*********************************************** A quick guide to modeling and fitting in Sherpa *********************************************** Here are some examples of using Sherpa to model and fit data. It is based on some of the examples used in the `astropy.modelling documentation `_. .. _getting-started: Getting started =============== The following modules are assumed to have been imported:: >>> import numpy as np >>> import matplotlib.pyplot as plt The basic process, which will be followed below, is: * :ref:`create a data object ` * :ref:`define the model ` * :ref:`select the statistic ` * :ref:`select the optimisation routine ` * :ref:`fit the data ` * :ref:`extract the parameter values ` * :ref:`Calculating error values ` Although presented as a list, it is not necessarily a linear process, in that the order can be different to that above, and various steps can be repeated. The above list also does not include any visualization steps needed to inform and validate any choices. .. _quick-gauss1d: Fitting a one-dimensional data set ================================== The following data - where ``x`` is the independent axis and ``y`` the dependent one - is used in this example:: >>> np.random.seed(0) >>> x = np.linspace(-5., 5., 200) >>> ampl_true = 3 >>> pos_true = 1.3 >>> sigma_true = 0.8 >>> err_true = 0.2 >>> y = ampl_true * np.exp(-0.5 * (x - pos_true)**2 / sigma_true**2) >>> y += np.random.normal(0., err_true, x.shape) >>> plt.plot(x, y, 'ko'); .. image:: _static/quick/data1d.png The aim is to fit a one-dimensional gaussian to this data and to recover estimates of the true parameters of the model, namely the position (``pos_true``), amplitude (``ampl_true``), and width (``sigma_true``). The ``err_true`` term adds in random noise (using a `Normal distribution `_) to ensure the data is not perfectly-described by the model. .. _quick-gauss1d-data: Creating a data object ---------------------- Rather than pass around the arrays to be fit, Sherpa has the concept of a "data object", which stores the independent and dependent axes, as well as any related metadata. For this example, the class to use is :py:class:`~sherpa.data.Data1D`, which requires a string label (used to identify the data), the independent axis, and then dependent axis:: >>> from sherpa.data import Data1D >>> d = Data1D('example', x, y) >>> print(d) name = example x = Float64[200] y = Float64[200] staterror = None syserror = None At this point no errors are being used in the fit, so the ``staterror`` and ``syserror`` fields are empty. They can be set either when the object is created or at a later time. Plotting the data ----------------- The :py:mod:`sherpa.plot` module provides a number of classes that create pre-canned plots. For example, the :py:class:`sherpa.plot.DataPlot` class can be used to display the data. The steps taken are normally: 1. create the object; 2. call the :py:meth:`~sherpa.plot.DataPlot.prepare` method with the appropriate arguments, in this case the data object; 3. and then call the :py:meth:`~sherpa.plot.DataPlot.plot` method. Sherpa has two plotting backends: :term:`matplotlib`, which is used by default for the standalone version, and :term:`ChIPS`, which is used by :term:`CIAO`. Limited support for customizing these plots - such as always drawing the Y axis with a logarithmic scale - is provided, but extensive changes will require calling the plotting back-end directly. As an example of the :py:class:`~shrepa.plot.DataPlot` output:: >>> from sherpa.plot import DataPlot >>> dplot = DataPlot() >>> dplot.prepare(d) >>> dplot.plot() .. image:: _static/quick/data1d_dataplot.png It is not required to use these classes and in the following, plots will be created either via these classes or directly via matplotlib. .. _quick-gauss1d-model: Define the model ---------------- In this example a single model is used - a one-dimensional gaussian provided by the :py:class:`~sherpa.models.basic.Gauss1D` class - but more complex examples are possible: these include :ref:`multiple components `, sharing models between data sets, and :ref:`adding user-defined models `. A full description of the model language and capabilities is provided in :doc:`models/index`:: >>> from sherpa.models.basic import Gauss1D >>> g = Gauss1D() >>> print(g) gauss1d Param Type Value Min Max Units ----- ---- ----- --- --- ----- gauss1d.fwhm thawed 10 1.17549e-38 3.40282e+38 gauss1d.pos thawed 0 -3.40282e+38 3.40282e+38 gauss1d.ampl thawed 1 -3.40282e+38 3.40282e+38 It is also possible to :ref:`restrict the range of a parameter `, :ref:`toggle parameters so that they are fixed or fitted `, and :ref:`link parameters togetger `. The :py:class:`sherpa.plot.ModelPlot` class can be used to visualize the model. The :py:meth:`~sherpa.plot.ModelPlot.prepare` method takes both a data object and the model to plot:: >>> from sherpa.plot import ModelPlot >>> mplot = ModelPlot() >>> mplot.prepare(d, g) >>> mplot.plot() .. image:: _static/quick/data1d_modelplot.png There is also a :py:class:`sherpa.plot.FitPlot` class which will :ref:`combine the two plot results `, but it is often just-as-easy to combine them directly:: >>> dplot.plot() >>> mplot.overplot() .. image:: _static/quick/data1d_overplot.png The model parameters can be changed - either manually or automatically - to try and start the fit off closer to the best-fit location, but for this example we shall leave the initial parameters as they are. .. todo:: Need links for parameter setting and guess command .. _quick-gauss1d-statistic: Select the statistics --------------------- In order to optimise a model - that is, to change the model parameters until the best-fit location is found - a statistic is needed. The statistic calculates a numerical value for a given set of model parameters; this is a measure of how well the model matches the data, and can include knowledge of errors on the dependent axis values. The :ref:`optimiser (chosen below) ` attempts to find the set of parameters which minimises this statistic value. For this example, since the dependent axis (``y``) has no error estimate, we shall pick the least-square statistic (:py:class:`~sherpa.stats.LeastSq`), which calculates the numerical difference of the model to the data for each point:: >>> from sherpa.stats import LeastSq >>> stat = LeastSq() .. _quick-gauss1d-optimiser: Select the optimisation routine ------------------------------- The optimiser is the part that determines how to minimise the statistic value (i.e. how to vary the parameter values of the model to find a local minimum). The main optimisers provided by Sherpa are :py:class:`~sherpa.optmethods.NelderMead` (also known as Simplex) and :py:class:`~sherpa.optmethods.LevMar` (Levenberg-Marquardt). The latter is often quicker, but less robust, so we start with it (the optimiser can be changed and the data re-fit): >>> from sherpa.optmethods import LevMar >>> opt = LevMar() >>> print(opt) name = levmar ftol = 1.19209289551e-07 xtol = 1.19209289551e-07 gtol = 1.19209289551e-07 maxfev = None epsfcn = 1.19209289551e-07 factor = 100.0 verbose = 0 .. _quick-gauss1d-fit: Fit the data ------------ The :py:class:`~sherpa.fit.Fit` class is used to bundle up the data, model, statistic, and optimiser choices. The :py:meth:`~sherpa.fit.Fit.fit` method runs the optimiser, and returns a :py:class:`~sherpa.fit.FitResults` instance, which contains information on how the fit performed. This infomation includes the :py:attr:`~sherpa.fit.FitResults.succeeded` attribute, to determine whether the fit converged, as well as information on the fit (such as the start and end statistic values) and best-fit parameter values. Note that the model expression can also be queried for the new parameter values. >>> from sherpa.fit import Fit >>> gfit = Fit(d, g, stat=stat, method=opt) >>> print(gfit) data = example model = gauss1d stat = LeastSq method = LevMar estmethod = Covariance To actually fit the data, use the :py:meth:`~sherpa.fit.Fit.fit` method, which - depending on the data, model, or statistic being used - can take some time:: >>> gres = gfit.fit() >>> print(gres.succeeded) True .. note:: Add a note about using the logger to get more on-screen information about the fit. One useful method for interactive analysis is :py:meth:`~sherpa.fit.FitResults.format`, which returns a string representation of the fit results, as shown below:: >>> print(gres.format()) Method = levmar Statistic = leastsq Initial fit statistic = 180.71 Final fit statistic = 8.06975 at function evaluation 30 Data points = 200 Degrees of freedom = 197 Change in statistic = 172.641 gauss1d.fwhm 1.91572 gauss1d.pos 1.2743 gauss1d.ampl 3.04706 .. _quick-fitplot: The :py:class:`sherpa.plot.FitPlot` class will display the data and model. The :py:meth:`~sherpa.plot.FitPlot.prepare` method requires data and model plot objects; in this case the previous versions can be re-used, although the model plot needs to be updated to reflect the changes to the model parameters:: >>> from sherpa.plot import FitPlot >>> fplot = FitPlot() >>> mplot.prepare(d, g) >>> fplot.prepare(dplot, mplot) >>> fplot.plot() .. image:: _static/quick/data1d_fitplot.png As the model can be :doc:`evaluated directly `, this plot can also be created manually:: >>> plt.plot(d.x, d.y, 'ko', label='Data') >>> plt.plot(d.x, g(d.x), linewidth=2, label='Gaussian') >>> plt.legend(loc=2); .. image:: _static/quick/data1d_gauss_fit.png .. _quick-gauss1d-extract: Extract the parameter values ---------------------------- The fit results include a large number of attributes, many of which are not relevant here (as the fit was done with no error values). The following relation is used to convert from the full-width half-maximum value, used by the :py:class:`~sherpa.models.basic.Gauss1D` model, to the Gaussian sigma value used to create the data: :math:`\rm{FWHM} = 2 \sqrt{2ln(2)} \sigma`:: >>> print(gres) datasets = None itermethodname = none methodname = levmar statname = leastsq succeeded = True parnames = ('gauss1d.fwhm', 'gauss1d.pos', 'gauss1d.ampl') parvals = (1.9157241114063941, 1.2743015983545247, 3.0470560360944017) statval = 8.069746329529591 istatval = 180.71034547759984 dstatval = 172.640599148 numpoints = 200 dof = 197 qval = None rstat = None message = successful termination nfev = 30 >>> conv = 2 * np.sqrt(2 * np.log(2)) >>> ans = dict(zip(gres.parnames, gres.parvals)) >>> print("Position = {:.2f} truth= {:.2f}".format(ans['gauss1d.pos'], pos_true)) Position = 1.27 truth= 1.30 >>> print("Amplitude= {:.2f} truth= {:.2f}".format(ans['gauss1d.ampl'], ampl_true)) Amplitude= 3.05 truth= 3.00 >>> print("Sigma = {:.2f} truth= {:.2f}".format(ans['gauss1d.fwhm']/conv, sigma_true)) Sigma = 0.81 truth= 0.80 The model, and its parameter values, can also be queried directly, as they have been changed by the fit:: >>> print(g) gauss1d Param Type Value Min Max Units ----- ---- ----- --- --- ----- gauss1d.fwhm thawed 1.91572 1.17549e-38 3.40282e+38 gauss1d.pos thawed 1.2743 -3.40282e+38 3.40282e+38 gauss1d.ampl thawed 3.04706 -3.40282e+38 3.40282e+38 >>> print(g.pos) val = 1.27430159835 min = -3.40282346639e+38 max = 3.40282346639e+38 units = frozen = False link = None default_val = 0.0 default_min = -3.40282346639e+38 default_max = 3.40282346639e+38 .. _quick-gauss1d-errors: Including errors ================ For this example, the error on each bin is assumed to be the same, and equal to the true error:: >>> dy = np.ones(x.size) * err_true >>> de = Data1D('with-errors', x, y, staterror=dy) >>> print(de) name = with-errors x = Float64[200] y = Float64[200] staterror = Float64[200] syserror = None The statistic is changed from least squares to chi-square (:py:class:`~sherpa.stats.Chi2`), to take advantage of this extra knowledge (i.e. the Chi-square statistic