Looking for True X-ray Modulation through Energy Quantiles

Jaesub Hong Spring, 2011

1

Outline

- The X-ray sources in the Galactic Bulge
- Quantile Analysis
- Periodic Bulge X-ray Sources and Modulating Energy Quantiles

Galactic Center Region (32' x 16')

X-ray (Blue, Purple): NASA/CXC/UMass/D. Wang et al. Optical/nIR (Yellow) : NASA/ESA/STScI/D. Wang et al. IR (Red) : NASA/JPL-Caltech/SSC/S. Stolovy

X-ray Sources in the Galactic Center Region

Chandra/ACIS shallow survey of 2 deg x 1 deg around Sgr A* ~1300 discrete X-ray sources (Wang et al. 2002)

X-ray sources in the Galactic Center (GC)

8.5' x 8.5' Sgr A* (~500 ks Chandra ACIS) Muno et al. 2003

- Chandra's superb spatial resolution revealed >3000 low luminosity X-ray sources in the Galactic center region
- Formation and evolutionary history of the inner Galaxy
- Accreting Binary Systems and their evolution
- What are these X-ray sources?

Galactic Bulge Survey

• Deep Bulge Window Survey (100 ks Chandra, HST & Magellan)

Baade's Window (BW, Av~1.3) Stanek'sWindow (SW, Av~2.0) The Limiting Window (LW, Av~4.0) vs. Galactic Center (GC, Av~25)

Hong 2009, van den Berg 2006, 2009

• Shallow Bulge Latitude Survey (15 ks Chandra & Magellan)

1 deg x 1.2 deg south and north region of the GC

Grindlay 2011

The Limiting Window (1.4 deg south of the GC)

100 ksec Bulge Survey (Hong et al 2009) + 900 ksec Ultra-deep Survey (Revnivtsev et al 2009)

Galactic Ridge X-ray Emission

- 1 Ms Chandra observations of a low extinction region, the Limiting Window, at 1.4 south of the GC
- ~ 80% of the X-ray emission was resolved at energies > 6 keV

Resolved fraction of X-ray emission Revnivtsev et al. 2009

Bulge X-ray Sources

At the Galactic Center

- Low Luminosity: 10³⁰⁻³³ erg/s
- Relatively Hard X-ray Spectra (Power law Photon Index ~ 0.7)

Quiescent High Mass X-ray Binaries (qHMXBs): <10% (Laycock et al 2005) Magnetic Cataclysmic Variables (CVs)

In the Window Fields

Also see relatively Soft X-ray Sources

```
>10<sup>30-31</sup> erg/s
Quiescent Low Mass X-ray Binaries (qLMXBs)
Non-Magnetic Cataclysmic Variables
<10<sup>30-31</sup> erg/s
Active Binaries (ABs)
```

Cataclysmic Variables (CVs): Compact Binaries with white dwarf accreting from late type companion

Non-Magnetic CVs

Polars

Cataclysmic Variables (CVs): Compact Binaries with white dwarf accreting from late type companion

Intermediate Polars

Direct Identification

 At the Galactic Center A_V ~ 25, A_K~5 Confusion limit: K~15 with Magellan/PANIC (6. 5m)

 In the Windows fields (A_V< 4) m_V >20-23 many candidate counterparts, no guarantee

HST ACS/F625W image with 1" 95 % conf. radius

Source identification in Windows/HST fields

Fields (100 ks)	X-ray sources	X-ray sources In HST/ACS	CV candidates	Predicted
BW	403	162	4 - 9	7
SW	433	139	2 - 10	14
LW	319	100	13 - 25	14

X-ray sources in the Galactic Bulge: More from X-ray data

Variable X-ray sources

e.g. Scargle's Bayesian Block Searches

4 Transients within 1pc vs. 7 in 25 pc (Muno et al 2005) 8 Transients in the GCR: quiescent LMX Bs (Degenaar et al 2009, 2010)^{8 -20}

