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ABSTRACT

Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds
of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of
magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss
rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive
simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate
of stars with thermally driven winds. Despite the success of our scaling law in matching the results of the model,
we find a deviation between the “solar dipole” case and a real case based on solar observations that overestimates
the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a
further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic
field strength, with the wind density varying in proportion to the confining magnetic pressure B2. We also find
that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than
scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular
momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular
velocity with time, Ω� ∝ t−1/2, if the large-scale poloidal magnetic field scales with rotation rate as Bp ∝ Ω2

�.
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1. INTRODUCTION

Current understanding of the winds of low-mass stars with
outer convection zones is uncertain due to the fact that these
winds cannot be directly observed, except in the case of our own
Sun. Consequently, the mass and angular momentum lost to the
wind, which are the main ingredients for understanding the spin-
down of stars at from the pre-main sequence onward through
main-sequence evolution (Parker 1958; Schatzmann 1962;
Weber & Davis 1967; Mestel 1968), remains poorly defined.
Several techniques have been used to indirectly determine stel-
lar mass loss rates of different stellar types. These methods
include chemical separation and Hα profiles (e.g., Michaud &
Charland 1986; Lanz & Catala 1992; Bertin et al. 1995), ra-
dio observations (e.g., Abbott et al. 1980; Cohen et al. 1982;
Hollis et al. 1985; Lim & White 1996; Gaidos et al. 2000),
observations of X-ray emission due to charge exchange (e.g.,
Wargelin & Drake 2001), gravitational settling of metals from
wind accreting white dwarfs in binaries (Debes 2006), and Lyα
absorption at the edge of the astrosphere (e.g., Wood et al. 2002,
2005; Wood 2006). In all methods listed above, several uncer-
tain assumptions have been made on the parameters needed to
obtain the mass loss rate. For example, the latter method from
which results have been generally adopted in recent years as-
sumes the local pressure, density, and velocity parameters of the
interstellar medium, which are still quite uncertain (Lallement
et al. 2003; Koutroumpa et al. 2009).

It has been known for a long time that there is a relation
between the rotation of the star, its age, and its level of magnetic
activity (see, e.g., Pallavicini et al. 1981; Pizzolato et al. 2003;
Güdel 2007; Wright et al. 2011). Despite this, and neglecting
the recent possibility that this relation can be disrupted by the
existence of a close-in planet (as supported by both empirical
data and modeling work by, e.g., Kashyap et al. 2008; Pont 2009;
Lanza 2010; Cohen et al. 2010c), there is still no generally
accepted relation between these parameters and the stellar

mass loss rate. Cohen (2011) argued that the level of stellar
activity (i.e., the X-ray and UV luminosity) cannot be used as a
proxy for the mass loss rate since it represents the magnetic
component of the closed coronal loops. On the Sun, this
component changes by an order of magnitude from low to high
solar activity, while the mass loss carried by the solar wind is
tied to the magnetic component which is opened up to space by
the wind, and it is rather constant through the solar cycle (Cohen
2011; Le Chat et al. 2012).

With the extensive observational uncertainties in determin-
ing mass loss rates of low-mass stars, a modeling approach can
be taken. Considerable progress has been achieved in recent
years in the development of both analytical and magnetohydro-
dynamic (MHD) models. In particular, numerical MHD models
can capture the interaction between the coronal magnetic field
and the coronal and wind plasma. The advantage of such an ap-
proach is our ability to control the parameters of the numerical
experiment and relate each solution to the particular choice of
parameter set.

Cohen et al. (2009, hereafter CO09) calculated the effect of
latitudinal variation of magnetic spots on the stellar mass loss
rate and spin-down rate using a three-dimensional (3D) MHD
model. They found that these parameters are highly affected by
the distribution of the stellar magnetic field. Cranmer & Saar
(2011) have calculated mass loss rates of cool stars by includ-
ing a magnetic filling factor in their model (the percentage of
starspots covering the stellar disk). They found a good agree-
ment with observations of large number of systems (under the
observational uncertainties mentioned above). Alternatively, in
a series of papers, (Matt et al. 2012 with references therein) per-
formed a series of calculations of stellar mass loss rates using a
two-dimensional, axisymmetric MHD model, which is driven by
a spherically symmetric, thermally driven wind (Parker 1958),
and using different low-order magnetic topologies. A number of
calculations of stellar mass loss rates of particular systems were
recently performed using available Zeeman–Doppler–Imagine
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(ZDI) maps of the stellar surface magnetic field. The ZDI maps
were used to drive the MHD coronal models and to constrain
their boundary conditions. Examples of these calculations are
Cohen et al. (2010a, AB Doradus), Vidotto et al. (2011, V374
Peg), and Vidotto et al. (2012, τ Boo).

