The Expansion History of the Universe: Myths and Facts

Antonaldo Diaferio

Universita' degli Studi di Torino - Dip. Fisica Generale "Amedeo Avogadro" Istituto Nazionale di Fisica Nucleare - Sezione di Torino Harvard-Smithsonian Center for Astrophysics

with Luisa Ostorero and Vincenzo Cardone

members of the CAUSTIC Group
www.dfg.unito.it/ricerca/caustic

Cambridge, April 19th 2011

SCIENTIFIC BACKGROUND

- Observations of SNae: Interpretation in the ΛCDM model
- Alternative cosmological models: Conformal gravity and kinematic conformal gravity
- GRBs as cosmological probes: Bayesian approach

BAYESIAN ANALYSIS

- Parameter forecasts (posterior probability): Likelihood and priors
- Bayesian evidence: Parallel tempering

High-redshift type Ia Supernovae (SNae)

Hubble Diagram of SNae in ΛCDM

The expansion history of the ΛCDM model

Can we probe the deceleration phase at redshift larger than z≈1?

Conformal gravity: No deceleration phase!

• Conformal cosmology (CG) (Mannheim 1990)

• Kinematic conformal cosmology (KCG) (Varieschi 2010)

Cosmology in conformal gravity - CG

Action:

$$I_{W} = -\alpha \int d^{4}x \sqrt{-g} C_{\mu\nu\kappa\lambda} C^{\mu\nu\kappa\lambda} \qquad g_{\mu\nu}(x) \Rightarrow \Omega(x) g_{\mu\nu}(x)$$

"Friedmann" equation:

$$a^{2}a^{2} = H_{0}^{2}(\Theta_{\Lambda}a^{4} + \Theta_{k}a^{2} - \Theta_{nr}a - \Theta_{r})$$

Deceleration parameter:

Kinematic conformal cosmology - KCG

Conformal gravity Schwarzschild solution:

$$ds^{2} = -B(r)c^{2}dt^{2} + \frac{dr^{2}}{B(r)} + r^{2}d\Omega \text{ with } B(r) = 1 - \frac{\beta(2-3\beta\gamma)}{r} - 3\beta\gamma + \gamma r - \kappa r^{2}$$

Redshift

$$1 + z = \frac{a(0)}{a(r)} = \sqrt{1 - kr^2} - r\,\delta$$

New inverse-square law:

$$F(d_L) = \frac{L_0}{4\pi d_L^2} \left(\frac{d_{rs}}{d_L}\right)^{a_v}$$

Distance modulus

ACDM and **CG**

$$\mu(\theta, z) = 5 \log_{10} d_L(\theta, z) - 5$$
$$\theta = \begin{cases} \Omega_0 & \Lambda CDM \\ q_0 & CG \end{cases}$$

KCG

$$\mu(\theta, z) = 2.5(2 + a_V) \log_{10} \left[\frac{\delta_0 (1 + z) + \sqrt{(1 + z)^2 - (1 - \delta_0^2)}}{2 \delta_0} \right]$$

 $\theta = (a_V, \delta_0)$

Gamma-ray bursts (GRBs) as cosmological probes

Light curve

GRBs are currently observed up to redshift z~8

GRB light curves

Time

Counts/second

Light-curve parameter

(GRB sample from Schaefer 2007)

Distance indicator relations

NO NEARBY GRBs → **NO CALIBRATION** (unlike SNae)

Bayesian parameter estimation

$$p(\theta|D, M) = \frac{p(D|\theta, M) p(\theta|M)}{p(D|M)}$$

Likelihood

$$p(D|\theta, M) \sim \exp\left(-\frac{1}{2}\delta Y^T C^{-1}\delta Y\right)$$

 $\delta Y = measures - expected values(\theta)$

D = {all the observables, including uncertainties}

C = covariance matrix

Analysis is performed over the 4 relations at the same time!

Analysis performed with <u>APEMoST</u> (Automated Parameter Estimation and Model Selection Toolkit) by Buchner and Gruberbauer: apemost.sourceforge.net

Parameter probability density functions: $p(\theta | D, M)$

a vs b

 σ_{int} vs Ω_{0}

(similar PDFs for the 4 relations)

 $\log_{10} P_{bolo} = a + b \log_{10} X - f(\theta, z)$

 $W_i = a + b \log_{10} X_i - f(\theta, z_i)$ is the mean of $\log_{10} P_{bolo}^{i}$ with variance σ_{int}^2

GRBs distance indicators

Light-curve parameter

Parameter probability density functions: $p(\theta | D, M)$

a vs b

σ_{int} vs Ω_{0}

(similar PDFs for the 4 relations)

$$\log_{10} P_{bolo} = a + b \log_{10} X - f(\theta, z)$$

 $W_i = a + b \log_{10} X_i - f(\theta, z_i)$ is the mean of $\log_{10} P_{bolo}^{i}$ with variance σ_{int}^{2}

Combining with other probes to obtain tighter constraints? e.g. SNae

Supernova Light Curves

Observed and derived quantities

 $\mu_B(\theta, z_i) = m_i - M + \alpha (s_i - 1) - \beta c_i$

(Constitution set of Hicken et al 2009)

Bayesian parameter estimation again...

Parameter probability density functions: p(θ | D, M) derived for the SNae alone

β vs α

 $\sigma_{int} vs \beta$

M vs Ω₀

Combining GRBs with SNae

What happens in CG and KCG?

1.5

2.0

5

10

 $\frac{15}{\delta_0/10^{-6}}$ 20

30

25

1.0

46

0.5

1.5

1.0

 $\mathbf{b}_{\mathbf{Ep}}$

2.0

0.5

GRBs distance indicators in CG

Light-curve parameter

GRBs distance indicators in KCG

-uminosity

Light-curve parameter

Models without an early decelerated expansion can clearly describe the GRB data For completeness: SNae in CG and KCG?

PDFs of SNae parameters in CG

β vs α

 $\sigma_{_{int}}$ vs β

M vs q₀

PDFs of SNae parameters in KCG

Hubble diagram of SNae in the three models

the distance modulus μ is indeed a model-dependent quantity

Hubble diagram of GRBs in the three models

the distance modulus μ is indeed a model-dependent quantity

Two issues:

• find the parameters that can describe the data be done

• compare the models >?

The Bayesian Evidence

 $p(D|M) = \int p(D|\theta, M) p(\theta|M) d\theta$

Model posterior probability

Estimate performed with <u>APEMoST</u> (Automated Parameter Estimation and Model Selection Toolkit) by Buchner and Gruberbauer: apemost.sourceforge.net

Parallel tempering algorithm

20 *chains*(*values of* $\beta \in [0,1]$)

Values of In B₁₂

M ₁ /M ₂ sample	ACDM/CG	ACDM/KCG
GRBs	37.9	12.0
SNae	6.6	7.2
GRBs + SNae	1.5	24.3

 $B_{12} > 1 \implies M_1$ favoured over M_2

Conclusions

• ACDM, CG, and KCG can describe the observational data

•The Bayes factor favours ACDM over CG and KCG

But ΛCDM has dark matter, dark energy...