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ABSTRACT

Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally

been ignored in astrophysical data analysis despite wide recognition of the importance of including

them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and

can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic

Bayesian method to address this problem. The method is “pragmatic” in that it introduced an ad hoc
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technique that simplified computation by neglecting the potential information in the data for narrowing

the uncertainty for the calibration product. Following that work we use a principal component analysis

to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here,

however, we leverage this representation to enable a principled, fully Bayesian method that coherently

accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method

is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of

the fully Bayesian method is that it allows the data to provide information not only for estimation of

the source parameters but also for the calibration product—here the effective area, conditional on the

adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source

parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be

accurately described by a parameterized model, this method allows rigorous inference about the effective

area by quantifying which possible curves are most consistent with the data.

Subject headings: X-rays: general, methods: data analysis, methods: statistical, techniques:

miscellaneous, standards

1. Background

1.1. Calibration Uncertainty in High-Energy Astrophysics

Observed data are always the result of the interaction of the incident spectrum with an instrument such

as a telescope and detector assembly. These are described by instrument calibration products such as effective

area curves, energy redistribution matrices, and point-spread functions. The careful specification of these

calibration products is critical both for parameter fitting and for properly accounting for the statistical errors

of these fits. It is only through instrument calibration that we can transform measured signals into physically

meaningful quantities and have any hope of interpreting data analyses in a useful manner. Misspecification

of calibration products can lead to serious bias in the fitted parameters, unreliable statistical errors, and

uninterpretable results.

In practice it is well-known that instrumental properties (e.g., the quantum efficiency of a CCD detector,

point-spread functions, etc.) are measured with error. Unfortunately, typical analyses only account for nom-

inal estimates of calibration products without regard for their errors and/or their possible misspecification.

This can seriously degrade fitted parameters and their error bars. In spectral analysis, for example, Drake

et al. (2006) demonstrated that ignoring calibration uncertainty with good quality high signal-to-noise data

can result in error bars that are underestimated by a factor of as much as five; see their Figure 5. We show

that ignoring these errors not only is detrimental to error bars, but more importantly can seriously bias the

fitted values themselves.
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Efforts have been made to develop methods that account for calibration uncertainty in high-energy

astrophysics and such methods exist both in other areas of astrophysics and in related fields such as particle

physics (Heinrich and Lyons 2007) and observational cosmology (Bridle et al. 2002); see Lee et al. (2011) for

a review. The nature of the errors in high-energy calibration products includes their complex correlations

for which existing methods generally do not provide reliable results. Modern instruments such as the Chan-

dra X-ray Observatory are calibrated using data from particularly well-understood astronomical sources or

from labs, and comparing these data with theoretical predictions. These measurements are not typically

used directly, but rather they are used to tune sophisticated physics-based computer codes that model the

instrument as a whole. These codes can be used to derive both nominal estimates of calibration products as

well as measures of their uncertainty. The calibration products are high-dimensional and exhibit complex

and large scale correlation structures among their components. Accounting for this complex uncertainty is

further complicated in high-energy astrophysics by the non-Gaussian nature of both the source photon counts

and the instrument response. The non-Gaussian data along with the complex correlations in the calibration

uncertainty mean that existing methods are not by and large applicable in this setting. The general method

of combining measurement and calibration errors in quadrature (e.g., Bevington and Robinson 1992), for

example, assumes uncorrelated Gaussian errors and a one-to-one relationship between calibration errors and

data points. This is not appropriate in the context of the complex correlations exhibited by the wide variety

of calibration products computed and recommended by calibration scientists. But a given product, taken to

be error-free, can introduce serious biases into the final fitted values. Thus, calibration uncertainty must be

folded into analyses in order to provide statistically principled and scientifically sound results. As we shall

see, doing so can allow the data to inform the choice among the possible calibration products.

To address these complex correlations, Drake et al. (2006) suggested a bootstrap-like method that

relies on the availability of a large representative sample of possible calibrations products capturing various

calibration uncertainties; we refer to this sample as the calibration library. In particular, they generated

a replicate data set for each calibration product in the library and fit it in the usual way. The variability

among the resulting fitted model parameters then estimates the effect of calibration uncertainty on the fitted

parameters. While this is a useful method to demonstrate the scale of the effect of calibration uncertainty on

error bars for the model parameters, generating replicated data sets requires knowledge of typically unknown

model parameters. From a practical point of view, the method’s reliance on a large calibration library is also

problematic, especially considering that calibration products of space-based detectors degrade over time, and

hence different calibration libraries are required for different observations.

Lee et al. (2011, henceforth Paper I1) developed this approach further by, first, replacing the large cali-

1We refer to Lee et al. (2011) as Paper I simply for easy reference; both the current paper and Lee et al. rely on earlier
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bration library with a low-dimensional model for the calibration uncertainty and, second, by embedding the

model for calibration uncertainty into a Bayesian procedure that simultaneously fits the model parameters

and accounts for calibration uncertainty. As suggested by Drake et al. (2006), Paper I modeled the cali-

bration library using a principal component analysis (PCA), but did so in a way that avoided the need for

observation-specific calibration libraries. This strategy effectively embeds the instrument-modeling code via

the calibration library as an integral part of the statistical computing techniques. This approach, however,

supposes purely for simplicity that the observed photon counts and the calibration product are conditionally

independent, that is, that the data provide no information for narrowing the calibration uncertainty. An

advantage of this independence assumption is that it significantly simplifies the computing, making the al-

gorithm easy to implement. For this reason in Paper I, we call this approach a pragmatic Bayesian method.

The independence assumption of the pragmatic Bayesian method also implies that the choice of calibration

product is determined by calibration scientists, calibration experiments, and calibration simulations, rather

than the data from a particular observation. This may be viewed as an advantage by some researchers,

particularly if they do not trust the post-observation model assumptions.

The primary objective of this article is to remove the questionable independence assumption of the

pragmatic Bayesian approach and allow the data to narrow the calibration uncertainty. This is a more

principled approach from a statistical perspective. If a subset of the calibration products are plausible before

seeing the data but inconsistent with the data once it is observed, this subset should not play a role in the final

analysis. We call this a fully Bayesian method because it fully follows the principles of Bayesian analysis.

This approach has other advantages. For example, in addition to the calibration uncertainty quantified

through idealized experiments, calibration products are subject to errors stemming from differences between

these idealized settings and the variety of actual settings in which the products are used. Indeed, suspected

systematic errors cannot be fully understood without taking into account the actual data in any particular

observation and/or cross-instrument comparisons that may be made (e.g., Nevalainen et al. 2010). Our

fully Bayesian method allows the data to inform our choice of possible calibration products. In practice,

we find that relatively large data sets (� 104 counts) are needed to obtain appreciable power in narrowing

calibration uncertainty.

Like the pragmatic Bayesian method, the fully Bayesian approach embeds a model derived from a PCA

of the calibration library into a larger statistical model. Unlike the pragmatic Bayesian method, however, it

then marginalizes over calibration uncertainty while conditioning on the observed data, whereas the pragmatic

method did so without conditioning on the data. In this regard, the fully Bayesian method is in line with

work that characterize calibration uncertainty (Drake et al. 2006) and lay out the framework of MCMC-based Bayesian spectral

analysis (van Dyk et al. 2001). In contrast to van Dyk et al. who use Gibbs-based MCMC, both Paper I and this work adopt

Metropolis and Metropolis-Hastings type MCMC for the sake of flexibility in astrophysical model specification.
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a methods proposed by Bridle et al. (2002) and Heinrich and Lyons (2007) for handling systematic errors

in cosmology and particle physics, respectively. These proposals, however, use a parameterized form for the

systematics under which marginalization can be achieved analytically. While these specific proposals are not

applicable in our setting, they share our emphasis on the general principle of building a joint model that

incorporates all sources of uncertainty and then marginalizing over nuisance parameters while conditioning

on the observed data.

The statistical framework we present is quite general, but in this paper we focus on X-ray spectral

analysis with uncertainty in the effective area curve. We begin by outlining the necessary background on

Bayesian spectral analysis, the PCA-based calibration model proposed in Paper I, and the pragmatic Bayesian

method. Section 2 lays out our fully Bayesian method and uses a simple numerical example to illustrate

its advantage over both the typical strategy of ignoring calibration uncertainty and the pragmatic Bayesian

method. Section 3 validates our proposal using a set of simulation studies that include a comprehensive

frequency evaluation. We find striking improvement in the statistical properties of estimates and error bars,

when large-count spectra (� 104 counts) are generated with an effective area curve consistent with the

pre-specified calibration uncertainty but the spectra are fit with a misspecified default curve. Section 4

illustrates how the fully Bayesian method works for several data from the Chandra telescope: a collection

of QSO’s observed near the aimpoint of ACIS-S and described with absorbed power-law models; a bright

O star system at a large off-axis location on ACIS-S2 and modeled as absorbed multi-thermal spectra; and

co-added long-duration grating observation of an isolated neutron star modeled as a blackbody spectrum.

Finally, we discuss the consequences and future directions of our method in Section 5. An appendix details

the Markov chain Monte Carlo (MCMC) algorithms we designed to implement our method; they rely on the

pyBLoCXS module (Siemiginowska et al. 2011) in Sherpa and existing algorithms for the pragmatic Bayesian

method. A glossary of the symbols we use appear in Table 1.

1.2. Bayesian Spectral Analysis

To fix ideas, we focus attention on a general spectral analysis problem in which the observed photon

count in channel E∗ is modeled according to the Poisson distribution,

Y (E∗) ∼ Poisson

(∑
E

Λ(E; θ)A(E)R(E∗;E) +B(E∗)

)
, (1)

where Λ(E; θ) is the source spectral intensity at energy E, θ is the (vector) spectral parameter, A(E) is the

effective area curve at energy E, R(E∗;E) is the energy redistribution matrix of the detector, and B(E∗) is

the background intensity in channel E∗. The photon counts in each channel, Y (E∗) are independent Poisson
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Table 1: Glossary of symbols used in the text

Symbol Description

A an effective area (ARF) curve

A0 the default effective area curve on which the calibration library is based.

A∗0 the observation specific effective area curve.