Matt et al. (2012) have recently performed a series of 50
steady-state simulations of stellar coronae in order to estimate
angular momentum loss rate as a function of stellar magnetic
field strength and rotation rate. Their goal was to derive a semi-
analytic formulation for the external torque on the star that
includes the magnetic, rotational, and gravitational forces, and
their role in controlling the spin-down of stars.

In this paper, we present a grid of 3D MHD simulations in
order to calculate stellar mass loss rates and angular momentum
loss rates as a function of stellar dipole magnetic field strength,
stellar rotation period, and coronal base density in a similar
manner to Matt et al. (2012). However, as we stress in the next
section, our approach is very different, and provides a solution
for the stellar corona and stellar wind that is firmly grounded
in, and calibrated against, observations of the solar wind and
magnetic field topology.

In Section 2, we describe the numerical model we use and
our approach to calculate the stellar parameters. The results are
presented in Section 3. In Section 4, we discuss the dependence
of the stellar loss rates on the different parameters. We also
formulate an empirical relation between the stellar loss rates
and the parameters we use in the model, and discuss whether a
dipole is a good proxy for the stellar magnetic field in the context
of stellar mass loss rates. Finally, we state our conclusions in
Section 5.

2. STELLAR WIND MODELS

2.1. MHD Model for the Stellar Wind

In order to produce a grid of solutions for the coronal and
wind structure of solar analogs, we follow the approach by
CO09 to calculate the mass loss rate and the angular momentum
loss rate. We use the BATS-R-US MHD code (Powell et al.
1999) in its version developed for the solar corona (Cohen
et al. 2007), which solves the set of MHD equations for the
conservation of mass, momentum, magnetic induction, and
energy. The model is driven by boundary conditions for the
radial surface magnetic field, where the initial condition for
the 3D field in the whole domain is potential (Altschuler &
Newkirk 1969). The acceleration of the stellar wind is done
via a source term in the energy equation that is scaled semi-
empirically with the topology of the initial potential field and the
magnetic flux-tube expansion factor according to the relations
found for the solar wind by Wang & Sheeley (1990) and Arge
& Pizzo (2000) as implemented by Cohen et al. (2007). The
code then solves the MHD equations with this source term until
the solution is relaxed to a steady state, which resembles the
observed solar wind structure (when using solar observations
to drive the model). A detailed description of the model and
the equations it solves can be found in Cohen et al. (2009) and
Cohen et al. (2010a).

The unique feature that makes this model more “realistic” is
the semi-empirical relation between the magnetic topology and
the wind speed, as well as the base density. The latter is imposed
to resemble the observed density difference between the slow
and fast wind, and turns out to be crucial in determining the
mass loss rate of each solution. In Section 4, we discuss how
this density difference in a bi-modal stellar wind is the reason for

the discrepancy between a solution for a “dipole solar case” and
a solution based on actual solar minimum (nearly a dipole) data.
In other models with an assumed spherical wind (and density)
distribution imposed on a certain magnetic field topology,
the MHD solution relaxes to a steady state only due to pressure
balance between the wind pressure and the magnetic pressure.
However, the stellar wind is assumed to simply “be there,”
and no mechanism to drive the wind appears in the equations
themselves. In our model, a steady state is obtained due not only
to the same pressure balance, but also to a volumetric energy
source which is dictated by the magnetic field topology. This
way, we obtain a realistic, bi-modal steady-state solution for
the wind, with faster wind originating from coronal holes and
slower wind coming from the boundaries of the helmet streamers
as observed in the solar wind (see, e.g., McComas 2007).

2.2. A Grid of Models for Solar Analogs

As noted, the advantage of our model is that it successfully
reproduces the solar wind in a realistic manner. By assuming
that stellar winds of solar analogs are driven by the same
process as the solar wind, we use the model to calculate
different steady-state solutions for a grid of models, where we
employ three free parameters: (1) the stellar dipole field strength,
(2) the stellar rotation period, and (3) the value of the coronal
base density (i.e., the inner boundary condition for the density in
the simulation domain). For the stellar magnetic field strength,
B�, we use dipole polar values of 5, 10, 50, 100, and 500 G; for
the stellar rotation period, Ω�, we use values of 0.5, 2, 5, 10,
and 25 days; and for the coronal base density, n�, we use values
of 2e8, 5e8, 1e9, 5e9, 1e10, and 5e10 cm−3.