includes the error value per bin when calculating the statistic value):: >>> from sherpa.stats import Chi2 >>> ustat = Chi2() >>> ge = Gauss1D('gerr') >>> gefit = Fit(de, ge, stat=ustat, method=opt) >>> geres = gefit.fit() >>> print(geres.format()) Method = levmar Statistic = chi2 Initial fit statistic = 4517.76 Final fit statistic = 201.744 at function evaluation 30 Data points = 200 Degrees of freedom = 197 Probability [Q-value] = 0.393342 Reduced statistic = 1.02408 Change in statistic = 4316.01 gerr.fwhm 1.91572 gerr.pos 1.2743 gerr.ampl 3.04706 >>> if not geres.succeeded: print(geres.message) Since the error value is independent of bin, then the fit results should be the same here (that is, the parametes in ``g`` are the same as ``ge``):: >>> print(g) gauss1d Param Type Value Min Max Units ----- ---- ----- --- --- ----- gauss1d.fwhm thawed 1.91572 1.17549e-38 3.40282e+38 gauss1d.pos thawed 1.2743 -3.40282e+38 3.40282e+38 gauss1d.ampl thawed 3.04706 -3.40282e+38 3.40282e+38 >>> print(ge) gerr Param Type Value Min Max Units ----- ---- ----- --- --- ----- gerr.fwhm thawed 1.91572 1.17549e-38 3.40282e+38 gerr.pos thawed 1.2743 -3.40282e+38 3.40282e+38 gerr.ampl thawed 3.04706 -3.40282e+38 3.40282e+38 The difference is that more of the fields in the result structure are populated: in particular the :py:attr:`~sherpa.fit.FitResults.rstat` and :py:attr:`~sherpa.fit.FitResults.qval` fields, which give the reduced statistic and the probability of obtaining this statisitic value respectively.:: >>> print(geres) datasets = None itermethodname = none methodname = levmar statname = chi2 succeeded = True parnames = ('gerr.fwhm', 'gerr.pos', 'gerr.ampl') parvals = (1.9157241114064163, 1.2743015983545292, 3.0470560360943919) statval = 201.74365823823976 istatval = 4517.758636940002 dstatval = 4316.0149787 numpoints = 200 dof = 197 qval = 0.393342466792 rstat = 1.0240794834428415 message = successful termination nfev = 30 Error analysis -------------- The default error estimation routine is :py:attr:`~sherpa.estmethods.Covariance`, which will be replaced by :py:attr:`~sherpa.estmethods.Confidence` for this example:: >>> from sherpa.estmethods import Confidence >>> gefit.estmethod = Confidence() >>> print(gefit.estmethod) name = confidence parallel = True numcores = 8 tol = 0.2 max_rstat = 3 remin = 0.01 eps = 0.01 fast = False maxiters = 200 verbose = False maxfits = 5 soft_limits = False sigma = 1 openinterval = False Running the error analysis can take time, for particularly complex models. The default behavior is to use all the available CPU cores on the machine, but this can be changed with the ``numcores`` attribute. Note that a message is displayed to the screen when each bound is calculated, to indicate progress:: >>> errors = gefit.est_errors() gerr.fwhm lower bound: -0.0326327 gerr.fwhm upper bound: 0.0332578 gerr.pos lower bound: -0.0140981 gerr.pos upper bound: 0.0140981 gerr.ampl lower bound: -0.0456119 gerr.ampl upper bound: 0.0456119 The results can be displayed:: >>> print(errors.format()) Confidence Method = confidence Iterative Fit Method = None Fitting Method = levmar Statistic = chi2 confidence 1-sigma (68.2689%) bounds: Param Best-Fit Lower Bound Upper Bound ----- -------- ----------- ----------- gerr.fwhm 1.91572 -0.0326327 0.0332578 gerr.pos 1.2743 -0.0140981 0.0140981 gerr.ampl 3.04706 -0.0456119 0.0456119 The :py:class:`~sherpa.fit.ErrorEstResults` instance returned by :py:meth:`~sherpa.fit.Fit.est_errors` contains the parameter values and limits:: >>> print(errors) datasets = None methodname = confidence iterfitname = none fitname = levmar statname = chi2 sigma = 1 percent = 68.2689492137 parnames = ('gerr.fwhm', 'gerr.pos', 'gerr.ampl') parvals = (1.9157241114064163, 1.2743015983545292, 3.0470560360943919) parmins = (-0.032632743123330199, -0.014098074065578947, -0.045611913713536456) parmaxes = (0.033257800216357714, 0.014098074065578947, 