Al effective area curve l in the calibration library

Ā the average of the effective area curves in the calibration library

Aprop a proposed effective area curve in an MH sampler

A
(t+1)
pB , A

(t+1)
fB an effective area curve simulated with the pragmatic and fully Bayesian sampler

A a set of effective areas, the calibration library

CI a confidence interval

E energy of incident photon

E∗ Detector channel at which the detector registers the incident photon

e the low-dimensional PCA representation of A, see Equation 5

eprop value of e proposed in an MH sampler

e
(t+1)
fB , e

(t+1)
pB value of e simulated with the pragmatic and fully Bayesian samplers

g generic proposal distribution in a MH sampler

I number of inner iterations in MCMC loop, typically 10

i inner iteration number or index

I information obtained prior to data acquisition, for example by calibration scientists

J number of components used in PCA analysis, here 8

j principal component number or index

K an MCMC kernel

KpyB the MCMC kernel used in pyBLoCXS

L number of replicate effective area curves in calibration library

l replicate effective area number or index

L the likelihood function

M number of replicated draws of θ per draw of A in Iterated MH within PCG sampler

p a generic prior or posterior distribution

pstd, ppB, pfB standard, pragmatic Bayesian, and fully Bayesian posterior distributions

R energy redistribution matrix (RMF)

r2j eigenvalue or PC coefficient of component l in the PCA representation

T number of MCMC iterations

t main MCMC iteration number or index
(t+...) the superscript indicates the running index of random draws

u a uniformly distributed random number between zero and one

vj eigen- or feature-vector for component l in the PCA representation

Y data, typically used here as counts spectra in detector PI bins

α̂ correlation used to validate the choice of I in the MH within PCG sampler

ρ the acceptance probability in an MH sampler

θ spectral model parameters

θ̂ estimate of θ

θprop a value of θ proposed in an MH sampler

θ
(t+...)
std , θ

(t+...)
fB , θ

(t+...)
pB value of θ simulated with standard, pragmatic Bayesian, and fully Bayesian samplers

ψ generic notation for unknown quantities in analysis, viz., ψ = θ or ψ = (A, θ)

ψprop a value of ψ proposed in an MH sampler

σ̂std, σ̂pB, σ̂fB error bars under the standard, pragmatic, and fully Bayesian methods
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variables2. For notational simplicity, we represent the collection of observed photon counts by Y = {Y (E∗)},

the effective area by A = {A(E)}, and the photon redistribution matrix by R = {R(E∗;E)}. We focus on

methods that treat A as an unknown quantity and allow its uncertainty to affect both the fit and the error

bars of θ. Although our methods can be employed to account for uncertainty in R or in both A and R, we

do not pursue these possibilities in this article.

To fit the spectral parameters, θ, given the observed photon counts, Y while accounting for calibration

uncertainty, we adopt a Bayesian framework. In particular, we quantify our state of knowledge before

having seen the data using a so-called prior distribution and that after having seen the data using a posterior

distribution. Bayes’ Theorem allows us to transform the prior distribution into the posterior distribution

by conditioning on the observed counts. In particular, suppose ψ represents the quantities that are to be

estimated, and I is the information we have before seeing the data, including that used to estimate the

calibration products and/or their uncertainty. We compare methods that treat only θ as unknown with

others that treat both θ and A as unknown, so either ψ = θ or ψ = (θ,A), while R (and sometimes A) is

part of I. In this setting Bayes’ Theorem states that the posterior distribution of ψ given Y and I is:

p(ψ|Y, I) =
L(Y |ψ, I) p(ψ|I)

p(Y |I)
, (2)

where p(ψ|I) is the prior distribution of ψ, L(Y |ψ, I) is the likelihood of Y given ψ, and p(Y |I) =∫
p(Y |ψ, I)p(ψ|I)dψ is the normalizing constant that ensures p(ψ|Y, I) integrates to one. We include I

here to emphasize that analyses always rely on some information external to Y . To simplify notation,

however, we assume all probability distributions are conditional on I and omit it from our notation for

the remainder of the article. We also implicitly assume that the adopted spectral model is appropriate. Its

misspecification can lead to biases in addition to those caused by misspecification of the calibration products.

Substituting ψ = (θ,A) into Equation 2 and assuming the prior distributions for θ and A are indepen-

dent, we can write the posterior distribution as

p(θ,A|Y ) ∝ L(Y |θ,A) p(θ) p(A), (3)

where we have omitted the denominator of Equation 2 because it is determined by the numerator. We typi-

cally use a diffuse prior distribution on θ representing prior ignorance and an informative prior distribution

on A representing the information obtained from calibration studies.

Whereas our primary goal is to consider methods for joint inference for θ and A using Equation 3, we

also compare such methods with the standard approach that treats A as fixed and known. For clarity we

2The notation Y ∼ Distribution is a standard way in statistics literature to indicate that a variable (e.g., the observed

counts) is modeled using the specified distribution (e.g., Poisson).
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refer to this approach as the standard method. For example, in a Bayesian analysis (e.g., van Dyk et al.

2001), the standard method involves estimating θ using its posterior distribution given the observation, Y ,

and the nominal effective area curve associated with this observation, A∗0, that is, using

pstd(θ | Y,A∗0) ∝ L(Y | θ,A∗0) p(θ). (4)

Because this approach assumes that A = A∗0, it does not account for calibration uncertainty. Paper I

illustrates that this can lead to misleading estimates of θ and can significantly underestimate the error bars

associated with these estimates. Nevertheless, because this is the standard approach in practice, we treat it

as a baseline in our numerical comparisons.

1.3. Quantifying Calibration Uncertainty

The specification of the posterior distribution in Equation 3 requires that we formulate a prior distri-

bution on A that encapsulates the calibration uncertainty. Although they were not working in a Bayesian

setting, Drake et al. (2006) generated a library of ACIS effective area curves. This was accomplished by

explicitly including uncertainties in each of the subsystems of the telescope (UV/ion shield transmittance,

CCD quantum efficiency, and the telescope mirror reflectivity) using truncated Gaussian distributions for

the parameters of different instrument models and by modifying a spline correction curve that multiplies

a default curve. More recently, we compiled a second calibration library to represent uncertainty in the

LETGS+HRC-S grating/detector system (Drake et al., in preparation). This includes corrections applied to

the telescope mirror reflectivity, grating obscuration and efficiency, UV/ion shield transmittance, MCP QE

and uniformity, etc. Additionally, spline knots were set at all prominent spectral edges due to materials that

were used in the construction of the telescope, grating, and detector. In our numerical studies, we illustrate

how either of these libraries can be incorporated into a fully Bayesian analysis. Both consist of L = 1000

simulated effective area curves, each of length 1078 in the ACIS library and each of length 16,384 in the

LETGS+HRC-S library. The former is used in Sections 4.1 and 4.2, and the latter in Section 4.3. In our

general notation, we represent a calibration library by A = {A1, A2, ..., AL}, define Ā to be the arithmetic

mean curve of the calibration library, and let A0 denote the default effective area curve associated with the

library; Ā and A0 are similar but not necessarily equal.

In practice, the calibration library must be large to fully represent the uncertainty in high-dimensional

calibration products. To summarize this sample into a concise and usable form, Paper I implemented

a Principal Component Analysis (PCA) on the mean-subtracted calibration sample, {A1 − Ā, ..., AL − Ā}.

PCA is a mathematical procedure that uses orthogonal transformations to convert a set of possibly correlated

variables into a set of linearly uncorrelated variables called principal components. Approximately 20 principal

components (out of 1000) account for 99% of the variability in the ACIS calibration library.
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As in Paper I, we conduct a Bayesian analysis that treats A and θ as unknown. We use the PCA

summary of the calibration library to formulate the prior distribution for A, p(A). In particular, we suppose

that under p(A),

A(e) = A∗0 + (Ā−A0) +

J∑
j=1

ejrjvj , (5)

where A∗0 is the user-generated observation-specific effective area curve, r2
j and vj are the principal component

eigenvalues and eigenvectors, and ej are independent standard normal deviations.3 Since Ā ≈ A0, we can

view Equation 5 as starting with the user-speficied effective are, A∗0, and adding the random term
∑J
j=1 ejrjvj

to account for uncertainty; Ā−A0 adjusts for the necessary mean-subtraction of A when conducting PCA.

To simulate replicate effective area curves under the prior distribution given in Equation 5, we only need to

draw J independent standard normal deviations, (e1, ..., eJ), and evaluate Equation 5. We treat A(e) as the

generic notation for the effective area curve and continue to simply write A when its explicit dependence on

e is not pertinent.

In effect, we are assuming that the uncertainty in A can be described by a multivariate normal dis-

tribution. The similarity of the effective area curves in A means that most of the correlations among the

components of this distribution are very strong (i.e. near one). Equation 5 stipulates that the distributions

associated with calibration uncertainty for observation-specific effective area curves differ only in their means

and that they have the same variance. This means we can use the variance of the calibration library of Drake

et al. (2006) to represent the variance of any observation-specific effective area. In practice, this procedure

avoids generating a calibration library for each observation while still allowing us to account for calibration

uncertainty in practical manner.

Figure 1 illustrates the performance of PCA in summarizing the structure of individual effective area

curves in A. It shows that with J = 8, the re-constructed effective area curve nicely captures the structure

of the original A ∈ A. This means that we can capture the vector A of length 1078 with the vector e of

length 8, by using A(e). We use J = 8 in all of our numerical studies.

This PCA-based representation, A(e), is critical both for the pragmatic Bayesian method of Paper I

and the fully Bayesian method described here. It not only provides a simple way to quantify calibration

uncertainty, but also allows us to evaluate both p(A, θ | Y ) and p(A) using Equations 3 and 5. The evaluation

of both of these distributions is necessary for our MCMC sampler.

3An additional residual term, ξ =
∑L

j=J+1 rjvj , may also be included in Equation 5. Adding eJ+1ξ can help to account

for the full range of calibration uncertainty when J is small, or for components that contribute significantly over small energy

ranges, yet make up a small fraction of the overall variance of A.
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Fig. 1.— The PCA representation of several effective area curves from the calibration library. The left column plots

four randomly selected Al ∈ A, one in each row, along with their PCA representation, Al(e), for several values of

J . The original curves are plotted in dot-dashed black and the PCA representations are plotted as dashed blue and

solid red for J = 1 and 8, respectively. The right column is constructed in the same manner, but plots the error in

our approximation, ∆Al = Al(e) − Al. Although Al(e) deviates from Al, even with J = 8, the right column shows

that the scale of this deviation is quite small and that overall using J = 8 concisely captures the structure of each of

the effective area curves.