We point out that the values we use for the base density are
significantly lower than the value used in Matt & Pudritz (2008),
that formed the basis of the calculations in Matt et al. (2012), and
in Vidotto et al. (2011), which were in the range 1e9–1e13 cm−3.
While these high values were obtained from the literature and
very active stars do have traces of plasma at such high densities
(e.g., Ness et al. 2004; Testa et al. 2004) these measurements
are for plasma in closed coronal loops, where the density is
higher. Testa et al. (2004) also notes that the filling factor—the
surface area covered by such high density plasma—is only
of the order of a percent or so. The ambient coronal density,
which is the actual source for the wind that leaves the star along
open field lines, is much lower, unless the lower boundary of
the numerical model is set at the chromosphere, which is not
the case in any of the models discussed here. To support this
argument, we show that we obtain the solar mass loss rate,
Ṁ� = 2–4 × 10−14 M� yr−1, for typical solar parameters and
a base density value at the lower end of our density range,
whereas solar active regions that dominate the X-ray emission
tend to have plasma densities in the range 1e9–1e10 cm−3 (e.g.,
Doschek 1997; Del Zanna & Mason 2003; Young et al. 2009).

For each BATS-R-US model solution, we calculate the non-
spherical and arbitrary Alfvén surface at which the flow speed,
u, equals the Alfvén speed,

uA = B/
√

4πρ, (1)

where B is the magnetic field strength and ρ = nmp is the mass
density (n is the number density and mp is the proton mass).
Beyond this surface, the wind velocity exceeds the Alfvén speed,
and the wind is no longer in contact with the star via magnetic
fields. The Alfvén surface then represents the surface at which
the wind effectively escapes and exerts no more torque on the
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star. We then integrate the mass flux, ρu, over all the Alfvén
surface elements, dai . This procedure allows us to obtain the
total mass loss rate, Ṁ:

Ṁ = ∂M

∂t
=

∫
∇ · (ρu)dV =

∫
ρu ·da =

∑
i

ρiui ·dai . (2)

In a similar manner, we integrate the differential version of the
formula for the angular momentum loss rate (Equation (35) in
Weber & Davis 1967) to obtain the total angular momentum
loss rate, J̇ :

J̇ = 2

3
Ω�Ṁr2

A = 2

3

∑
i

Ω� sin2 θi r2
i ρiui · dai . (3)

Here, ri is the Alfvén radius for a particular magnetic field line,
or the distance as measured from the center of the star to a given
point on the Alfvén surface. The sin θi term is due to the fact
that the torque applied on the star depends on the angle between
the lever arm and the rotation axis.

Note that in Equations (3) and (4), ri is not constant but is the
differential distance at each point of integration over the Alfvén
surface. The fact that we integrate the differential ris allows us
to remove any assumption of geometrical symmetries and to
perform calculations for any complex topology.

3. RESULTS

3.1. The Shape and Size of the Alfvén Surface

Equations (2) and (3) tell us that the mass and angular
momentum loss rates depend on the interplay between the actual
mass flux through the Alfvén surface (dictated by the density;
CO09) and the size of the surface. The size of the surface
determines both the total area of integration, as well as the
size of the lever arm that applies a torque on a star to spin it
down. This is why determining the stellar angular momentum
loss rate for a complex field topology is not trivial (CO09).

Figure 1 shows the Alfvén surface and a meridional slice of
the simulation domain for selected test cases. The color contours
represent the local distribution of the mass loss rate. It can
be seen that the size of the Alfvén surface increases with an
increase of the magnetic field and decreases with the increase of
the base density—this is a direct consequence of the dependence
of the Alfvén speed on these quantities (Equation (1)) and the
distance from the star at which the Alfvén speed is exceeded
by the wind. It can also be seen that the overall mass loss
rate increases with increasing base density. This is partly
a consequence of mass continuity in that the base density
essentially defines the lower wind boundary condition. The
effect of the rotation period on the Alfvén surface is mostly
geometrical. When moving from slow to fast rotation, the Alfvén
surface becomes stretched toward the poles, so that the total
surface area increases.

We note that some of the Alfvén surfaces in Figure 1 are not
fully rotationally symmetric. This is due to artifacts originating
from the use of a Cartesian grid of finite resolution for models
with rotational symmetry. We have performed a number of test
runs for representative cases with much higher resolution that
resulted in rotationally symmetric shapes of the Alfvén surfaces.
However, comparisons of mass and angular momentum loss
rates from these high-resolution solutions with those of the lower
resolution calculations have shown differences of not more than
5%. Due to the large number of simulations required for the

Table 1
Test Cases Shown in Figure 3

Case n� B� P�

(cm−3) (G) (days)

A 2e8 5 0.5
B 2e8 5 25
C 2e8 500 0.5
D 2e8 500 25
E 5e10 5 0.5
F 5e10 5 25
G 5e10 500 0.5
H 5e10 500 25

study and the currently very high computational cost of higher
resolution calculations, we have retained the lower resolution
approach and consequently some of the results presented here
may display residual asymmetric artifacts.

