture both.

Data volume is not the only thing that determines the success/failure of a DDL.:
some understanding of the NG present in the data is crucial to select the right
model.

Flexibility of FBLs can preclude them from a trial-and-error procedure that other
DDLs can require.



Conclusions

WL in particular is interesting because:

- Seems to have some significant non-Gaussianities, even on scales where

cosmic variance doesn’t dominate (see also Sellentin+, 2018).
- Some works Gaussianize the data (e.g. combining bins or with PCA) before inferring

parameters, potentially destroying useful information, and conclude NG doesn’t shift €
q (]
parameters (Lin+. 2019, Taylor+, 2019). o
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power of the ACT PDF to simultaneously constrain og and P, is substantially weakened, simply because the shape = =
of the PDF is not as well constrained when combining so many smaller bins into a single larger bin. A clear goal for g Al
future PDF analyses is to implement a more sophisticated, non-Gaussian likelihood function, allowing the full use of IS
the constraining power in the PDF. c Q
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- Shortcomings of ICA in addressing pairwise non-Gaussian correlations in WL
data:

- works have used ICA dimensionality reduction before inferring parameters from weak lensing
data and concluded NG don’t impact parameter constraints considerably (Gupta+, 2018)



Questions?

arXiv: 2007.05535



Samples vs likelihood quality

Non-singular covariance

MVN samples 77 Hrre — HreL

---- FBL samples —— Hrrue — Hmwn

25 ' ( ' ( 25




Samples vs likelihood quality

Non-singular covariance

Non-singular Covariance
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Samples vs likelihood quality

Non-singular covariance
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Samples vs likelihood quality

Singular covariance
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Samples vs likelihood quality

Singular covariance




Samples vs likelihood quality

Singular covariance
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Samples vs likelihood quality
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NG in the galaxy power spectrum

Hahn et al. (2018): BOSS 2,048 NGC galaxy power spectrum mocks. Find small
posterior shifts doing importance sampling with ICA likelihood (< 0.5 o).

Blue = gaussian orange = data

— D(Xlnock ”N Dl (Xmock)) = D(Xlnock ”N HPI\DE(XF‘A))

KL divergence KL divergence



NG in the galaxy power spectrum

Skewness

Mock Data
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NG in the galaxy power spectrum
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Gaussian likelihoods

Estimating covariances . S .
(Sellentint 2016) Weak lensing shear non-Gaussianity (Sellentin+, 2018)

Percentual change in lensing amplitude
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