– 11 –

1.4. A Pragmatic Bayesian Method

As noted above (see Equation 4), standard analyses assume that the effective area is fixed. That is, the

parameters are estimated conditional on A∗0. Here, we aim to eliminate this conditioning. Mathematically,

this involves treating A as unknown rather than conditioning on its value, and expressing Equation 3 as

pfB(θ,A | Y ) = p(θ | A, Y ) p(A | Y ); (6)

here the subscript fB indicates that this is the fully Bayesian posterior distribution. Paper I made the

“pragmatic assumption” that p(A | Y ) = p(A). This assumption says that the observed data and calibration

are independent, that is, the data provides no information for narrowing the uncertainty in the choice of

effective area curve. Under this assumption, the posterior distribution in Equation 6 can be written as

ppB(θ,A | Y ) = p(θ | A, Y ) p(A) (7)

where p(θ | A, Y ) is given in Equation 4 with A∗0 replaced by the generic A. We use the subscript pB in

Equation 7 to emphasize that this is the posterior distribution under the pragmatic assumption of Paper I.

Under the model in Equation 7, inference for θ is based on its marginal posterior distribution,

ppB(θ | Y ) =

∫
p(θ | A, Y ) p(A) dA. (8)

The pragmatic Bayesian method accounts for calibration uncertainty in a conservative manner. The

assumption that p(A | Y ) = p(A) ignores information in the data that may reduce uncertainty in A and

hence in θ. We now consider methods that allow Y to narrow the uncertainty of A.

2. A Fully Bayesian Solution

2.1. Motivation and Theory

Under the fully Bayesian posterior distribution, the marginal distribution of θ given in Equation 8 is

replaced with

pfB(θ | Y ) =

∫
pfB(θ,A | Y ) dA, (9)

where pfB(θ,A | Y ) = p(θ | A, Y ) p(A | Y ). The fully Bayesian posterior distribution of θ can be viewed as

a weighted version of that under the pragmatic posterior, see Equation 8,

pfB(θ | Y ) =

∫
p(θ | A, Y )

p(A | Y )

p(A)
p(A) dA

≈ 1

T

T∑
t=1

p(θ|A(t), Y )
p(A(t) | Y )

p(A(t))
, (10)
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where A(t) is drawn from p(A). In principle, we could implement the fully Bayesian method by obtaining a

sample {A(t), t = 1, . . . , T} from p(A) and evaluating Equation 10. (This technique is known as importance

sampling.) Unfortunately, evaluating p(A | Y ) =
∫
p(θ,A | Y ) dθ is extremely challenging in this setting.

Alternative computational techniques therefore are needed; we outline our strategy in Section 2.3 and give

details in Appendix A.

The posterior distribution of A under the pragmatic method,

ppB(A | Y ) =

∫
ppB(θ,A | Y ) dθ =

∫
p(θ | A, Y ) p(A) dθ = p(A),

is simply equal to the prior distribution of A. The fully Bayesian posterior for A,

pfB(A | Y ) =

∫
pfB(θ,A | Y ) dθ =

∫
p(θ | A, Y ) p(A | Y ) dθ = p(A | Y ),

however, can be used to learn what effective area curves are more or less consistent with the observed data.

We illustrate how this is done in Section 3.

2.2. The Advantage of a Fully Bayesian Analysis

To illustrate the advantage of the fully Bayesian method over the pragmatic Bayesian method, we

compared their performance in a simulation study. In Section 3 we reproduce part of the simulation study of

Paper I but this time including the fully Bayesian method. Here we give detailed results under the simulation

setting called Simulation II in Section 3. In particular, we simulate an absorbed power-law source model with

three parameters (power-law index Γ, absorption column density NH, and normalization) using the fake pha

routine in Sherpa (Freeman et al. 2001). The data set was simulated without background contamination,

using the XSPEC model wabs*powerlaw and a default photon redistribution matrix (RMF) for ACIS-S. We

consider the energy range from 0.3 keV to 7 keV, which is divided evenly into approximately one thousand

bins. Here we give detailed results for Simulation II which set Γ = 1, NH = 1021cm−2, generated 105 counts,

and used an extremal effective area curve from the calibration library of Drake et al. (2006). (We use the

same extremal effective area curve as in Paper I and label it Aext; it is the curve with the highest value of

the effective area in the calibration library.)

Figure 2 plots a Monte Carlo sample from the posterior distribution under the standard method, pstd(θ |

A0, Y ), the pragmatic Bayesian method ppB(θ|Y ), and the fully Bayesian method, pfB(θ | Y ), where A0 is

the default under the calibration library of Drake et al. (2006) and here θ = (Γ, NH). The red square in

each panel gives the true value of θ. The MCMC samplers used in Figure 2 are described in Appendix A.

Although the error bars computed with the standard method are the smallest, in this simulation the method

misses the true value of θ. The results are precise but incorrect. This is not unusual when the default
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Fig. 2.— Comparison of the standard (left), pragmatic Bayesian (middle), and fully Bayesian (right) methods. Each

panel compares a complete Monte Carlo posterior sample of values of θ = (Γ, NH) to its true value, marked with a

red square; NH is shown in units of 1022 cm−2. When fit using an incorrect effective area curve, the standard method

can result in misleading estimates of θ (see left panel). The pragmatic Bayesian method, on the other hand, averages

over all a priori possible effective area curves and significantly enlarges the posterior variance for θ (see middle panel).

Although the centers of the posterior distributions under the standard and pragmatic Bayesian methods are similar,

the larger error bars computed with the latter allows them to include the true values of θ. Finally, the posterior

distribution under the fully Bayesian method shifts toward the true value of θ, allowing it to cover the true value

while avoiding the large error bars of the pragmatic Bayesian method (see right panel).

effective area curve, A0, is misspecified, as it is in this case because the data were generated under a different

curve—one that is nonetheless plausible given the calibration uncertainty. The pragmatic method accounts

for calibration uncertainty by averaging over all a priori possible effective area curves, resulting in much

larger error bars that capture the true value of θ—the method is imprecise but correct. As pointed out in

Paper I, this is a clear advantage over the standard method. Finally, the fully Bayesian method accounts for

calibration uncertainty by averaging over those effective area curves that are consistent with the observed

data. The resulting error bars are only slightly larger than those produced with a fixed effective area curve,

but the fitted values for θ have shifted enough that the error bars still capture the true value. This example

clearly illustrates the benefits of the fully Bayesian method: we can characterize the performance of the

standard method as “precise but wrong”, of the pragmatic method as “imprecise but correct” and of the

fully Bayesian method as both “precise and correct”.

2.3. Fitting the Fully Bayesian Model

We use a Metropolis-Hastings (MH) MCMC sampler to obtain a correlated sample, {(θ(t)
fB , A

(t)
fB ), t =

1, . . . , T}, from pfB(θ,A | Y ). An introduction to MCMC, MH samplers, and the other computational
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methods that we employ appears in Appendix A.1. We use a type of MH sampler that is known as an

independence sampler. It uses an approximation, g, to pfB(θ,A | Y ) that does not depend on (θ
(t)
fB , A

(t)
fB ) as

its proposal distribution when sampling (θ
(t+1)
fB , A

(t+1)
fB ).

For such a sampler to work efficiently, any range of values that has appreciable probability under

pfB(θ,A | Y ) must also have appreciable probability under g. This is because the only values that can be

simulated with an independence sampler are those values that can be simulated with g. If there is a range

of values that has negligible probability under g, values in this range are unlikely to be simulated. To be

sure that no important values of (θ,A) are missed, it is critical that g be an over-dispersed approximation

to pfB(θ,A | Y ). That is g must be a reasonable approximation to pfB(θ,A | Y ), but with more proclivity to

extreme values.

Fortunately, the pragmatic posterior distribution, ppB(θ,A | Y ), provides just such an over-dispersed

approximation to pfB(θ,A | Y ). This is illustrated numerically in Figure 2 in which the posterior distribution

under the pragmatic Bayesian model (middle panel) is clearly an over-dispersed approximation to that under

the fully Bayesian model (right panel). More generally, the pragmatic Bayesian approach includes all values

of A that are possible under p(A), whereas the fully Bayesian approach more heavily weighs those values

that are more consistent with Y . Thus, the fully Bayesian posterior distribution focuses on a narrow range

of A. This in turn leads to a narrower range of values of θ that are plausible under pfB(θ,A | Y ) than under

ppB(θ,A | Y ).

Unfortunately, although ppB(θ,A | Y ) is an ideally suited over-dispersed approximation to pfB(θ,A | Y ),

it cannot be used directly as the proposal distribution, g, because it is difficult to evaluate. (We need to

evaluate g in order to compute ρ given below in Equation 11.) In Appendix A.3 we discuss this difficulty

and how we construct a simple approximation to ppB(θ,A | Y ) that is a suitable choice for g.

Because g is based the pragmatic posterior distribution, we call it a pragmatic proposal. Using Equa-

tion 5, A is completely represented by the low-dimensional e, so we need only sample e and θ and can

compute A(e). Thus, we write our approximation as g(θ, e). Specifically, our sampler for the fully Bayesian

model is

Pragmatic Proposal Sampler

For t = 0, 1, . . . , T ,

Step 1: Draw (θprop, eprop) ∼ g(θ, e), set Aprop = A?0 + (Ā−A0) +
∑J
j=1 e

prop
j rjvj , and compute

ρ =
pfB(θprop, Aprop | Y )g(θ

(t)
fB , e

(t)
fB )

pfB(θ
(t)
fB , A

(t)
fB | Y )g(θprop, eprop)

. (11)
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Step 2: Let u be a uniformly distributed random number between zero and one and set

(θ
(t+1)
fB , e

(t+1)
fB , A

(t+1)
fB ) =

(θprop, eprop, Aprop) if u < ρ

(θ
(t)
fB , e

(t)
fB , A

(t)
fB ) otherwise

.