Figure 2 summarizes the results of our grid of models. Each
pair of plots shows the mass loss rate and the angular momentum
loss rate as a function of magnetic field strength for a given base
density value. Each curve on the plots represents a particular
stellar rotation period. A small number of test cases for very high
density and low magnetic field values are considered unphysical
because the equatorial rotation velocity on the stellar surface
is already greater than the Alfvén speed (parts of the Alfvén
surface are inside the star). These cases are marked with a red
spot in the plots of Figure 2.

3.2. The Effect of Each Parameter on the
Stellar Mass loss Rate

The most notable trend is the rather linear (in log space, i.e.,
power law) dependence of the mass and angular momentum
loss rates on the dipole field strength. The slope of this trend
decreases as we increase the base density, and the difference
between the mass loss rate for the weakest and strongest field
strength changes from about two orders of magnitude for a
base density of 2e8 cm−3 to about one order of magnitude for
base density of 5e10 cm−3. A linear dependence of the angular
momentum and mass loss rates on the base density explicitly
appears in Equations (2) and (3).

To illustrate the effect of each parameter, Figure 3 shows
the Alfvén surface, the local mass loss rate distribution, and
selected magnetic field lines for the most extreme cases (lowest
and highest values for each of the parameters). The parameters of
these cases are summarized in Table 1. While we consider case
E unphysical, we still find the display of the solution valuable
for understanding the general trends of the solutions.

First, it can be seen that for slow stellar rotation, the coronal
magnetic field lines are stretched and opened up radially by the
stellar wind. As we move to very fast rotation, with periods
of about 2 days or shorter, the coronal field is wrapped in the
azimuthal direction as the azimuthal component of the wind
velocity increases with respect to the radial component. For
low base density, this tangling does not affect the mass loss
rate much. However, for a strong magnetic field and high base
density, the tangling leads to an increase in the coronal density
due to the capture of dense plasma in large tangled coronal loops
(case G is about an order of magnitude higher than case F near
the equator). Second, the increase in magnetic field strength
modifies the distribution of the stellar wind speed and, as a
result, it also modifies the distribution of the coronal density.
The combination of these dictates the mass loss rate. Figure 4
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Figure 1. Meridional cuts and the Alfvén surface in the simulation domains for selected cases (the particular parameters are shown at the top of each panel). Color
contours are of the local value of the mass loss rate.

(A color version of this figure is available in the online journal.)

shows meridional slices of cases B and D colored with the
contours of the stellar wind radial speed and number density,
along with selected magnetic field lines. It can be seen that for a
low magnetic field strength of 5 G, a fast, less dense stellar wind
occupies the majority of the domain except for a narrow region
near the equator. The low coronal density is due to the fact that
most field lines are open so the stellar wind plasma can escape.
In contrast, when the stellar field is strong, a large amount of the
magnetic flux remains closed, and only weak and slow wind is
developed at lower latitudes. Even at higher latitude, the wind
does not exceed a speed of about 500 km s−1, which is still
considered “slow” and dense in terms of the fast solar wind. For
stronger fields, then, the expansion of the magnetic flux tubes
that carry the mass flux from the surface into space is greater
than for the cases with weaker fields, and the overall wind speed
is dominated by the slow, more dense plasma (Wang & Sheeley
1990; Arge & Pizzo 2000). As a result, the overall mass loss
rate is greater as B increases.

4. DISCUSSION

The trends discussed in Section 3.2 are directly due to the
empirical wind speed–flux tube expansion relation implemented
in our model (Wang & Sheeley 1990; Arge & Pizzo 2000; Cohen
et al. 2007), which determines the response of the stellar wind
acceleration to the stellar magnetic field. This leads to a non-
uniform coronal density based on the stellar wind distribution,
and this distribution dictates the mass loss rate to the wind. As
a result, the shape and size of the Alfvén surface (which dictate
the angular momentum loss rate) are complicated. Even for the
simple dipolar case investigated here, the size of the Alfvén
surface varies strongly with latitude and cannot be used as a
single parameter to determine the angular momentum loss rate.

Our results are consistent with Matt et al. (2012) in that the
Alfvén surface size increases with increasing magnetic field
strength and decreases with increasing base density (see the
integrated mass loss rate in Matt et al. 2012), since by definition,
the Alfvén surface (or the Alfvén speed) depends on the ratio

between the magnetic field and the density. In the case of faster
rotation, we find that the size of the Alfvén surface does not
change much in the equatorial regions, but the surface gets
stretched outward and is enlarged in the polar regions. This
behavior is also seen in Figures 1 and 2 of Matt & Pudritz
(2008), and it is due to the azimuthal stretching of the field,
leading the field strength to drop off with radial distance more
slowly than for the case of a purely radial field. As a result, the
field is stronger at a given radial distance and the Alfvén radius
is pushed outward as noted by Cohen et al. (2010a, 2010b).