0.045611913713536456) nfits = 29 The data can be accessed, e.g. to create a dictionary where the keys are the parameter names and the values represent the parameter ranges:: >>> dvals = zip(errors.parnames, errors.parvals, errors.parmins, ... errors.parmaxes) >>> pvals = {d[0]: {'val': d[1], 'min': d[2], 'max': d[3]} for d in dvals} >>> pvals['gerr.pos'] {'min': -0.014098074065578947, 'max': 0.014098074065578947, 'val': 1.2743015983545292} Screen output ------------- The default behavior - when *not* using the default :py:class:`~sherpa.estmethods.Covariance` method - is for :py:meth:`~sherpa.fit.Fit.est_errors` to print out the parameter bounds as it finds them, which can be useful in an interactive session since the error analysis can be slow. This can be controlled using the Sherpa logging interface. .. note:: I need a link to a section describing this. However, first I need to work out just what it is when run on multiple cores causes the output to be lost. Oh, hold on. Does it somehow create a new shell to talk to? Or somehow create a different instance. Note that the default handler works okay even in this case (i.e. all the bounds are printed to stdout), but maybe something in the ipython directive is "causing fun". .. _quick_errors_intproj: A single parameter ------------------ .. todo:: shouldn't this use the default for min/max/nloop in the prepare call? It is possible to investigate the error surface of a single parameter using the :py:class:`~sherpa.plot.IntervalProjection` class. The following shows how the error surface changes with the position of the gaussian. The :py:meth:`~sherpa.plot.IntervalProjection.prepare` method are given the range over which to vary the parameter (the range is chosen to be close to the three-sigma limit from the confidence analysis above, ahd the dotted line is added to indicate the three-sigma limit above the best-fit for a single parameter):: >>> from sherpa.plot import IntervalProjection >>> iproj = IntervalProjection() >>> iproj.prepare(min=1.23, max=1.32, nloop=41) >>> iproj.calc(gefit, ge.pos) This can take some time, depending on the complexity of the model and number of steps requested. The resulting data looks like:: >>> iproj.plot() >>> plt.axhline(geres.statval + 9, linestyle='dotted'); .. image:: _static/quick/data1d_pos_iproj.png The curve is stored in the :py:class:`~sherpa.plot.IntervalProjection` object (in fact, these values are created by the call to :py:meth:`~sherpa.plot.IntervalProjection.calc` and so can be accesed without needing to create the plot):: >>> print(iproj) x = [ 1.23 , 1.2323, 1.2345, 1.2368, 1.239 , 1.2412, 1.2435, 1.2457, 1.248 , 1.2503, 1.2525, 1.2548, 1.257 , 1.2592, 1.2615, 1.2637, 1.266 , 1.2683, 1.2705, 1.2728, 1.275 , 1.2772, 1.2795, 1.2817, 1.284 , 1.2863, 1.2885, 1.2908, 1.293 , 1.2953, 1.2975, 1.2997, 1.302 , 1.3043, 1.3065, 1.3088, 1.311 , 1.3133, 1.3155, 1.3177, 1.32 ] y = [ 211.597 , 210.6231, 209.6997, 208.8267, 208.0044, 207.2325, 206.5113, 205.8408, 205.2209, 204.6518, 204.1334, 203.6658, 203.249 , 202.883 , 202.5679, 202.3037, 202.0903, 201.9279, 201.8164, 201.7558, 201.7461, 201.7874, 201.8796, 202.0228, 202.2169, 202.462 , 202.758 , 203.105 , 203.5028, 203.9516, 204.4513, 205.0018, 205.6032, 206.2555, 206.9585, 207.7124, 208.5169, 209.3723, 210.2783, 211.235 , 212.2423] min = 1.23 max = 1.32 nloop = 41 delv = None fac = 1 log = False A contour plot of two parameters -------------------------------- The :py:class:`~sherpa.plot.RegionProjection` class supports the comparison of two parameters. The contours indicate the one, two, and three sigma contours. :: >>> from sherpa.plot import RegionProjection >>> rproj = RegionProjection() >>> rproj.prepare(min=[2.8, 1.75], max=[3.3, 2.1], nloop=[21, 21]) >>> rproj.calc(gefit, ge.ampl, ge.fwhm) As with the :ref:`interval projection `, this step can take time. :: >>> rproj.contour() .. image:: _static/quick/data1d_pos_fwhm_rproj.png