In our numerical studies, we make one final adaptation. At each iteration we either use the update

described in the Pragmatic Proposal Sampler with g set to the approximation to ppB(θ,A | Y ) described in

Appendix A.3, or we conduct a random walk update to (θ, e) by replacing Step 1 of the sampler with

Alternative Step 1: Draw eprop
j = e

(t)
j + N (0, σ) for j = 1, . . . , J and θprop ∼ g(θ | eprop), set Aprop =

A?0 + (Ā−A0) +
∑J
j=1 e

prop
j rjvj , and compute

ρ =
pfB(θprop, Aprop | Y )g(θ

(t)
fB | e

(t)
fB )

pfB(θ
(t)
fB , A

(t)
fB | Y )g(θprop | eprop)

.

The choice between the two versions of Step 1 is made randomly at each iteration of the sampler. Mixing

proposal distributions in this way tends to improve the convergence of MCMC samplers. We use this Mixed

Pragmatic Proposal Sampler in all of our numerical studies.

3. Simulation Studies

In this section we use a series of simulation studies to demonstrate the circumstances under which the

fully Bayesian method is advantageous. In Section 4 we illustrate the method in real data analyses.

3.1. Replicating the Simulation Study of Paper I

We begin by replicating four of the eight of the simulation studies of Paper I, but this time using the

fully Bayesian method. The four simulations are conducted exactly as the one in Section 2.2 but data

were generated with different spectral models and different nominal counts (see Table 2). Specifically, the

simulation represents a 2× 2 design with the two factors being

1. either 105 or 104 photon counts are simulated, and

2. data are generated under either a hard spectral powerlaw model (Γ = 2, NH = 1023 cm−2) or a soft

spectral powerlaw model (Γ = 1, NH = 1021 cm−2).

Following Paper I, all four simulated data sets were generated with the extremal effective area curve, Aext,

from the calibration library of Drake et al. (2006). This curve differs substantially from the default curve
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Table 2: The four simulations used to compare the standard, pragmatic Bayesian, and fully Bayesian meth-

ods.

Nominal Counts Spectal Model

105 104 Hard† Soft‡

Simulation I X X

Simulation II X X

Simulation III X X

Simulation IV X X

†An absorbed powerlaw with Γ = 2, NH = 1023 cm−2

‡An absorbed powerlaw with Γ = 1, NH = 1021 cm−2

used in the standard method and is extreme within the calibration library, but is nonetheless consistent

with the uncertainty described by the library. We also examined four additional simulations in Paper I

where the simulated data were generated using the default effective area curve. We exclude discussion of

these simulations here because, first, it is unrealistic to assume that the true effective area is known, and

second, if such an assumption is made, it only shows, as expected, the standard method performs the best;

see Xu (2014) for details. In practice, the effective area curve is specified with uncertainty and it is not

feasible to correctly specify its value. The four simulations we conduct (Simulations I–IV) are numbered

Simulations 5–8 in Paper I.

We fit an absorbed power law model to each of the four simulated data sets, using the standard,

pragmatic Bayes, and fully Bayesian methods. In all cases the standard method is run using the (misspecified)

default effective area. This enables us to investigate the effect of misspecification of A0, where the degree of

misspecification is consistent with the range of variability of the calibration library. Posterior distributions,

intervals, and fitted values for Γ, computed with each of three methods, run on each simulation, appear in

Figure 3. The joint posterior distribution of Γ and NH under Simulation II for each of the three methods is

discussed in Section 2.2 and appears in Figure 2.

In all four simulations, the standard method produces significantly narrower error bars than the other

methods, especially in the large count Simulations I and II. Unfortunately, however, as expected its intervals

miss the true value of Γ by a large margin. The pragmatic Bayesian method, by contrast, exhibits similar

fitted values but much wider error bars that reflect the variability in the fits resulting from different choices

of A in the range of A. Finally, the fully Bayesian method uses the data to exclude some A in the range of A

that are inconsistent with the observed spectra. The result is optimal in that the fitted values shift toward

the true value of Γ and the width of the error bars narrow relative to those produced with the pragmatic
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104 counts

Standard

Fully Bayes

Pragmatic Bayes

Fig. 3.— Results for Simulations I–IV. The panels show the posterior distributions (curves), fitted values (×), and 1σ error

bars (horizontal bars) for the spectral power-law index, Γ. Results for the standard, pragmatic Bayesian, and fully Bayesian

methods are plotted in dotted black, dashed blue, and solid red, respectively. (The posterior distribution under the standard

method is omitted to enhance the comparison of the other two methods. To smooth the plotted pragmatic Bayesian posterior

distributions, we use the MH within PCG Sampler of Paper I, see Appendix A.2.) The true value of Γ is given by the red

broken vertical line. In these simulations, we consider the situation in which the default effective area curve is misspecified to

a degree that is consistent with the variability of the calibration library. Because the standard method uses this misspecified

curve, it performs poorly. Both the pragmatic and the fully Bayesian methods avoid assuming that A is known without error

allowing them to perform better. Of these two, the fully Bayesian method provides both estimates of Γ that are closer to its

true values and narrower error bars.

Bayesian method. Thus, like the pragmatic Bayesian method, the fully Bayesian method provides error

bars that contain the true value at nearly the correct statistical rate (68.2% here), but these error bars are

narrower than those provided by the pragmatic Bayesian method—and can be much narrower with large

counts. We conduct a large-scale simulation study in Section 3.2 to better quantify these trends.

The results of the simulations can be understood by considering the statistical errors (due to Poisson

fluctuations in the counts) and the systematic errors (due to misspecification of the effective area curve).

The standard method ignores the latter sources of error and thus, not surprisingly, it provides misleadingly

narrow errors and can exhibit significant bias if the misspecification of A is substantial. Because it only

considers statistical errors, the standard method underestimates the total error for large-count spectra. The
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Fig. 4.— Estimating the range of effective area curves that are consistent with data. The plots summarize pfB(A | Y )

for Simulation II. The true (extremal) and nominal (default) effective area curves are plotted in dot-dashed red and

dotted black. The pointwise posterior distribution of A is plotted in blue, where the dark (light) blue area corresponds

to the central 68.3% (90%) region of pfB(A | Y ) and the solid blue curve plots the posterior mean. The top panel is on

the effective area scale and the bottom panel subtracts off the true effective area curve, Aext, to highlight differences.

The true curve is contained entirely in the blue region. The posterior mean (solid blue curve) shifts from the prior

mean (dotted black) toward the true effective area curve (dot-dashed red).

pragmatic Bayesian method, on the other hand, incorporates both statistical and systematic errors, resulting

in significantly larger error bars. Because systematic errors do not dissipate as the sample size grows, the

error bars produced by the pragmatic Bayesian method are not particularly sensitive to the number of counts.

In Paper I, we illustrate as the photon counts grow and the statistical errors become negligible, the error

bars produced by the pragmatic methods will be entirely due to calibration uncertainty.

The power of the fully Bayesian method is that it actually uses the data to measure the systematic

error. Put another way, it handles systematic error in the same way one would handle statistical error.

Thus, its error bars are wider than those provided by the standard method because they incorporate both

sources of error, but their width decreases as the number of counts grows because the data are able to narrow
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the calibration uncertainty. This in turn allows us to go one step further and actually estimate A using its

posterior distribution, pfB(A | Y ).

We illustrate this in Figure 4 which shows that A0 is inconsistent with the pfB(A | Y ) fit under Simula-

tion II. The shaded light blue region corresponds to a 90% pointwise posterior region for A and contains the

true effective area curve, Aext (plotted in red). The posterior region, however, is shifted toward A0 (plotted

in black), which serves as the prior mean for A. Thus, the prior distribution on A has a clear influence

on its posterior distribution. A similar pattern can be seen in Figure 3. The fitted values of Γ are pulled

from the true value toward the best value assuming A = A0 as computed with the standard method. We

emphasize, however, that the prior distribution on A used by the fully Bayesian method is in fact making a

much weaker assumption than what is commonly made in practice: the assumption that A is exactly equal

to A0. The standard method makes this assumption and as we demonstrate in Section 3.2, its fitted values

exhibit significant bias when A0 is misspecified.

3.2. A frequency evaluation of the methods

The 2 × 2 simulation study described in Section 3.1 generated only one data set for each of the four

simulation studies. In this section we generate fifty spectra for each of the four simulation settings described

in Table 2 and fit each of the resulting 50 × 4 simulated spectra with the standard, pragmatic Bayesian,

and fully Bayesian methods. The fitted values for Γ and their 68.2% error bars computed using the first

ten spectra generated in each simulation appear in Figure 5. Numerical summaries of the entire simulation

study appear in Table 3. The frequency analyses confirm the trends we highlighted in Section 3.1:

• In all four simulations, the standard method on average exhibits the narrowest error bars (mean error

bars), the pragmatic Bayesian method has the widest, and those of the fully Bayesian method are in

between. (This also holds when A is known with certainty, see Xu 2014.)

• When A is correctly specified all three methods preform well, but the standard method preforms best

because it uses precise, but in practice unattainable, knowledge of A. (These results are not shown,

see Xu 2014.)

• In the more realistic situation in which there is uncertainty in A (i.e., Simulations I–IV) both the

standard and pragmatic Bayesian methods exhibit substantial bias. The fully Bayesian method reduces

this bias, resulting in the overall smallest mean square error.

• The advantage of the fully Bayesian method is most striking when A is misspecified and the data set

is large (Simulations I and II). In this case the estimates produced with the fully Bayesian method
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have much lower bias and root mean square error than those of the other two methods. Fully Bayesian

intervals are much more likely to include the true value of Γ (coverage) than intervals based on a fixed

effective area fit and the fully Bayesian error bars can be much narrower than the pragmatic Bayesian

error bars. These effects dissipate with smaller data sets because substantial data are required to

narrow the calibration uncertainty.

4. Data Analyses

Here we apply the three methods to real data to demonstrate the practical effects of the fully Bayesian

method. We consider power-law and multi-thermal sources observed with ACIS-S, and a nominal blackbody

source observed with Chandra HRC-S/LETG.

