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Introduction

Video Credit: Science, American Association for the Advancement of Science

The Hubble constant H0 represents the current expansion rate of the Universe,

as well as the age (= H−1
0 ), size, and density of the Universe.
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Introduction (cont.)

But there have been several different estimates of H0 from various methods.

Image Credit: Science, American Association for the Advancement of Science

The most recent estimates from these two methods are

I CMB (Plank collaboration, 2016): 67.8 ± 0.9 km s−1Mpc−1.

I CDL (Reiss et al., 2016): 74.3 ± 2.1 km s−1Mpc−1.

Is this difference true (new physics) or not (within statistical uncertainty)?

Improving statistical accuracy or double-checking by independent methods.
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Time delay cosmography

Quasar is a highly luminous galaxy hosting a supermassive black hole at
the center. Since it is extremely bright, it can be seen at a great distance.

Video Credit: Space.com
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Time delay cosmography (cont.)

Video source: https://www.youtube.com/watch?v=iE8x9kDHCFo

Strong gravitational lensing: The strong gravitational field of the intervening

galaxy bends the light rays towards the Earth (like a lens), and thus we see

multiple images of the same quasar in the sky.
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Time delay cosmography (cont.)

Credit: NASA’s Goddard Space Flight Center

Time delay: Light rays take different routes and travel through different

gravitational potential, and thus their arrival times can differ → time delay!
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Time delay cosmography (cont.)

Inference on Ho via an equation for additional travel distance (Refsdal, 1964).

Image Credit: Tommaso Treu (UCLA) in “Dark Matter and Strong Lensing (2014)”

Speed of light (c)× Time delay (∆tij)

= Time delay distance ( D∆t(Ho , z ,Ω) )×Fermat potential difference (∆φij)
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Closed-form marginal posterior of Ho

Since ∆φij =
c∆tij

D∆t(Ho ,z,Ω) , Marshall+ (2016) suggest (with fixed z and Ω)

∆φ̂ij | ∆tij ,Ho ∼ N

[
c∆tij

D∆t(Ho)
, σ2

∆φ̂ij

]
,

∆tij ∼ N(∆t̂ij , σ
2
∆t̂ij

).

Marginally, ∆φ̂ij | Ho ∼ N

[
c∆t̂ij

D∆t(Ho)
,

c2

D2
∆t(Ho)

σ2
∆t̂ij

+ σ2
∆φ̂ij

]
.

All but Ho (∼ Unif[50, 90] a priori) are known or (at least) estimable!

I ∆φ̂ij : Fermat potential difference estimate between images i & j .

I σ2
∆φ̂ij

: An uncertainty estimate (variance) of ∆φ̂ij .

I ∆t̂ij : A time delay estimate between images i and image j .

I σ2
∆t̂ij

: An uncertainty estimate (variance) of ∆t̂ij .

I D∆t(Ho): The time delay distance, a deterministic function of Ho .
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Data for Time Delay

Data for a doubly-lensed quasar are two time series (light curves) with
known measurement errors.

Image Credit: Dobler et al. (2015)

We can estimate ∆ by the horizontal shift between two time series.
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Time Delay Challenge

Time Delay Challenge (Dobler et al., 2015; Liao et al., 2015)

I A blind competition held by 8 astrophysicists from 2013 to 2014.

I Goal was to improve existing estimation methods.

I 5,000+ simulated data sets with some time delays.

I 13 teams blindly analyzed the simulated data sets.

Image Credit: HBO website
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Time Delay Lens Modeling Challenge

Another blind competition to improve lens-modeling methods (Ding+, 2018+).

Image Credit: https://www.youtube.com/watch?v=iE8x9kDHCFo

Modeling the lens: Lens mass → lens potential → Fermat potential.
(The mass density is the second derivative of the lens potential.)
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Outline of TDLMC

The time delay lens modeling challenge is a three-step blind competition
composed of four rungs. Each rung shares the same (simulated) Hubble
constant. The difficulty increases as we move up higher rungs.

I Rung 0: The true Ho is disclosed for participant’s reference.
Two images, one for a doubly-lensed image and the other for a
quadruply-lensed image. The point spread function is provided.

I Rung 1: 16 images. Due was Sep 8. Real galaxy images for realistic
surface brightness are used for simulations.

I Rung 2: 16 images. Due is Jan 8. On top of Rung 1’s difficulty, a
guess of the point spread function is provided for each image.

I Rung 3: 16 images. Due is May 8. In addition to all challenges in
Rungs 1 and 2, images are generated by massive early-type galaxies.
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Image Data

Image data (from the left): (i) Light intensity (brightness) in 100× 100
pixels, (ii) measurement errors, (iii) point spread function (used in (i)).
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Lens modeling

We model (i) lens mass, (ii) lens brightness, and (iii) source brightness.

Angular positions (unknown param.)

β: Source position in the absence of
the lens.

θ: Lensed image position.
α̂: Deflection angle.
α(θ): Scaled deflection angle for

the image at θ.
β = θ − α(θ): The lens equation.

Given the lens mass distribution,
we can infer α(θ) and β.