As with the single-parameter case, the statistic values for the grid are stored in the :py:class:`~sherpa.plot.RegionProjection` object by the :py:meth:`~sherpa.plot.RegionProjection.calc` call, and so can be accesed without needing to create the contour plot. Useful fields include ``x0`` and ``x1`` (the two parameter values), ``y`` (the statistic value), and ``levels`` (the values used for the contours):: >>> lvls = rproj.levels >>> print(lvls) [ 204.03940717 207.92373254 213.57281632] >>> nx, ny = rproj.nloop >>> x0, x1, y = rproj.x0, rproj.x1, rproj.y >>> x0.resize(ny, nx) >>> x1.resize(ny, nx) >>> y.resize(ny, nx) >>> plt.imshow(y, origin='lower', cmap='viridis_r', aspect='auto', ... extent=(x0.min(), x0.max(), x1.min(), x1.max())) >>> plt.colorbar() >>> plt.xlabel(rproj.xlabel) >>> plt.ylabel(rproj.ylabel) >>> cs = plt.contour(x0, x1, y, levels=lvls) >>> lbls = [(v, r"${}\sigma$".format(i+1)) for i, v in enumerate(lvls)] >>> plt.clabel(cs, lvls, fmt=dict(lbls)); .. image:: _static/quick/data1d_pos_fwhm_rproj_manual.png Fitting two-dimensional data ============================ Sherpa has support for two-dimensional data - that is data defined on the independent axes ``x0`` and ``x1``. In the example below a contiguous grid is used, that is the pixel size is constant, but there is no requirement that this is the case. :: >>> np.random.seed(0) >>> x1, x0 = np.mgrid[:128, :128] >>> y = 2 * x0**2 - 0.5 * x1**2 + 1.5 * x0 * x1 - 1 >>> y += np.random.normal(0, 0.1, y.shape) * 50000 .. note:: Actually, the current :py:class:`~sherpa.data.Data2D` class probably does force the data to be on a contiguous grid, or at least have a constant pixel size, since it has a ``shape`` argument. Creating a data object ---------------------- To support irregularly-gridded data, the multi-dimensional data classes require that the coordinate arrays and data values are one-dimensional. For example, the following code creates a :py:class:`~sherpa.data.Data2D` object:: >>> from sherpa.data import Data2D >>> x0axis = x0.ravel() >>> x1axis = x1.ravel() >>> yaxis = y.ravel() >>> d2 = Data2D('img', x0axis, x1axis, yaxis, shape=(128,128)) Define the model ---------------- Creating the model is the same as the one-dimensional case; in this case the :py:class:`~sherpa.models.basic.Polynom2D` class is used to create a low-order polynomial:: >>> from sherpa.models import Polynom2D >>> p2 = Polynom2D('p2') >>> print(p2) p2 Param Type Value Min Max Units ----- ---- ----- --- --- ----- p2.c thawed 1 -3.40282e+38 3.40282e+38 p2.cy1 thawed 0 -3.40282e+38 3.40282e+38 p2.cy2 thawed 0 -3.40282e+38 3.40282e+38 p2.cx1 thawed 0 -3.40282e+38 3.40282e+38 p2.cx1y1 thawed 0 -3.40282e+38 3.40282e+38 p2.cx1y2 thawed 0 -3.40282e+38 3.40282e+38 p2.cx2 thawed 0 -3.40282e+38 3.40282e+38 p2.cx2y1 thawed 0 -3.40282e+38 3.40282e+38 p2.cx2y2 thawed 0 -3.40282e+38 3.40282e+38 Control the parameters being fit -------------------------------- To reduce the number of parameters being fit, the ``frozen`` attribute can be set:: >>> for n in ['cx1', 'cy1', 'cx2y1', 'cx1y2', 'cx2y2']: ...: getattr(p2, n).frozen = True >>> print(p2) p2 Param Type Value Min Max Units ----- ---- ----- --- --- ----- p2.c thawed 1 -3.40282e+38 3.40282e+38 p2.cy1 frozen 0 -3.40282e+38 3.40282e+38 p2.cy2 thawed 0 -3.40282e+38 3.40282e+38 p2.cx1 frozen 0 -3.40282e+38 3.40282e+38 p2.cx1y1 thawed 0 -3.40282e+38 3.40282e+38 p2.cx1y2 frozen 0 -3.40282e+38 3.40282e+38 p2.cx2 thawed 0 -3.40282e+38 3.40282e+38 p2.cx2y1 frozen 0 -3.40282e+38 3.40282e+38 p2.cx2y2 frozen 0 -3.40282e+38 3.40282e+38 Fit the data ------------ Fitting is no different (the same statistic and optimisation objects used earlier could have been re-used here):: >>> f2 = Fit(d2, p2, stat=LeastSq(), method=LevMar()) >>> res2 = f2.fit() >>> if not res2.succeeded: print(res2.message) >>> print(res2) datasets = None itermethodname = none methodname = levmar statname = leastsq succeeded = True