• Periodic X-ray sources

Lomb-Scargle Buccheri's z² statistics Epoch Folding

20 10 0 -10 -20 dα (arcsec from Sgr A*) 20 10 0 -10 -20 dα (arcsec from Sgr A*)

9 Periodic sources in the GCR: magnetic CVs (Muno et al 2003, 2009)

The Limiting Window (1Ms Chandra/ACIS-I)

10 periodic sources and 11 candidates Hong et al 2010, arXiv:1103.2477

Variable X-ray sources in the Bulge Fields (not complete)

Fields	Periodic	Variables
BW (100 ksec)	1	-
SW (100 ksec)	0	-
LW (1 Msec)	10 + 11	~80 (short + long)
GCR (1+1 Msec) (Muno et al)	9	856 (long) + 198 (short)

The Limiting Window (1Ms Chandra/ACIS-I)

Very hard spectra

• 20-30% of hard X-ray sources can be periodic (Hong et al 2010, arXiv:1103.2477)

Extracting Spectral Properties or Variations from faint X-ray sources

• Bayesian Estimation of Hardness Ratios (BEHR) Park et al, 2006, ApJ

Quantiles

- No energy binning required
- Take advantage of energy resolution
- Optimal use of information

X-ray Spectral Models of Astronomical Objects

Power law (Photon Index: Γ) Black Body (Temperature: kT) Thermal Brems. (Plasma Temperature: kT) MeKaL or APEC (Plasma Temperature: kT, Abundance, ...)

• • • **•**

+ Interstellar Absorption (N_H)

Goal: acquire two parameters to describe basic spectral shapes.

cf. Hardness ratio using three bands: S, M, H => HR1 = S/M, HR2 = M/H

Two independent parameters from Quantiles

•Quartile Ratio (E_{75}/E_{25})

Quantile Diagram

- Quantiles are not independent
- $\bullet m = Q_{50} vs Q_{25}/Q_{75}$
- Power-Law : $\Gamma \& N_H$
- Proper spacing in the diagram

ACIS-S detector 0.3-8.0 keV

50 source count/ 25 background count

Quantile Diagrams for Windows and Galactic Center Fields

Future Improvement of Quantile Analysis

•Logit (Median) => Log (Median)

•Quantiles for Photons with Weighting e.g. Swift/BAT: each count with weight

Allows a unified phase space for a given energy band

regardless of response function => Atlas of X-ray spectral type, Physical meaning in Quantiles

Improve Error Estimates

Magnetic CV in Baade's Window : CXOPS J180354.3 - 300005 (1028.3 s)

Magnetic CV in LW : CXOPS J175118.7 – 293811 (4731 s)

Cataclysmic Variables (CVs): white dwarf with late type companion

Intermediate Polars

1576 s 4730 s 9461 s

1576 s 4730 s 9461 s

Bright X-ray source in ChaMPLane

(van den Berg et al 2011)

(Servillat et al 2011)

Bright X-ray source in ChaMPLane

Modulation associated with peculiar spectral state

Phase folded at P Not much variations

Phase folded at P' Noticeable variations

Pattern or order of values gives a clue?

Phase folded at P Chaotic Phase folded at P' Orderly

Scargle, Norris, Bonnel, 2008 Sharpness : Shannon, Reny, Fisher information, variance

Summary

- The sheer number of Bulge X-ray sources indicate their importance in understanding the evolutionary history of accreting binaries and the inner Galaxy. But the large number of them are not identified.
- High obscuration, faint optical flux and source crowding limit direct spectroscopic identification.
- X-ray variability provides another clue. Sometimes multiple periodicities are observed: not all of them are independent.
- Energy quantiles (or equivalent quantities) might help revealing the true periodicity. Further study is needed to assign credible statistical significance.

Tuesday, March 29, 2011

Evans & Hellier 2007

Identifying X-ray Sources by Periodicity (Lomb-Scargle Method)

Chandra ACIS Image of BW and the LW

~320 - 400 X-ray sources with 100 ks

Realistic Cases

Realistic Cases

Quantile Diagram