4.1. Scaling Laws for Mass Loss Rate and
Angular Momentum Loss Rate

In order to quantify our results, we obtain a scaling law for
the stellar mass loss rate, Ṁ�, and the stellar angular momentum
loss rate, J̇�, as a function of the stellar base density, stellar
dipole field, and stellar rotation period. These scaling laws are
as follows:

Ṁ�

Ṁ�
= K

(
n�

n�

)α (
B�

B�

)(
n�
n�

)β (
P�
P

)(
1− n�

n

)γ

(4)

J̇�

J̇�
=

(
P�
P�

) (
Ṁ�

Ṁ�

)
. (5)

We use Ṁ� = 3 × 10−14 M� yr−1 and J̇� = 2 ×
1029 g cm2 s−2, which are the average solar mass loss rate
and angular momentum loss rate between solar minimum and
solar maximum periods, n� = 2 × 108 cm−3, B� = 10 G, and
P� = 27 days. For lower values of the base density and for the
solar case, the above scaling laws are reduced to

Ṁ�

Ṁ�
= K

(
B�

B�

)
(6)

J̇�

J̇�
=

(
P�
P�

)
K

(
B�

B�

)
. (7)
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Figure 2. Mass loss rate and angular momentum loss rate as a function of the stellar dipole field strength. Each pair of plots from top to bottom are for a particular
value of base density. Each curve in the plots is for a particular rotation period. The red dots mark unphysical cases with the Alfvén surface located inside the star.
Dashed lines show the scaling laws from Equations (4) and (5) for rotation periods of 25 days (bottom) and 0.5 days (top) with K = 3, α = 0.8, β = 0.2, and γ = 0.1.
Similarly, the dotted lines show the same for K = 2, α = 0.8, β = 0.1, and γ = 0.1.

(A color version of this figure is available in the online journal.)

As stated in Section 2.2, based on our simulations of the Sun,
we believe that the coronal base density should be at the lower
end of the density range investigated here. Unlike the study of
Matt et al. (2012), since we have only investigated solar mass
stars, our scaling law does not depend on surface gravity nor the
solar mass.

The scaling laws for rotation periods of 0.5 and 25 days are
displayed in the plots of Figure 2 as dashed and dotted lines,

respectively. The set of parameters that provides the best fit for
all curves, simultaneously, is K = 3, α = 0.8, β = 0.2, and
γ = 0.1. We also show a secondary best fit with K = 2, α = 0.8,
β = 0.1, and γ = 0.1. In general, these equations describe
the dependence of the stellar loss rates on the magnetic field
strength, with a slope that is reduced with increasing density, and
with the modification caused by rotation. The deviations from
these lines are not more than a factor of two for most points,

5



The Astrophysical Journal, 783:55 (11pp), 2014 March 1 Cohen & Drake

A B

C D

E F

G H

Figure 3. Meridional and equatorial cuts, as well as the Alfvén surface colored with the local mass loss rate for cases A–H from Table 1. Selected magnetic field lines
are also shown as white lines.

(A color version of this figure is available in the online journal.)
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Figure 4. Meridional cuts and the Alfvén surface for cases B (left) and D (right) colored with radial speed (top) and number density (bottom). Also shown selected
magnetic field lines (black).

(A color version of this figure is available in the online journal.)

except for the cases with very high (and probably unrealistic)
base density, or for the cases of very weak magnetic field, for
which the Alfvén surface gets very close to the stellar surface.

In Figure 5, we directly compare our scaling law with the
scaling law in Equation (9) from Matt et al. (2012). We also
compare the two scaling laws for the magnetic field depending
on rotation as B ∝ P −1 or B ∝ P −2. For each rotation period,
we obtain the corresponding value of the magnetic field, and then
obtain the torque from Equation (7) (assuming a base density of
n�). We also use the corresponding magnetic field to estimate
Ṁ from Equation (6), and use these values of B(P ) and ˙M(B)
to estimate the torque via Equation (9) from Matt et al. (2012).
We use the same values described in Matt et al. (2012) for K1,
K2, and m, along with the solar rotation, Ω� = 2.7 × 10−6,
the solar radius, R� = R�, and Ve = 600 km s−1. Overall,
the trends of the torques using the two scaling laws are quite
similar. However, the overall torque in Matt et al. (2012) is about

12 times higher for a field strength of 10 G and 10 times higher
for a field strength of 5 G. Looking at the equation for the torque
as a function of the average Alfvén radius:

τw = ṀΩ�r
2
A, (8)

and adopting a solar mass loss rate of 2 × 10−14 M� yr−1

(1.8 × 1012 g s−1), and Ω� = 2.7 × 10−6 s−1, our predicted
torque is obtained for rA = 2–10 R�, while the torque predicted
by Matt et al. (2012) is obtained for rA = 15 R�, despite the
fact that Table 1 in that paper predicts rA to be between 8 and
10 R� for the solar parameters of f = 0.004 and ϒ = 102–103.
It is possible that the different in the torque between our scaling
and that in Matt et al. (2012) is simply based on a different value
assumed for the solar case.