parnames = ('p2.c', 'p2.cy2', 'p2.cx1y1', 'p2.cx2') parvals = (-80.289475554881392, -0.48174521913599017, 1.5022711710872119, 1.9894112623568638) statval = 400658883390.66907 istatval = 6571471882611.967 dstatval = 6.17081299922e+12 numpoints = 16384 dof = 16380 qval = None rstat = None message = successful termination nfev = 45 >>> print(p2) p2 Param Type Value Min Max Units ----- ---- ----- --- --- ----- p2.c thawed -80.2895 -3.40282e+38 3.40282e+38 p2.cy1 frozen 0 -3.40282e+38 3.40282e+38 p2.cy2 thawed -0.481745 -3.40282e+38 3.40282e+38 p2.cx1 frozen 0 -3.40282e+38 3.40282e+38 p2.cx1y1 thawed 1.50227 -3.40282e+38 3.40282e+38 p2.cx1y2 frozen 0 -3.40282e+38 3.40282e+38 p2.cx2 thawed 1.98941 -3.40282e+38 3.40282e+38 p2.cx2y1 frozen 0 -3.40282e+38 3.40282e+38 p2.cx2y2 frozen 0 -3.40282e+38 3.40282e+38 .. note:: TODO: why are all the parameters a good fit *except* for the ``c`` value, which is -80 rather than -1? It's probably just that the constant value has a large error, since the noise term is :math:`\pm 50000`. Display the model ----------------- The model can be visualized by evaluating it over a grid of points and then displaying it:: >>> m2 = p2(x0axis, x1axis).reshape(128, 128) >>> def pimg(d, title): ... plt.imshow(d, origin='lower', interpolation='nearest', ... vmin=-1e4, vmax=5e4, cmap='viridis') ... plt.axis('off') ... plt.colorbar(orientation='horizontal', ... ticks=[0, 20000, 40000]) ... plt.title(title) ... >>> plt.figure(figsize=(8, 3)) >>> plt.subplot(1, 3, 1); >>> pimg(y, "Data") >>> plt.subplot(1, 3, 2) >>> pimg(m2, "Model") >>> plt.subplot(1, 3, 3) >>> pimg(y - m2, "Residual") .. image:: _static/quick/data2d_residuals.png .. note:: The :py:mod:`sherpa.image` model provides support for *interactive* image visualization, but this only works if the `DS9 `_ image viewer is installed. For the examples in this document, matplotlib plots will be created to view the data directly. Simultaneous fits ================= Sherpa allows multiple data sets to be fit at the same time, although there is only really a benefit if there is some model component or value that is shared between the data sets). In this example we have a dataset containing a lorentzian signal with a background component, and another with just the background component. Fitting both together can improve the constraints on the parameter values. First we start by simulating the data, where the :py:class:`~sherpa.models.basic.Polynom1D` class is used to model the background as a straight line, and :py:class:`~sherpa.astro.models.Lorentz1D` for the signal:: >>> from sherpa.models import Polynom1D >>> from sherpa.astro.models import Lorentz1D >>> tpoly = Polynom1D() >>> tlor = Lorentz1D() >>> tpoly.c0 = 50 >>> tpoly.c1 = 1e-2 >>> tlor.pos = 4400 >>> tlor.fwhm = 200 >>> tlor.ampl = 1e4 >>> x1 = np.linspace(4200, 4600, 21) >>> y1 = tlor(x1) + tpoly(x1) + np.random.normal(scale=5, size=x1.size) >>> x2 = np.linspace(4100, 4900, 11) >>> y2 = tpoly(x2) + np.random.normal(scale=5, size=x2.size) >>> print("x1 size {} x2 size {}".format(x1.size, x2.size)) x1 size 21 x2 size 11 There is **no** requirement that the data sets have a common grid, as can be seen in a raw view of the data:: >>> plt.plot(x1, y1) >>> plt.plot(x2, y2) .. image:: _static/quick/quick_simulfit_data.png The fits are set up as before; a data object is needed for each data set, and model instances are created:: >>> d1 = Data1D('a', x1, y1) >>> d2 = Data1D('b', x2, y2) >>> fpoly, flor = Polynom1D(), Lorentz1D() >>> fpoly.c1.thaw() >>> flor.pos = 4500 To help the fit, we use a simple algorithm to estimate the starting point for the source amplitude, by evaluating the model on the data grid and calculating the change in the amplitude needed to make it match the data:: >>> flor.ampl = y1.sum() / flor(x1).sum() For simultaneous fits the same optimisation and statistic needs to be used for each fit (this is an area we are looking to