4.1. A Sample of Radio-Loud Quasars

In radio loud quasars, X-ray emission originates in close vicinity to a supermassive black hole and is

believed to be caused by either an accretion disk or a relativistic jet. This emission can be modeled with a

Compton scattering process and the X-ray spectrum described using an absorbed power law:

Λ(E; θ) = N E−Γ e−σ(E)NH photons cm−2 sec−1 keV−1 , (12)

where σ(E) is the absorption cross-section, and the three model parameters are θ = (N,Γ, NH) with N the

normalization at 1 keV, Γ the photon index of the power law, and NH the absorption column. We consider

a small sample of radio loud quasars whose spectra were observed with the Chandra X-ray Observatory in

2002 (Siemiginowska et al. 2008; Lee et al. 2011). Standard data processing including source extraction and

calibration was preformed using the CIAO software (Chandra Interactive Analysis of Observations).

The number of counts in the observed spectra varies between 8 and 5500. As in Paper I, we excluded

two of the spectra (ObsID 3099 which had 8 counts, and ObsID 836 which is better described by a weak

thermal spectrum) and reanalyzed the remaining 15 using the standard, pragmatic Bayesian, and fully

Bayesian methods. We account for background contamination using a background spectrum extracted over

large annuli surrounding each source and a highly-structured background model that was originally fit to

the blank-sky data provided by the Chandra X-ray Center, see Paper I for details. Only the normalization

of the background model was fit in the individual spectral analyses. This approach was used for all but the

two lowest-count spectra (< 45, both with short 5 ksec exposures), for which background was ignored. The

sample of quasars was originally analyzed by Siemiginowska et al. (2008) who did not account for calibration

uncertainty. A followup analysis accounted for calibration uncertainty using the pragmatic Bayesian method
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Fig. 5.— Frequency analysis for Simulations I–IV. Each panel gives the fitted values and 1σ error bars for Γ resulting

from ten replicate simulations. The red broken vertical line in each panel indicated the true value of Γ. The four rows

correspond to the four simulation settings and the three columns correspond to the standard, pragmatic Bayesian,

and fully Bayesian methods, respectively. Owing to the misspecification of A0, the standard and pragmatic Bayesian

methods both exhibit significant bias. The pragmatic Bayesian method adjusts for this bias with wider error bars,

while the fully Bayesian method reduces the bias. Overall the fully Bayesian method is able to cover the true value

of Γ more often with narrow errors bars than either of the other methods, especially with large-count spectra (i.e.,

Simulations I and II).
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and resulted in substantially larger error bars for the high-count datasets (Paper I). As illustrated in Section 3,

systematic errors due to calibration uncertainty swamp statistical errors for large data sets. For small data

sets, however, the statistical errors may be much larger and the relative effect of calibration uncertainty is

therefore less important. Here we reanalyze the same spectra with the fully Bayesian method and illustrate

how it is able to deliver low-bias parameter estimates with smaller error bars than in the pragmatic Bayesian

method.

We fit each spectrum in three ways:

1. with the standard method,

2. with the pragmatic Bayesian method using the Iterated MH within PCG Sampler (see Section A.2),

and

3. with the fully Bayesian method using the Mixed Pragmatic Proposal Sampler.

With each of the three methods, we use the fifteen observation-specific default effective area curves, A∗0,

corresponding to each spectra. For the two Bayesian methods, we use J = 8 in the PCA summary of the

calibration library along with the A∗0 in Equation 5. When running the Iterated MH within PCG Sampler,

we set I = 10 and M = 10; that is at each iteration we run pyBLoCXS M + I−1 times, discarding the output

of the first I−1 runs and keeping the output of the final M runs. In the Mixed Pragmatic Proposal Sampler,

the two proposal rules were used in equal proportion and with the random-walk proposal we set σ = 0.1.

Results appear in Figures 6 and 7. Error bars for Γ computed under the pragmatic Bayesian (σ̂pB)

and fully Bayesian (σ̂fB) methods are compared with those computed under the standard method (σ̂std) in

Figure 6. The left panel replicates results reported in Paper I and shows that for large data sets, for which

σ̂std is small, the pragmatic Bayesian method produces much larger error bars than the standard method;

σ̂pB accounts for systematic and statistical errors, whereas σ̂std only accounts for statistical errors. For the

largest datasets σ̂pB is twice as big as σ̂std. The right panel of Figures 6 shows that the fully Bayesian

method produces error bars more in line with σ̂std; although for the largest data sets σ̂fB is bigger than σ̂std,

it is not as big as σ̂pB.

Figure 7 compares the 1σ intervals for Γ produced by the three methods. Consider an interval computed

under the pragmatic Bayesian method: CIpB(Γ) = {Γ̂ ± σ̂pB(Γ)}, where Γ̂ is the estimate of Γ under this

method. To compare this interval with that computed under the standard method, we subtract Γ̂std from

CIpB(Γ) and divide by σ̂std(Γ). The result is an interval that extends from −1 to 1 if CIpB(Γ) and CIstd(Γ)

are identical, is wider if σ̂pB > σ̂std, and shifts to the left or right if Γ̂pB and Γ̂std differ. These adjusted

intervals are plotted in the left panel of Figure 7. There is very little shifting to the left or right because

the pragmatic Bayesian and standard methods produce very similar estimates. For small data sets (large
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Fig. 6.— Comparing the error bars for Γ computed under the standard (σ̂std), pragmatic Bayesian (σ̂pB), and fully

Bayesian (σ̂fB) methods using spectra from each of fifteen radio-loud quasars. Smaller values of σ̂std correspond

to data sets with more counts. For high-count spectra, σ̂pB tends to be substantially larger than σ̂std while σ̂fB is

only moderately larger than σ̂std. Thus, the fully Bayesian methods is able to provide a principled accounting for

calibration uncertainty with only a moderate increase in the final error bars.

values of σ̂std) the adjusted intervals are nearly {−1, 1}, but for larger data sets (small values of σ̂std) the

adjusted interval are as much as twice as wide. The right panel of Figure 7 illustrated adjusted intervals

computed under the fully Bayesian method, CIfB(Γ), in the same manner. For the smaller data sets CIfB(Γ)

and CIstd(Γ) are similar, but for large data sets, they differ: the adjusted intervals tend to shift to the left or

right but are not generally much more than two units wide. This means that the fully Bayesian method tends

to adjust the fitted value and to increase error bars only moderately. In two cases (ObsID 3097 and 866) the

fully Bayesian method shifts the fitted value of Γ by more than σ̂std. This constitutes a significant shift in

the scientific inference for these observations when calibration uncertainty is accounted for in a principled

Bayesian manner.

4.2. Fitting a multi-thermal spectral model

Our analyses thus far have been carried out using a simple power-law spectral model (in Paper I, in the

simulations in Section 3, and for the observed data in Section 4.1). Here we illustrate the pragmatic and

fully Bayesian methods using a more complex multi-component thermal model. To do this, we analyze one
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Fig. 7.— Standardized pragmatic and fully Bayesian intervals. Using spectra from the fifteen quasars, the left panel plots 1σ

confidence intervals computed with the pragmatic Bayesian method, but re-centered and re-scaled using the estimate and error

bars of Γ computed under the standard method: (CIpB − Γ̂std)/σ̂std(Γ). If the pragmatic and standard methods return the

same estimates and error bars, the plotted intervals would equal the interval (−1, 1). In fact the plotted intervals are as much

as twice this wide for large-count (small σ̂std) datasets, indicating that σ̂pB can be substantially larger than σ̂std. The right

panel plots 1σ confidence intervals computed with the fully Bayesian method, re-centered and re-scaled in the same manner.

The plotted intervals shift right and left because the fitted values under the standard and fully Bayesian methods differ. The

widths of the fully Bayesian intervals, however, are only moderately larger than the standard intervals.

of the strongest sources in the Chandra Source Catalog, ζ Ori, a young (<12 Myr) binary system comprised

of an X-ray bright O9 supergiant and a weaker B0 subgiant with about a 3′′ separation. The source is

observed (ObsID 1878) at 15 arcmin off-axis, situated on the ACIS-S2 chip, and is detected with a count

rate of 1.33 ct s−1, with > 105 counts in 75.46 ksec. Because of the large off-axis location, the point spread

function is broad, and the binary cannot be spatially resolved. Furthermore, the source is spread out over

more than 20000 pixels, with maximum fluence at <0.0017 ct s−1 pix−1 so that CCD pileup effects may be

ignored.

Our objective is not to model the spectrum in detail, but rather, to consider the effect calibration

uncertainty has on spectral fitting. (The X-ray emission is thermal, generated from shocked plasma deep

in the wind; see Waldron and Cassinelli (2001), Pollock (2007), Raassen et al. (2008), Herve et al. (2013)

for various models designed to account for X-ray emission from massive stars). We construct a variable-
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Table 4: Fitted parameters for ζ Ori

Model Standard Pragmatic Bayesian Fully Bayesian

Parameters Analysis Analysis Analysis

NH [1020 cm−2] 14.8 ±0.90 15.0 ±0.92 15.1 ±0.87

T1 [keV] 0.179 ±0.0016 0.179 ±0.0022 0.181 ±0.0019

T2 [keV] 0.474 ±0.0063 0.474 ±0.0069 0.471 ±0.0067

[C,N,O]
†

0.23 ±0.018 0.23 ±0.024 0.21 ±0.026

[Ne]
†

0.48 ±0.031 0.48 ±0.033 0.47 ±0.034

[Ni,Mg,Si,Ca,Fe]
†

0.41 ±0.028 0.41 ±0.032 0.40 ±0.031

Norm1 [1012 cm−5] 6.3 ±0.65 6.4 ±0.78 5.9 ±0.56

Norm2 [1012 cm−5] 1.05 ±0.057 1.07 ±0.079 1.00 ±0.059

† abundances relative to solar (Anders and Grevesse 1989)

abundance absorbed 2-temperature APEC spectral model and fit it to the data. This roughly mimics previous

attempts to model spectra of ζ Ori obtained with other telescopes such as ASCA (Yamauchi et al. 2000) and

XMM-Newton (Raassen et al. 2008). For reference, Yamauchi et al. find two temperature components at

T1 = 0.2, T2 = 0.6 keV, at an absorption column fixed at NH = 2.6 1020 cm−2; Raassen et al. find three

temperature components at T1 = 0.55, T2 = 0.2, T3 = 0.07 keV, NH = 5 1020 cm−2, with abundances of C,

N, and O, being close to solar photospheric (represented by the compilation of Anders and Grevesse 1989),

and those of Ne, Mg, Si, and Fe being elevated. The results of applying the standard, pragmatic Bayesian,

and fully Bayesian methods to the data are given in Table 4. We find significantly higher absorption columns,

and lower temperatures and abundances, with our estimated abundance consistent with the low metallicities

measured for the nearby NGC 2023 star cluster (López-Garćıa et al. 2013). These results are stable with

respect to calibration uncertainty, with all three methods producing similar best-fit values.