We note that the angular momentum loss rate, J̇� is
well represented by a simple scaling of the mass loss rate
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Figure 5. Stellar torque as a function of rotation period based on Equation (7) (black) for B ∝ Ω (solid) and B ∝ Ω2 (dashed), and based on Equation (9) in Matt
et al. (2012) (red) with similar scaling for B(Ω). The mass loss rate term, Ṁ , in the scaling of Matt et al. (2012) is obtained using Equation (6) above.

(A color version of this figure is available in the online journal.)

proportionally to the rotation rate. This differs from the simple
analytical relation developed for spherically symmetric mass
loss that also includes a term involving the Alfvén radius, rA,
to some power depending on the field geometry (e.g., Weber
& Davis 1967; Mestel 1984; Kawaler 1988; Wood et al. 2004;
Reiners & Mohanty 2012). As we emphasized earlier, for our
3D models rA is a more complex 3D entity, and more properly
the average radius of a local wind density-weighted surface
as defined in Equation (3). Nevertheless, what we find is that
this Alfvén “radius” term is essentially constant in our angu-
lar momentum loss results, at least to the precision to which
Equation (5) represents them. This might be somewhat surpris-
ing given the large range in magnetic field strength investigated,
but it has an interesting implication. The magnetic field at the
Alfvén radius, BrA

can be expressed in terms of the surface
magnetic field, B0, as

BrA
= B0

(
R

rA

)b

, (9)

where the index b depends on the magnetic field configuration.
Combining this with Equation (1), we can write

uA = B0√
4πρA

(
R

rA

)b

, (10)

where R is the stellar radius and ρA is the wind density at the
Alfvén radius. Since in our models rA is invariant, we find

ρAu2
A ∝ B2

0 , (11)

that is, the kinetic energy density of the escaping wind respon-
sible for the angular momentum loss is proportional to the mag-
netic field energy density. We also find that the wind speed does
not vary strongly between models, with a maximum of about
800 km s−1, similar to the solar wind speed and the escape ve-
locity. The bulk of the kinetic energy variations between models
are instead due to wind density variations, and so for the equato-
rial regions that dominate the angular momentum loss, we can

write, very approximately, ρA ∝ B2
0 . This simple dependence

arises because, in order to escape through the magnetic field,
the wind pressure must first overcome the magnetic pressure,
and in this way the field pressure near the equator, B2/8π , acts
as a density regulator.

4.2. Does a Dipole Approximation Make a Good Proxy
for the Stellar Magnetic Field?

CO09 have shown how active regions on the stellar surface
can modify the mass loss and angular momentum loss rates.
We should therefore ask ourselves if a dipole approximation
is a good proxy for the stellar field. In order to answer this
question, we perform a similar calculation of the mass loss and
angular momentum loss rates but this time, we use actual solar
magnetograms to drive the model. These Michelson Doppler
Imager magnetograms1 were obtained during a solar minimum
period (Carrington Rotation 1922, 1997 May) where the solar
magnetic field was nearly dipolar, and solar maximum period
(Carrington Rotation 1962, 2000 April). Figure 6 shows a
meridional cut colored with contours of local mass loss rate
distribution for the solar minimum and solar maximum cases,
as well as a case with a dipole field of 10 G. The polar field for
the solar minimum case is roughly 8.5 G which is not far from
that of the dipole case. The rotation period for all three runs is
P = 25 days and the base density is n0 = 2e8 cm−3.

It can be clearly seen that the solar minimum and dipole cases
are similar in orientation, but the Alfvén surface of the dipole
case is much smaller than the one of the real Sun. The reason
for this deviation is, again, the dependence of the wind structure
on the flux-tube expansion. The expansion in reality in the polar
regions seems to be much higher than in the dipole case. As
a result, coronal polar regions in the dipole case are occupied
by slow, more dense wind than the fast, less dense wind in the
real case. It is also possible that for the real case, non-dipole
components of the field contribute to the strength of the coronal
magnetic field, leading to an increase in the size of the Alfvén
surface.

1 http://sun.stanford.edu/synop/
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Figure 6. Meridional cuts showing the Alfvén surface (white solid line), selected magnetic field lines (black lines), and color contours of the local mass loss rate for
solar minimum (left), solar maximum (middle), and a 10 G dipole (right) cases.