improve):: >>> from sherpa.optmethods import NelderMead >>> stat, opt = LeastSq(), NelderMead() Set up the fits to the individual data sets:: >>> f1 = Fit(d1, fpoly + flor, stat, opt) >>> f2 = Fit(d2, fpoly, stat, opt) and a simultaneous (i.e. to both data sets) fit:: >>> from sherpa.data import DataSimulFit >>> from sherpa.models import SimulFitModel >>> sdata = DataSimulFit('all', (d1, d2)) >>> smodel = SimulFitModel('all', (fpoly + flor, fpoly)) >>> sfit = Fit(sdata, smodel, stat, opt) .. note:: It seems a bit annoying that we have to send in ``stat`` and ``opt`` to the individual fit objects and the ``SimulFitModel``. **NOTE** should use simulfit as much simpler and then introduce the objects. Although need to check as might be getting different fit results. Note that there is a :py:meth:`~sherpa.fit.Fit.simulfit` method that can be used to fit using multiple :py:class:`sherpa.fit.Fit` objects, which wraps the above (using individual fit objects allows some of the data to be fit first, which may help reduce the parameter space needed to be searched):: >>> res = sfit.fit() >>> print(res) datasets = None itermethodname = none methodname = neldermead statname = leastsq succeeded = True parnames = ('polynom1d.c0', 'polynom1d.c1', 'lorentz1d.fwhm', 'lorentz1d.pos', 'lorentz1d.ampl') parvals = (36.829217311393585, 0.012540257025027028, 249.55651534213359, 4402.7031194359088, 12793.559398547319) statval = 329.6525419378109 istatval = 3813284.1822045334 dstatval = 3812954.52966 numpoints = 32 dof = 27 qval = None rstat = None message = Optimization terminated successfully nfev = 1152 Can see from the ``numpoints`` and ``dof`` fields that both data sets are being used here. The data can then be viewed (note explicit evaluation on a grid different to the data):: >>> plt.plot(x1, y1, label='Data 1') >>> plt.plot(x2, y2, label='Data 2') >>> x = np.arange(4000, 5000, 10) >>> plt.plot(x, (fpoly + flor)(x), linestyle='dotted', label='Fit 1') >>> plt.plot(x, fpoly(x), linestyle='dotted', label='Fit 2') >>> plt.legend(); .. image:: _static/quick/quick_simulfit_fit.png May want to show the residual plot. How do you do error analysis? Well, can call ``sfit.est_errors()``, but that will fail with the current statistic (``LeastSq``), so need to change it. The error is 5, per bin, which has to be set up:: >>> print(sfit.calc_stat_info()) name = ids = None bkg_ids = None statname = leastsq statval = 329.6525419378109 numpoints = 32 dof = 27 qval = None rstat = None >>> d1.staterror = np.ones(x1.size) * 5 >>> d2.staterror = np.ones(x2.size) * 5 >>> sfit.stat = Chi2() >>> check = sfit.fit() How much did the fit change?:: >>> check.dstatval 0.0 Note that since the error on each bin is the same value, the best-fit value is not going to be different to the LeastSq result (so ``dstatval`` should be 0):: >>> print(sfit.calc_stat_info()) name = ids = None bkg_ids = None statname = chi2 statval = 13.186101677512438 numpoints = 32 dof = 27 qval = 0.988009259609 rstat = 0.48837413620416437 >>> sres = sfit.est_errors() >>> print(sres) datasets = None methodname = covariance iterfitname = none fitname = neldermead statname = chi2 sigma = 1 percent = 68.2689492137 parnames = ('polynom1d.c0', 'polynom1d.c1', 'lorentz1d.fwhm', 'lorentz1d.pos', 'lorentz1d.ampl') parvals = (36.829217311393585, 0.012540257025027028, 249.55651534213359, 4402.7031194359088, 12793.559398547319) parmins = (-4.9568824809960628, -0.0011007470586726147, -6.6079122387075824, -2.0094070026087474, -337.50275154547768) parmaxes = (4.9568824809960628, 0.0011007470586726147, 6.6079122387075824, 2.0094070026087474, 337.50275154547768) nfits = 0 Error estimates on a single parameter are :ref:`as above `:: >>> iproj = IntervalProjection() >>> iproj.prepare(min=6000, max=18000, nloop=101) >>> iproj.calc(sfit, flor.ampl) >>> iproj.plot() .. image:: _static/quick/quick_simulfit_error.png Hmm, not particularly symmetric, but that's life.