The fits are also summarized in Figures 8 and 9. They show that relative to the standard method,

the pragmatic Bayesian method delivers similar fitted values for T1 and T2, but accounts for calibration

uncertainty by inflating their error bars. The fully Bayesian method shifts the fitted values by a small

amount and generally requires a smaller increase in the error bars. In this case, the posterior correlation of

T1 and T2 decreases under the fully Bayesian method, see Figure 9.

The second row of Figure 8 shows time series plots of the Markov chains of T1 used to simulate the three

posterior distributions. (The samplers were run with J = 8, I = 10,M = 10, and σ = 0.1.) While all three

converge reasonably well, the fully Bayesian chain occasionally “sticks” at a particular value of the parameter

for a number of iterations. This indicates that the pragmatic proposal distribution may attribute relatively
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little probability to some regions of the parameter space with appreciable probability under pfB(θ,A | Y ).

This can also be seen in Figure 9 where the 90% contours of (normal approximations to) the pragmatic

and fully Bayesian posterior distributions are plotted in green and blue, respectively. The fact that the

fully Bayesian contour extends outside the pragmatic Bayesian contour indicates that we may have trouble

exploring parts of pfB(θ,A | Y ) using the pragmatic proposal distribution. (Recall that we require the

jumping rule of the independence sampler to be an over-dispersed approximation to pfB(θ,A | Y ).) The

mixed pragmatic proposal sampler, however, mixes the pragmatic proposal with a random walk update.

This second component allows simulation of parameter values with relatively low probability under the

pragmatic proposal rule. In this case the sampler was computationally costly. Owing to its “sticking” we

ran the fully Bayesian sampler for 30,000 iterations. (The pragmatic sampler was run for 3000.) This

combined with complexity of the multi-thermal spectral model fit with its eight parameters resulted in a

larger computational burden (>>20×) than the other analyses carried out here (see Sections 4.1,4.3 – those

runs typically took 60-90 min on a 64-bit 2.2GHz CPU with 16GB of RAM).

In the fully Bayesian run, the data prove to be informative about the effective areas. The subset

of A that is consistent with the data and the adopted model suggests that the nominal effective area is

underestimated, see Figure 10. This is not surprising, since effective areas at large off-axis angles are not as

well calibrated as those near the aimpoint. Naturally, this result is conditional on the validity of the adopted

spectral model of an absorbed two-temperature thermal emission with variable abundances. Our analysis

suggests that at off-axis angles > 15 arcmin the Chandra effective areas should be increased by ≈10% over

the 0.5-2 keV range and by ≈5% at high energies >6 keV.

4.3. Fitting a blackbody model to a grating spectrum

As an additional example of the versatility of our approach, we consider data from an entirely different

detector, fitted with a blackbody spectral model. We analyze a high-resolution grating spectrum of an

isolated neutron star, RX J1856.5-3754 (RXJ1856). This source has been observed with the LETGS+HRC-

S grating/detector combination numerous times over the Chandra mission, and has accumulated 617.735 ks

of exposure. RXJ1856 is an intrinsically interesting object: it was originally classified as an isolated neutron

star, but was later suspected to be a quark star (Drake et al. 2002). The X-ray data were fit as a blackbody

spectrum with a temperature of T = 61.1±0.3 eV by Drake et al., resulting in a radius estimation of ≈4–

8 km. But the optical data are inconsistent with the X-ray predictions, and require fitting by a more complex

magnetic Hydrogen atmosphere model, with a temperature of T∞≈37 eV and a radius R∞≈17 km consistent

with a conventional neutron star core (Ho et al. 2007). In the X-ray regime itself, these two models cannot

be statistically distinguished (Ho et al.).
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Fig. 8.— The standard, pragmatic Bayesian, and fully Bayesian fits of the T1 and T2 parameter in the spectrum

of ζ Ori. The first row plots a complete Monte Carlo simulation from each of the three posterior distributions; the

solid red lines correspond to the posterior means of T1 and T1 under each fit. The fitted values (posterior means) for

the two parameters are indistinguishable under the standard and pragmatic Bayesian methods, but shift noticeably

under the fully Bayesian method. Error bars are quantified by the spread of the simulated parameter values under

each of the methods. The error bars under the pragmatic Bayesian method are noticeably larger than those computed

with the other two methods. Thus, the fully Bayesian method again is able to account for calibration uncertainty

by shifting the fitted values rather than by increasing their error bars. The second row presents time series plots of

the Markov chains for T1 used to generate the three Monte Carlo simulations. While all three chains are fairly well

behaved, the fully Bayesian chain occasionally “sticks” at the same parameter value for a number of iterations. This

is an indication that the pragmatic proposal distribution attributes relatively little probability to some regions of the

parameter space with appreciable probability under pfB(θ,A | Y ). Nonetheless, the algorithm preforms well enough

for valid inference. (Here we only plot every tenth iteration of the fully Bayesian sampler.)
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Fig. 9.— The plot superimposes the 90% contours of the three posterior distributions simulated in the first row of

Figure 8. The contours are computed using a normal approximation to the posterior distribution computed under

the standard (red), pragmatic Bayesian (green), and fully Bayesian (blue) methods. The posterior means under the

three methods are plotted, respectively, as a red ×, a green +, and a filled blue square. Relative to the standard

method, the pragmatic Bayesian method delivers similar fitted values and larger error bars, while the fully Bayesian

method shifts the fitted value but only moderately inflates the error bars. In this example the correlation of the two

parameters decreases under the fully Bayesian method.

Here, for the sake of simplicity, we adopt an absorpbed Blackbody spectrum model to fit the soft X-

ray data. This spectral model was fit using exactly the same methods and algorithms as in Section 4.1

(J = 8, I = 10,M = 10, σ = 0.1.), except that the background was modeled as a fixed 8th-degree polynomial

whose coefficients were determined via a standard fit to the background spectrum, and was then incorporated

into the source model with a variable normalization.

As was done for the Chandra/ACIS-S, we generate a calibration library based on constrained spline curve

modifications of known subsystem uncertainties in the LETGS+HRC-S system (Drake et al., in preparation).

Figure 11 shows the top five principal components (in color), which together account for > 95% of the

variance in the library. Also shown, in grey, are the summed contributions of the remaining components,

which account for < 5% of the variance. Notice that there are wavelength regions where this residual could

be a significant factor. The two wavelength ranges over which RXJ1856 data are informative are shown with

vertical dashed lines; the residual components do not affect the analysis over these ranges. Note that in all

of our analyses, we use J = 8 principal components.

We limit our analysis to the wavelength ranges +[25:59.5, 68:80] Å, with the gap centered on the HRC-
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Fig. 10.— Estimating the range of effective area curves that are consistent with the spectrum of ζ Ori. The plots

summarize pfB(A | Y ). The pointwise posterior distribution of A is plotted in blue, where the dark (light) blue area

corresponds to the central 68.3% (90%) region of pfB(A | Y ). The pointwise posterior mean of A and its default value,

A0 are plotted as solid blue and dotted black lines, respectively. The top panel shows the full effective areas and the

bottom panel subtracts off the default effective area curve, A0, to highlight the differences. (We cannot subtract off

the true curve as in Figure 4 because it is unknown.) The data suggest that A0 underestimates the true effective

area by ≈10% over the 0.5-2 keV range and by ≈5% at high energies >6 keV, and the vignetting correction must be

reduced for large off-axis angles for Chandra imaging observations.

S chip gap. The chip gap is excluded because, even though the nominal effective area A0 includes the

effect of dither and corrects for the drop across the gap, it is subject to additional systematic errors due to

deformations in the locations of the active regions on the chip, and these are not included in the calibration

library. We co-add the spectra from all positive dispersion datasets of RXJ1856. We exclude the negative-

order dispersion data for the sake of simplicity. It has a chip gap in a different location and the uncertainty

in its effective area likely exhibits qualitatively different characteristics compared to the positive-order, and

thus using it would make interpretation of the analysis results difficult. There are ≈129 kct in the spectrum

over the chosen wavelength range, of which ≈43.8 kct are estimated to be due to the background. Although

the large number of net counts (≈85 kct) puts this dataset in the range where calibration uncertainty will

likely affect the total error bars, the large fraction of expected background counts makes this an inefficient
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Table 5: Fit parameters for RX J1856.5-3754

Model Standard Pragmatic Bayesian Fully Bayesian

Parameters Analysis Analysis Analysis

NH [1020 cm−2] 0.91 ±0.043 0.91 ±0.058 0.93 ±0.056

T [eV] 62.4 ±0.58 62 ±1.1 62 ±0.9

Norm [ L36

D2
10

†
ergs s−1 cm−2] 0.311 ±0.0056 0.31 ±0.023 0.32 ±0.022

Background scale 66 ±1.5 66 ±1.8 65 ±1.7

† L36 is the source luminosity in units of 1036 ergs s−1 and D10 is the distance in units of 10 kpc.

dataset to place constraints on the calibration library. As expected, the application of the pragmatic Bayesian

method increases the error bars on the best-fit model parameters, see Table 5. For instance, the temperature

estimate remains stable at T = 62.4 eV, but the uncertainty increases from ±0.6 eV for standard analysis,

to ±1.05 eV for pragmatic Bayesian, and decreases slightly to ±0.93 eV for fully Bayesian analysis, see also

Figure 12.

Unlike the case with ζ Ori (Section 4.2), there is no significant effect on the range of effective area

curves in the calibration library that are consistent with the spectrum of RXJ1856 (see Figure 13). We

attribute this lack of sensitivity partly to the high background that contaminates the dataset, and also to

the short wavelength range over which the dataset is informative. As we see from the Principal Components

displayed in Figure 11, there are long-range correlations present in the library which will be selected for when

a source with a suitably long wavelength range is analyzed. In the current analysis, there is a suggestive

small curvature bias of ∼1-2% in the HRC-S/LETG effective area over the 25 − 80 Å range. This bias,

however, is fully contained within the nominal 1σ range of the effective area curves.

5. Discussion

In this article we demonstrate the advantage of a fully Bayesian accounting of calibration uncertainty.