(A color version of this figure is available in the online journal.)

Overall, the dipole case seems to overestimate the solar
minimum mass loss rate, as well as the angular momentum
loss rate by a factor of about three.

4.3. Comparison with Other Studies

It is well established, on both theoretical and observational
grounds, that the magnetic activity level of a star of a given mass
is primarily dependent on the rotation period. We can derive the
expected mass and angular momentum losses as a function of
the rotation period if we can assume, or make reasonable guesses
for, the values of the other two free parameters in our models, the
magnetic field strength and base density. As noted in Section 2.2,
the relevant magnetic field for driving the wind is the large-scale
dipolar field, rather than the smaller scale and much stronger
magnetic field associated with active regions and sunspots (see
also Cohen 2011). From the perspective of understanding stellar
winds, this is unfortunate because this dipolar, or poloidal, field
is essentially never observed in late-type stars. Instead, stellar
measurements of magnetic fields tend to be dominated by the
closed field regions more analogous to solar active regions,
where the magnetic fields are up to two orders of magnitude
stronger (see also the discussion of Cranmer & Saar 2011).
While previous studies have utilized these measurements of
surface magnetic flux to infer wind properties and relations
(e.g., Ivanova & Taam 2003; Schrijver et al. 2003; Holzwarth &
Jardine 2007; Cranmer & Saar 2011), our model is somewhat
different in that is it explicitly based on the dipolar field
component that is expected to accompany, but be distinct from,
the smaller-scale active regions. We therefore do not follow the
same approach.

Lacking direct measurements, we identify the large-scale
stellar dipole fields we have adopted here for our wind model
driving with the poloidal field of an αΩ-type dynamo. (e.g.,
Durney & Robinson 1982) used elementary α−Ω dynamo
theory to show that the poloidal magnetic field strength for
an unsaturated dynamo should vary approximately linearly
with the stellar angular velocity, Bp ∝ Ω. Although the true
situation could be considerably more complicated, this relation
offers a starting point. If we assume a linear Ω dependence
of the dipole field strength, adopt a value of 10 G for a solar
rotation period of 27 days, and fix the coronal base density
at a value of 2 × 108 cm−3, we can interpolate among our
model solutions and use Equation (4) to derive the mass loss
rate as a function of rotation period. This curve is illustrated in

Figure 7, overplotted with our grid model results for the selected
solar parameters. Also illustrated is a curve assuming a rotation
dependence of Bp ∝ Ω2 and the corresponding points from our
model, together with the mass loss rate predicted for a solar
mass star in the model of Cranmer & Saar (2011). The one
remaining free parameter is the base density. Ivanova & Taam
(2003) and Holzwarth & Jardine (2007) assessed evidence from
X-ray luminosity versus rotation to relate the base plasma
density to rotation rate adopting n� ∝ Ω0.6

� . While, again, the
X-ray emission underlying this assessment is dominated by
closed field measurements, some increase in base density with
activity level is probably not unreasonable. For the sake of
comparison, we also illustrate in Figure 7 a curve corresponding
to a case of base density increasing linearly with rotation rate,
n� ∝ Ω�.

We obtain mass loss rates quite similar to those predicted by
Cranmer & Saar (2011) for a fixed base density and a field
strength proportional to the square of the rotation velocity.
Perhaps the most interesting region of Figure 7 from this
perspective is for longer rotation periods than the Sun. Our
model including a rotation-dependent density term, together
with a linear dependence of magnetic field strength on rotation
velocity, levels off toward a much higher asymptotic mass loss
rate than the Cranmer & Saar (2011) model which continues to
decline. This behavior arises in the density dependent terms in
Equation (4). There are unfortunately no observations of mass
loss rates for inactive stars with significantly longer rotation
periods than the Sun with which to determine whether mass
loss continues to decline strongly from the solar rate toward
longer rotation periods, or declines much more slowly or
levels off.

While our scaling law for the mass loss rate covers a range
which is similar to that in Wood et al. (e.g., 2005), our mass
loss rate drops much more quickly with rotation rate. The mass
loss rate is still close to 100 times higher than solar for 1 Gyr
(10–12 days period) in Wood et al. (2005) while it is less than
10 times the solar value in our results. This is quite significant in
the context of the mass loss rate of the young Sun during the early
evolution of the Earth and the faint young Sun paradox (see, e.g.,
Sagan & Mullen 1972; Kasting 1993). This difference between
our results and the mass loss rate derived from scaling the
stellar activity level strengthens the argument made by Cohen
(2011) that only a weak dependence of the stellar mass loss
on the observed stellar activity level is expected based on solar
observations.
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Figure 7. Mass loss rate as a function of rotation period for n = n�. Model mass loss rates as a function of rotation period scaled as Bp ∝ Ω (red) and Bp ∝ Ω2

(blue) are marked in triangles, along with the corresponding mass loss rate from Equation (4). The dashed green line represents Bp ∝ Ω and n ∝ Ω scaling, and the
dashed black line shows Ṁ as a function of rotation period from Cranmer & Saar (2011).

