$\log N-\log S$
 A Measuring Stick for the Universe

Vinay Kashyap (CfA)

$\log _{10}(\mathrm{~N}>\mathrm{S})-\log _{10}(\mathrm{~S})$

cumulative number of sources detectable at a given telescopic sensitivity

$S=\left[\right.$ ergs $\mathrm{s}^{-1} \mathrm{~cm}^{-2}$]
$N=$ number of sources brighter than S

simple example

uniformly distributed source population

$$
n(\overrightarrow{\mathbf{r}})=n_{0}
$$

all sources have same intrinsic luminosity

$$
f(L)=\delta\left(L-L_{0}\right)
$$

for telescope sensitivity S, source will be detectable to

$$
d=\sqrt{\frac{L_{0}}{4 \pi S}}
$$

number of sources within this distance

$$
N(<d) \equiv N(>S)=\frac{4 \pi}{3} n_{0} d^{3} \propto S^{-\frac{3}{2}}
$$

simple example

uniformly distributed source population

$$
n(\overrightarrow{\mathbf{r}})=n_{0}
$$

all sources have same intrinsic luminosity

$$
f(L)=\delta\left(L-L_{0}\right)
$$

for telescope sensitivity S, source will be detectable to

$$
d=\sqrt{\frac{L_{0}}{4 \pi S}}
$$

number of sources within this distance

$$
N(<d) \equiv N(>S)=\frac{4 \pi}{3} n_{0} d^{3} \propto S-\frac{3}{2}
$$

simplified general case

$$
\begin{aligned}
N(>S) & =d \Omega \int_{0}^{\infty} d L^{\prime} f\left(L^{\prime}\right) \int_{0}^{R} d r r^{2} n(r) \\
S & =\frac{L^{\prime}}{4 \pi R^{2}} e^{-\tau(R)}
\end{aligned}
$$

cosmology makes it more complicated

typical case

a set of detected sources with observed counts

$$
\left\{Y_{i}, i=1 . . M\right\}
$$

with associated detector location, background, exposure

$$
\left\{\left(x_{i}, y_{i}, Y_{i}^{b}, \epsilon_{i}\right), i=1 . . M\right\}
$$

background and exposure determine detection threshold

$$
\mathcal{S}_{i}\left(Y_{i}^{b}, \epsilon_{i}\right)
$$

detection probability is usually tabulated

$$
\operatorname{Pr}\left(\mathcal{I}\left(\lambda_{i}\right)=1 \mid \mathcal{S}_{i}\right)
$$

Problem: Model $N(>S)$ as a single power-law or broken power-law

$\log N-\log S$

Next up:
Andreas Zezas (Univ. of Crete)