Relative to the pragmatic Bayesian method the fully Bayesian method delivers estimates with smaller bias

and smaller error bars. As with the pragmatic method, the fully Bayesian method requires large-counts data

sets to deliver significant gains over the standard method. In low-counts data sets, uncertainty stemming

from random fluctuations in the counts swamps that due to calibration. The advantage of the fully Bayesian

method stems from its ability to handle systematic errors due to calibration uncertainty in the same way

one would handle statistical errors. In this way it accounts for calibration uncertainty by shifting the fitted

values of spectral parameters. From a scientific perspective, this is preferable to increasing their reported
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Fig. 11.— Top five principal components of the Chandra LETGS+HRC-S effective area calibration library. The

1st (blue), 2nd (red), 3rd (green), 4th (brown), and 5th (pink) components, weighted by the square-root of their

eigenvalues, are shown as colored regions. Together, they account for 95.5% of the variance in the LETGS+HRC-S

calibration library. The sum of the similarly weighted contributions from the remaining components is shown as grey.

The vertical dashed lines indicate the wavelength range over which the data analysis is carried out.

error bars, the mechanism by which the pragmatic Bayesian method accounts for calibration uncertainty.

Fitting a spectral model under the fully Bayesian method poses significant computational challenges.

We illustrate how we deal with this problem by leveraging the pragmatic Bayesian fit to deliver parameter

values simulated under this fully Bayesian posterior distribution. This strategy allows us to simultaneously

fit the effective area curve and the spectral parameters. Thus, we are able to use information in large-count

observed spectra to narrow the uncertainty for the calibration product.

We focus on the application of the fully Bayesian methods to account for uncertainty in the effective

area curve in X-ray spectral analysis. The general techniques we employ, however, have broad applicability

in handling systematic errors. Obvious extensions include accounting for uncertainty in other calibration
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Fig. 12.— The standard, pragmatic Bayesian, and fully Bayesian fits of the temperature and absorption column in

the spectrum of RX J1856.5-3754. The plots are layered as in Figure 8. In this case, however, there is only a small

shift of the fitted values (posterior means given by the solid red lines). There is a noticeably less joint uncertainty in

the two parameters under the fully Bayesian fit than under the pragmatic fit. There is no noticeable sticking for the

any of the MCMC samplers; compare the second row with that of Figure 8.

products, such as photon redistribution matrices (RMF), exposure maps, and point spread functions. Because

all of these calibration products exhibit more complex structure than an effective area curve—they are

represented by matrices rather than vectors—more sophisticated methods will be needed to summarize their

calibration libraries into concise and useable forms.

Less obviously, our methods can be used to account for other sources of systematic errors. In our fit

of the radio-loud quasars in Section 4.1 and of the background-dominated isolated neutron star RXJ1856 in

Section 4.3, for example, we used highly-structured background models that were originally fit to the blank-

sky data provided by the Chandra X-ray Center or to the locally measured background from a spatially

offset region. Only the normalization of this background model was fit to the individual sources. Just like an

effective area curve, this background model is a vector that can only be specified with uncertainty. Ignoring
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Fig. 13.— Estimating the range of effective area curves that are consistent with the spectrum of RX J1856.5-3754.

The plots summarize pfB(A | Y ). The pointwise posterior distribution of A is plotted in blue, where the dark (light)

blue area corresponds to the central 68.3% (90%) region of pfB(A | Y ). The pointwise posterior mean of A and its

default value, A0 are plotted as solid blue and dotted black lines, respectively. The top panel displays the effective

areas and the bottom panel shows the same data with the default effective area, A0, subtracted off to highlight the

differences. (We cannot subtract off the true curve as in Figure 4 because it is unknown.) Here the fitted (posterior

mean) and default (dotted black curve) are very similar.

this uncertainly can lead to biases and systematic errors. Similarly, the comprehensive atomic line emissivity

database, AtomDB (Foster et al. 2012), is often used to specify a spectral models for X-ray data. While

this database has been compiled by carefully combining empirical observations with theoretical calculations,

its entries are not known exactly. Like a calibration product, its errors exhibit complex high-dimensional

correlations that cannot be summarized with simple error bars for each entry. A better strategy is to compile

an “AtomDB library” akin to a calibration library that can then be modeled to fully integrate uncertainty

in AtomDB into individual spectral analyses. In principle, we can image fitting models that simultaneously

account for uncertainly both in multiple calibration products and in multiple model components. In prac-

tice, this will involve significant modeling challenges such as accounting for correlations between calibration

products and/or model components. Sophisticated computation methods will also be required, and large

data sets needed to narrow uncertainty on multiple sources of systematic error. Although such work will
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involve substantial effort, it is likely to pay significant dividends in reducing bias stemming from calibration

and model misspecication, at least when large-count data sets are available.
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A. Statistical Computing

In this appendix we outline our computational strategy for fitting the fully Bayesian model. We begin in

Section A.1 with a brief review of how Bayesian models can be fit using MCMC. As we discuss in Section 2.3,

our fully Bayesian samplers are built upon a pragmatic Bayesian sampler. Thus, in Section A.2 we describe

how we can improve the efficiency of the computational method presented in Paper I for fitting the pragmatic

Bayesian model. Section A.3 describes the simple approximation to ppB(θ,A | Y ) that we use in our fully

Bayesian sampler. Additional details of our algorithms, samplers, and numerical methods can be found in

Xu (2014).

A.1. Fitting Bayesian Models Using MCMC

To compute fitted parameters and their error bars in a Bayesian analysis, we use quantities such as the

mean, variance and percentiles of the posterior distribution. Although in some simple cases, the posterior

distribution is a well-known distribution and these quantities can be derived analytically, numerical methods

are typically used in practice. One very popular numerical method is Monte Carlo which involves simulating

replicate values, {ψ(1), . . . , ψ(T )}, from the posterior distribution and using sample means, variances and

percentiles of the replicate values to compute fitted parameters and error bars.

The most common Monte Carlo methods involve MCMC. (Brooks et al. (2011) offers a general reference

for MCMC while van Dyk et al. (2001) and Park et al. (2008) reviews how it can be used in X-ray spectral
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analysis.) A Markov chain is constructed as an ordered sequence {ψ(t), t = 1, 2, ...}, each value of which only

depends on previous value in the chain. Specifically, suppose we were able to obtain a simulated value, ψ(0),

from the posterior distribution, and using it we could randomly generated another value:

ψ(1) ∼ K(ψ|ψ(0)), (A1)

so that ψ(1) is also a simulated value from the posterior distribution. In Equation A1, K is called the kernel

of the MCMC sampler; it describes a random distribution that depends only on the previous value ψ(t−1)

and that we use to simulate a next value ψ(t). Iterating Equation A1 in this way results in a chain of

values that is called a Markov chain, and that delivers a correlated sample from the posterior distribution.

In practice we must start the chain at a typically arbitrary value, ψ(0), and let it run until it converges to

the posterior distribution. Convergence can be checked by running multiple chains and waiting until they

appear to sample from the same distribution (e.g., van Dyk et al. 2001; Gelman and Shirley 2011).

Deriving kernels that are easy to use and result in MCMC samplers that are fast to converge is key in

practice. Two popular methods for deriving MCMC samplers are the Gibbs sampler (e.g., Casella and George

1992) and the Metropolis-Hastings (MH) algorithm (e.g., Hastings 1970). The Gibbs sampler proceeds

by sampling each of several components of ψ for their conditional posterior distributions given the other

components of ψ. Specifically, again letting ψ = (θ,A),

Two-Step Gibbs Sampler:

For t = 0, 1, 2, . . . , T ,

Step 1: Draw A(t+1) ∼ p(A | θ(t), Y ).

Step 2: Draw θ(t+1) ∼ p(θ | A(t+1), Y ).

The Partially Collapsed Gibbs (PCG) sampler reduces the conditioning in one or more steps of a Gibbs

Sampler while maintaining the validity of the resulting algorithm (van Dyk and Park 2008). For example,

if we draw A in Step 1 of the two-step Gibbs sampler without conditioning on θ, i.e., A(t+1) ∼ p(A | Y ) the

resulting sampler would be a PCG sampler. PCG samplers typically converge faster than their parent Gibbs

samplers.

The MH algorithm draws from a proposal distribution, g(ψ | ψ(t)), that is different from the posterior

distribution, but can be corrected using a rejection step. Specifically,

MH Algorithm:

For t = 0, 1, 2, . . . , T ,
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Step 1: Draw ψprop ∼ g(ψ | ψ(t)) and compute

ρ =
p(ψprop | Y )g(ψ(t) | ψprop)

p(ψ(t) | Y )g(ψprop | ψ(t))
.

Step 2: Let u be a uniformly distributed random number between zero and one and set

ψ(t+1) =

ψ
prop if u < ρ

ψ(t) otherwise
.

For a given ψ(t), the Gibbs sampler and the MH algorithm both provide a mechanism to randomly generate

ψ(t+1). We refer to this random mechanism as the kernel, denoted by K.

The Sherpa module, pyBLoCXS (Bayesian Low Count X-ray Spectral analysis in Python) is adopted

from the method of van Dyk et al. (2001) and uses MH algorithms for Bayesian spectral analysis in the

Sherpa environment. pyBLoCXS provides a convenient and efficient MCMC sampler for drawing the spectral

parameter, θ, from its posterior distribution given A, that is from p(θ | Y,A); see Siemiginowska et al. (2011)

and http://hea-www.harvard.edu/astrostat/pyblocxs/ for details of pyBLoCXS.

In this article, we use Gibbs-type samplers to draw θ and A from their joint posterior distribution. We

accomplish Step 2 of the Gibbs sampler using pyBLoCXS. That is, pyBLoCXS is incorporated as a component

of an overall algorithm that simulates from the full posterior distribution, p(θ,A|Y ). To clarify its roll in

the overall algorithm, we refer to the pyBLoCXS kernel as KpyB. Using an MH algorithm for one or more of

the component steps of a (partially collapsed) Gibbs sampler is a common hybrid strategy known as MH

within (partially collapsed) Gibbs sampling (e.g., van Dyk and Jiao 2014). Our algorithm for implementing

the fully Bayesian method builds on the algorithm for the pragmatic Bayesian method. For computational

efficiency, we have modified and improved the latter compared with that given in Paper I. Here, we first

review the algorithm from Paper I and then detail our improvements to it.