(A color version of this figure is available in the online journal.)

Once a relation between the magnetic field strength and the
rotation period is known, the angular momentum loss relation
in Equation (5) can also be used to examine the expected spin-
down relation of main-sequence solar-like stars. Writing the
stellar angular momentum as J = kMR2

�Ω�, where k is a
constant depending on the density profile of the stellar interior,
and assuming constant mass and radius, we can write J̇ ∝ Ω̇�.
Since J̇ ∝ BpΩ�, and assuming Bp ∝ Ωa

� , we have

dΩ�

dt
= −Ω(a+1), (12)

implying Ω� ∝ t−1/a . We therefore retrieve the Skumanich
(1972) spin-down relation for solar-type stars, Ω� ∝ t−1/2, for
Bp ∝ Ω2

�.

5. CONCLUSIONS

We have presented a grid of MHD calculations for stellar
mass loss rates and angular momentum loss rates as a function
of the stellar dipole field strength, stellar rotation period, and
the coronal base density. We find that the loss rates have a
simple power-law dependence on the magnetic field strength,
in which the slope decreases with an increase of the base
density. The magnetic field strength regulates the wind density
and consequently the mass loss rate in the sense that the wind
density corresponds to the pressure required to overcome the
confining magnetic field. The resulting wind density has an
approximate B2 dependence. The rotation period itself does
not affect the loss rates for rotation periods of more than
2 days, this period corresponding to the building up of a
significant azimuthal component of the magnetic field close to
the star.

We derive simple scaling laws for the loss rates as a func-
tion of the parameters investigated here. These scaling laws
generally fit the model results to within a factor of two.
Based on the fact that a good agreement between the model

and observations for the solar case is obtained when us-
ing a lower base density, where it does not effect the scal-
ing, and assuming some relation between the rotation period
and the dipole magnetic field, the scaling laws for the stel-
lar loss rates are dominated by this rotation–magnetic field
relation.

Despite the success of our simple scaling law in matching
the results of the model, we find a deviation between the
“solar dipole” case and a real case based on solar minimum
observations (where the solar field is close to a dipole). The
dipole case produces an Alfvén surface that is too small, and it
overestimates the actual solar mass loss rate by a factor of three.
This comparison with the real Sun implies that the model for
stellar fields might require a further investigation with higher
complexity, which might include the use of a filling factor for
active regions, as well as the distribution of the strength of the
small-scale fields.

For main-sequence solar-like stars, our model results are
consistent with the Skumanich (1972) relation for spin-down,
Ω� ∝ t−1/2, if the large scale poloidal magnetic field scales with
rotation rate as Bp ∝ Ω2

�.
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Güdel, M. 2007, LRSP, 4, 3
Hollis, J. M., Chin, G., & Brown, R. L. 1985, ApJ, 294, 646
Holzwarth, V., & Jardine, M. 2007, A&A, 463, 11
Ivanova, N., & Taam, R. E. 2003, ApJ, 599, 516
Kashyap, V. L., Drake, J. J., & Saar, S. H. 2008, ApJ, 687, 1339
Kasting, J. F. 1993, Sci, 259, 920
Kawaler, S. D. 1988, ApJ, 333, 236
Koutroumpa, D., Lallement, R., Raymond, J. C., & Kharchenko, V. 2009, ApJ,

696, 1517
Lallement, R., Welsh, B. Y., Vergely, J. L., Crifo, F., & Sfeir, D. 2003, A&A,

411, 447
Lanz, T., & Catala, C. 1992, A&A, 257, 663
Lanza, A. F. 2010, A&A, 512, A77
Le Chat, G., Issautier, K., & Meyer-Vernet, N. 2012, SoPh, 279, 197
Lim, J., & White, S. M. 1996, ApJL, 462, L91

Matt, S., & Pudritz, R. E. 2008, ApJ, 678, 1109
Matt, S. P., MacGregor, K. B., Pinsonneault, M. H., & Greene, T. P. 2012, ApJ,

754, L26
McComas, D. J., Velli, M., Lewis, W. S., et al. 2007, RvGeo, 45, 1004
Mestel, L. 1968, MNRAS, 138, 359
Mestel, L. 1984, in Cool Stars, Stellar Systems, and the Sun, ed. S. L. Baliunas

& L. Hartmann (Lecture Notes in Physics, Vol. 193; Berlin: Springer), 49
Michaud, G., & Charland, Y. 1986, ApJ, 311, 326
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