Image Credit: Michael Sachs (from Wiki)
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Lens modeling (cont.)

Outline of lens modeling:

1. Setting (choosing) a lens mass density function, Σ(Ddθ).

2. Deriving a dimensionless surface mass density, κ(θ) = Σ(Ddθ)/Σcr,
where Σcr is the critical surface mass density. For example, with an
elliptical power-law mass density,

κ(θi1, θi2) =
3− γ′

2

(√
qθ2

i1 + θ2
i2/q

θE

)1−γ′

,

where θE is the radius of Einstein ring, q is the ellipticity, and γ′ is
the radial power-law slope.

3. Computing α(θ) = 1
π

∫
R2 d

2θ′κ(θ′) θ−θ′
|θ−θ′|2 .

4. Computing lens potential: ψ(θ) = 1
π

∫
R2 d

2θ′κ(θ′) log |θ − θ′|.
5. Finally, the Fermat potential is computed as φ(θ) = α(θ)2/2− ψ(θ).
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Lens modeling (cont.)

The number of unknown parameters is 22 (double) or 28 (quad).

We use a Python package lenstronomy (Birrer+, 2015, 2016, 2018) to
fit a lens model on the image data. Fitting the model is a two-step
procedure; (i) particle swarm optimization to find a global optimum of
20–26 parameters; (ii) MCMC initialized at the global optimum.

Given the observed data (1st), it reconstructs the image (estimate) based
on the fitted model (2nd), and shows a residual plot (3rd = 2nd − 1st).
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Result of Rung 0

Observed images (1st column), estimated images (2nd column), and
residuals (3rd column).
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Result of Rung 0 (cont.)

Posterior of one Fermat potential difference from a double-image.

∆φBA

Posteriors of three Fermat potential differences from a quad-image.

∆φBA ∆φCA ∆φDA
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Result of Rung 0 (cont.)

The marginal posterior distribution of Ho is closed-form.

∆φ̂ij | Ho ∼ N

[
c∆t̂ij

D∆t(Ho)
,

c2

D2
∆t(Ho)

σ2
∆t̂ij

+ σ2
∆φ̂ij

]
.

Ho ∼ Unif(50, 90).

The resulting posterior of Ho based on the four pairs of ∆φ̂ij and σ2
∆φ̂ij

(time delays ∆t̂ij and their uncertainties σ2
∆t̂ij

are given):
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Result of Rung 1

16 lens image data sets (simulated under the same Ho) to be analyzed.
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Result of Rung 1 (cont.)

Analytic sequence for one image data set as an example.

1. We fit our model on this image data set with 12 variations each for
a combination of four different values of point spread function error
inflation (1%, 5%, 10%, 20%) and three different lens light models
(1, 2 or 3 lens light models) → 12 Fermat potential difference
estimates and their uncertainties.
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Result of Rung 1 (cont.)

2. We derive the posterior of Ho using each pair of Fermat potential
difference estimate and uncertainty, leading to 12 posteriors of Ho :
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Result of Rung 1 (cont.)

3. We collect pairs of Fermat potential estimate and uncertainty that
result in the posterior mode of Ho between 50 and 90 (between red
vertical dashed lines).
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Result of Rung 1 (cont.)

4. We take an average of the collected pairs in three ways:

(1) Weighted average and variance

∆φ̂AB =

∑7
i=6 ∆φ̂

(i)
AB/σ

2

∆φ̂
(i)
AB∑7

i=6 1/σ2

∆φ̂
(i)
AB

and σ2
∆φ̂AB

=
1∑7

i=6 1/σ2

∆φ̂
(i)
AB

.

(2) Sample mean of estimates, and sample mean of variance

∆φ̂AB =
1

2

7∑
i=6

∆φ̂
(i)
AB and σ2

∆φ̂AB
=

1

2

7∑
i=6

σ2

∆φ̂
(i)
AB

.

(3) Sample mean of estimates, and sample variance of estimates

∆φ̂AB =
1

2

7∑
i=6

∆φ̂
(i)
AB and σ2

∆φ̂AB
=

7∑
i=6

(∆φ̂
(i)
AB −∆φ̂AB)2.
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Result of Rung 1 (cont.)

We applied the estimation routine to 16 images and could successfully
analyze 11 images out of 16, leading to 25 Fermat potential difference
estimates and their uncertainties.
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Result of Rung 1 (cont.)

The following three estimates are reported:
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Result of Rung 1 (cont.)

The two lenses below (marked by red question marks) result in the Ho

estimates close to 90. What about removing them?
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Result of Rung 1 (cont.)

The following three estimates are additionally reported:
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Concluding remarks

Our contribution is to provide a way to combine Fermat potential
difference estimates obtained from independent image data sets.

I The weighted average method works pretty well.

I The third way to make the representative estimate, i.e., the sample
mean and variance of estimates (not using the uncertainty
estimates) will not be used for rung 2.

I For rung 2, I will not put my personal curiosity (no additional three
submissions), trusting what the data tell us.

I The due for rung 2 is Jan 5.
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