plot_model_component¶
- 
sherpa.astro.ui.plot_model_component(id, model=None, **kwargs)¶
- Plot a component of the model for a data set. - This function evaluates and plots a component of the model expression for a data set, including any instrument response. Use plot_source_component to display without any response. - Parameters: - id (int or str, optional) – The data set that provides the data. If not given then the default identifier is used, as returned by get_default_id.
- model (str or sherpa.models.model.Model instance) – The component to display (the name, if a string).
- replot (bool, optional) – Set to Trueto use the values calculated by the last call to plot_model_component. The default isFalse.
- overplot (bool, optional) – If Truethen add the data to an exsiting plot, otherwise create a new plot. The default isFalse.
 - See also - get_model_component_plot()
- Return the data used by plot_model_component.
- get_default_id()
- Return the default data set identifier.
- plot()
- Create one or more plot types.
- plot_source_component()
- Plot a component of the source expression for a data set.
- plot_model()
- Plot the model for a data set.
- set_xlinear()
- New plots will display a linear X axis.
- set_xlog()
- New plots will display a logarithmically-scaled X axis.
- set_ylinear()
- New plots will display a linear Y axis.
- set_ylog()
- New plots will display a logarithmically-scaled Y axis.
 - Notes - The function does not follow the normal Python standards for parameter use, since it is designed for easy interactive use. When called with a single un-named argument, it is taken to be the model parameter. If given two un-named arguments, then they are interpreted as the id and model parameters, respectively. - Examples - Overplot the - plcomponent of the model expression for the default data set:- >>> plot_model() >>> plot_model_component(pl, overplot=True) - Display the results for the ‘jet’ data set (data and model), and then overplot the - plcomponent evaluated for the ‘jet’ and ‘core’ data sets:- >>> plot_fit('jet') >>> plot_model_component('jet', pl, overplot=True) >>> plot_model_component('core', pl, overplot=True)