A.2. Fitting the Pragmatic Bayesian Model

Fitting the pragmatic Bayesian model involves simulating a sequence of effective area curves from p(A)

and running pyBLoCXS for each simulated curve. Specifically, in Section 4.2.2 of Paper I, we proposed

MH within PCG Sampler of Paper I

For t = 0, 1, 2, . . . , T ,

Step 1: Draw ej ∼ N (0, 1) for j = 1, . . . , J and set

e
(t+1)
pB = (e

(t+1)
1 , . . . , e

(t+1)
J ) and A

(t+1)
pB = A?0 + (Ā−A0) +

∑J
j=1 e

(t+1)
j rjvj .
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Step 2 (Inner Loop): For i = 1, · · · , I, simulate θ
(t+i/I)
pB ∼ KpyB(θ | θ(t+(i−1)/I);Y,A(t+1)).

The iteration of pyBLoCXS in Step 2 aims to eliminate the dependence of its final output, θ
(t+1)
pB , on its starting

value, θ
(t)
pB. Only θ

(t+1)
pB is retained; the intermediate draws from the inner loop, θ

(t+1/I)
pB , . . . , θ

(t+(I−1)/I)
pB are

discarded. (Notice that the superscripts on the discarded draws of θ are fractional; we only retain the draws

of θ with integer superscripts.) This is necessary because A
(t+1)
pB is simulated from its marginal distribution

in Step 1 and is independent of θ
(t)
pB. The simulated value θ

(t+1)
pB should be correlated with A

(t+1)
pB , insofar

as A is informative for θ and thus A and θ are correlated under ppB(θ,A | Y ). Likewise, because A
(t)
pB and

A
(t+1)
pB are independent, θ

(t)
pB and θ

(t+1)
pB should also be independent. The number of inner iterations, I, is

determined by examining the empirical autocorrelation function of KpyB for a given data analysis. Its value

should be set to ensure that θ
(t)
pB and θ

(t+1)
pB are approximately independent, see Paper I and van Dyk and

Jiao (2014) for discussion.

While this MH within PCG sampler effectively delivers fitted values and error bars that account for

calibration uncertainty under ppB(θ,A | Y ), it can be very slow in terms of its required computational time.

This is owing to the inner workings of pyBLoCXS which approximates p(θ | A, Y ) by fitting the spectral

model via maximum likelihood (i.e., using the Cash statistic) in Sherpa. This is of little consequence when

pyBLoCXS is used with fixed A, because the Sherpa fit only needs to be preformed once. In the context of the

MH within PCG Sampler, however, pyBLoCXS must be reinitiated with a new Sherpa fit at every iteration

because A
(t+1)
pB is updated at every iteration. Because each Sherpa fit requires about 6-8 seconds of CPU

time, a run of 3000 MCMC iterations requires 5-7 hours on Sherpa fits.

Below, we describe an alternate implementation of the MH within PCG Sampler that is dramatically

faster. In particular, it fully leverages each of the effective-area specific Sherpa fits by continuing to iterate

as in Step 2 after the dependence on θ
(t)
pB has worn off in order to obtain several simulated values of θ per

iteration. Specifically, we propose

Iterated MH within PCG Sampler

For t = 0, 1, . . . , T ,

Step 1: Draw e
(tM+1)
j ∼ N (0, 1) for j = 1, . . . , J and set

e
(tM+1)
pB = (e

(tM+1)
1 , . . . , e

(tM+1)
J ) and A

(tM+1)
pB = A?0 + (Ā−A0) +

∑J
j=1 e

(tM+1)
j rjvj .

Step 2 (Inner Loop): For i = 1, · · · , I, simulate θ
(Mt+i/I)
pB ∼ KpyB(θ | θ(t+(i−1)/I);Y,A(t+1)).

Step 3: For i = 2, · · · ,M , simulate θ
(Mt+i)
pB ∼ KpyB(θ | θ(Mt+i−1);Y,A(t+1)).

At iteration t, we only retain e
(tM+1)
pB , A

(tM+1)
pB , and θ

(tM+1)
pB , · · · , θ(Mt+M)

pB and discard the intermediate



– 39 –

draws of θ obtained internally within the inner loop of Step 2. That is, we retain draws of θ with integer

valued superscripts and discard those with fractional superscripts. Notice that this strategy results in M

times more simulated values of θ than of A. The advantage is that the extra T (M − 1) simulations of θ

require relatively little computational time. The disadvantage is that these simulated values are correlated

whereas the simulated values of the MH within PCG sampler of Paper I are essentially independent.

We illustrate this trade-off using the simulation study described in Section 2.2. The left and right

columns of Figure 14 show the performance of the MH within PCG Sampler of Paper I and our Iterated

Sampler (run with M = 10), respectively. The first row is a time-series plot of the first 300 consecutive

draws of Γ(t) obtained with the two samplers. The blocky nature of the draws obtained with the Iterated

Sampler is a result of its infrequent updating of A; each block is drawn with a common effective area curve.

The second row presents the same time-series plots, but as a function of CPU time (in second) rather than

iteration number. The relative speed of the Iterated Sampler is apparent. The final row shows scatterplots of

the simulated values of (N
(t)
H ,Γ(t)) obtained in about one hour. Again the advantage of the Iterated Sampler

is clear, despite the blocky nature of its simulated values.

Running the Iterated Sampler requires deciding on the values of both I and M , that is, the number of

initial simulated values of θ to discard (I−1) at each iteration and the number of additional extra simulated

values to keep (M). The initial iteration in Step 2 is designed to mitigate the dependence of the simulated

values on the input value of θ at each iteration, e.g., the dependence of θ(Mt+1) on θ(Mt). To measure this

effect, we can compute the correlation of θ(Mt) and θ(Mt+1),

α̂ ≈
∑T
t=1(θ(Mt) − θ̂pB)(θ(Mt+1) − θ̂pB)∑T

t=1(θ(Mt) − θ̂pB)2
, (A2)

where θ̂pB = 1
TM

∑TM
t=1 θ

(t)
pB. A statistical hypothesis test of the correlation being zero can be rejected if

T α̂2/(1 − α̂2) is greater than about two (for large T , e.g, > 100). If this threshold is met, the sampler

should be rerun with a larger value of I. Van Dyk and Jiao (2014) discuss other methods for choosing and

validating I in the general MH within PCG sampler. (The choice of I is less important when implementing

the fully Bayesian method, see Section A.3.)

An optimal value of M can be obtained by minimizing the Monte Carlo variance of the estimated

posterior expectation of θ. This quantity is approximated with θ̂pB and is a common choice for the fitted

value of θ. Xu (2014) shows how the Monte Carlo variance of θ̂pB depends on M and how it can be

approximately minimized on the fly within the Iterated Sampler. Xu (2014) also discusses various choices

of error bars for θ̂pB that may be less affected by the blocky nature of the chain generated by the Iterated

Sampler. We do not purse this topic here, however, because the Iterated Sampler is only an intermediate

step toward our goal of an algorithm for fitting the fully Bayesian model.
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Fig. 14.— The improved speed of the iterated MH within PCG sampler. Using the simulation study described in

Section 2.2, panels (a)-(b) plot Γ(t) as a function of iteration number using the sampler of Paper I and the iterated

MH within PCG sampler, respectively. Panels (c)-(d) plot the same, but as a function of CPU time rather than of

iteration. The relative speed of the iterated method is apparent. Panels (e)-(f) are scatterplots of (N
(t)
H ,Γ(t)) obtained

in a run of about one hour for each of the two samplers. The red lines in panels (a)-(d) and squares in panels (e)-(f)

indicate the true parameter values. Compare panels (e) and (f): the iterated sampler obtains far more draws per

unit time. Thus, despite the blocky nature of the chains in panels (b) and (d), the advantage of the iterated sampler

in terms of computational speed is clear.
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A.3. Approximating the Pragmatic Posterior Distribution

As discussed in Section 2.3, although ppB(θ,A | Y ) is ideally suited as an over-dispersed approximation

to pfB(θ,A | Y ), it cannot be used as the proposal distribution, g, in the Pragmatic Proposal Sampler for the

simple reason that we cannot directly evaluate ppB(θ,A | Y ). (We need to evaluate g in order to compute

ρ given by Equation 11.) The problem becomes evident if we write, recalling that θ and A are a priori

independent under the pragmatic Bayesian assumption,

ppB(θ,A | Y ) = p(θ | A, Y )π(A) =
L(Y | θ,A)π(θ)

p(Y | A)
π(A).

Evaluating the denominator, p(Y | A) =
∫
p(Y | θ,A)π(θ)dθ, would require a possibly high-dimensional

numerical integration at each iteration of the Pragmatic Proposal Sampler. To avoid this difficulty, we

propose a simple approximation to ppB(θ,A | Y ) that serves equally well as an over-dispersed approximation

of pfB(θ,A | Y ).

Although ppB(θ,A | Y ) is difficult to evaluate it has a relatively simple form. In particular, its marginal

distribution for A can be represented by a J × 1 vector, e, the components of which are independent N (0, 1)

variables. (Recall that under the pragmatic Bayesian model, A is simulated according to its prior distribution,

see Equation 5). Thus, we only need to approximate ppB(θ | A, Y ). To do this we run the Iterated Sampler

described in Section A.2 to obtain {e(tM+1)
pB , θ

(tM+1)
pB , . . . , θ

(tM+M)
pB , for t = 0, . . . , T} and regress the M

replicates of θ, (i.e., θ
(tM+1)
pB , . . . , θ

(tM+M)
pB ) on each e

(tM+1)
pB using multivariate Gaussian regression (details

are given in Xu 2014). This results in a multivariate normal approximation to ppB(θ | A, Y ) that we combine

with a multivariate standard normal distribution for e to form the g(θ, e) used in the Pragmatic Proposal

Sampler. In particular, this choice of g serves as the needed over-dispersed approximation to pfB(θ,A | Y ).

In this context we run the Iterated MH within PCG Sampler only to obtain the approximation, g. Because

g does not need to exactly match ppB(θ,A | Y ), the choice of I in this sampler is less critical. The choice

of M , on the other hand, controls how quickly the sampler runs, and thus remains important for efficient

computation.
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