Comparison of Goodness–of–fit Assessment Methods with C statistics in Astronomy

Yang Chen Joint work with X. Li, X. Meng, V. Kashyap and M. Bonamente

Department of Statistics, University of Michigan

1 Spectral Model

2 C Statistics

3 Hypothesis Testing

1 Spectral Model

2 C Statistics

Bypothesis Testing

Spectral Model

Let

$$N_i | \boldsymbol{\theta} \stackrel{\text{indep.}}{\sim} \text{Poisson}(\boldsymbol{s}_i(\boldsymbol{\theta})); \quad i = 1, \dots, n.$$
 (1)

The spectral model in each energy bin *i* is $s_i(\theta)$, which can be regarded as a *known* function of unknown parameters θ .

In the astronomy community, the chi-squared statistics defined in Equation (2) is typically adopted for performing both model fitting and goodness-of-fit assessment [Kaastra, 2017; Bonamente, 2019]:

$$\chi^{2}(\boldsymbol{\theta}) := \sum_{i=1}^{n} \frac{(N_{i} - s_{i}(\boldsymbol{\theta}))^{2}}{s_{i}(\boldsymbol{\theta})} \quad \text{or} \quad \sum_{i=1}^{n} \frac{(N_{i} - s_{i}(\boldsymbol{\theta}))^{2}}{N_{i}}.$$
 (2)

Spectral Model

The spectral model in a given bin, labeled by the index i, is defined as

$$s_i(\theta) = \int_{\underline{E}}^{\overline{E}} \mathrm{R}(E, i) A(E) f(E, \theta) \ dE + B_i, \qquad (3)$$

where the spectral model $f(E, \theta)$ can be

• three-parameter absorbed power-law model [Rybicki and Lightman, 1979]

$$f(E, \theta = \{K, N_H, \Gamma\}) = \mathbf{K} \cdot e^{-N_H \cdot \sigma(E)} \cdot E^{-\Gamma}, \qquad (4)$$

• absorbed thermal spectrum [Allen et al., 2004] defined as

$$f(E, \theta = \{K, N_H, T, A\}) = K \cdot e^{-N_H \cdot \sigma(E)} \cdot \epsilon(T, A),$$
(5)

We are interested in the goodness-of-fit assessment of

$$H_0: s_i = f_i(\boldsymbol{\theta}) = \sum_{j=1}^m c_{ij} g_j(\boldsymbol{\theta}) \quad \text{versus} \quad H_1: \text{every } s_i \text{ is free,}$$
(6)

where c_{ij} are constants and g_i are smooth functions that may depend on *i* and *m*.

Spectral Model

2 C Statistics

Bypothesis Testing

C Statistics: Definitions

Define a null hypothesis and the C statistics function as

$$H_0: \mathcal{S} = \{s_i(\boldsymbol{\theta}), 1 \le i \le n\} \subset \mathbb{R}^n.$$
(7)

$$C_n(\boldsymbol{\theta}) = 2\sum_{i=1}^n \left[s_i(\boldsymbol{\theta}) - N_i \log s_i(\boldsymbol{\theta}) - N_i + N_i \log N_i \right].$$
(8)

And C_{\min} is obtained by plugging the maximum likelihood estimator $\hat{\theta}$, i.e.

$$C_{\min} = C_n(\hat{\boldsymbol{\theta}}) = 2\sum_{i=1}^n [s_i(\hat{\boldsymbol{\theta}}) - N_i \log s_i(\hat{\boldsymbol{\theta}}) - N_i + N_i \log N_i] = -2\log\Lambda_n(\hat{\boldsymbol{\theta}}).$$

Notion of Asymptotics

Lemma

If $\sum_{i=1}^{n} s_i(\boldsymbol{\theta}^*) \to \infty$, then there exists $\{m_1, \ldots, m_n\}$ such that (1) $\sum_{i=1}^{n} m_i \to \infty$, (2) $m_i = 1$ when $s_i(\boldsymbol{\theta}^*) \le 1$, (3) $0.5 < s_i(\boldsymbol{\theta}^*)/m_i < 1$ when $s_i(\boldsymbol{\theta}^*) > 1$, (4) the likelihood is equivalent to the likelihood of the following model

$$\tilde{N}_{ij} \stackrel{\text{indep.}}{\sim} \operatorname{Poisson}\left(\frac{s_i(\boldsymbol{\theta}^*)}{m_i}\right), \quad \sum_{j=1}^{m_i} \tilde{N}_{ij} = N_i.$$
 (9)

Spectral Model

O Statistics

3 Hypothesis Testing

Hypothesis Testing with Wilk's Theorem

Lemma (Wilk's Theorem for C statistics)

Under the regularity conditions (B1) and assuming that the null hypothesis H_0 given in (7) is true, then

$$\Gamma_n := C_{\text{true}} - C_{\min} \to \chi_d^2 \quad \text{as} \quad n \to \infty, \tag{10}$$

where *d* is the number of adjustable/free parameters of the null model. Note that here the dimension of the full space is not fixed, which is actually *n*, thus the Wilk's theorem of the likelihood ratio test does not hold for the C_{\min} statistics itself, i.e., $C_{\min} = C_n(\hat{\theta})$ does not converge to a chi-squared distribution with degree of freedom n - d as $n \to \infty$.

Asymptotic Normality of C Statistic

Under H_0 and regularity conditions (B), we have

(i) Not computable
$$\frac{C_n(\hat{\boldsymbol{\theta}}) - \mathbb{E}[C_n(\hat{\boldsymbol{\theta}})]}{\sqrt{\operatorname{Var}(C_n(\hat{\boldsymbol{\theta}}))}} \to N(0, 1),$$
(11)

(ii) Bootstrap failure
$$T = \frac{C_n(\hat{\theta}) - \hat{\mu}(\theta)}{\hat{\sigma}(\theta)} \to N(0, 1),$$
 (12)

and conditionally on $\hat{\pmb{\theta}}$

(iii) Computable
$$\frac{C_n(\hat{\boldsymbol{\theta}}) - \mathbb{E}[C_n(\hat{\boldsymbol{\theta}})|\hat{\boldsymbol{\theta}}]}{\sqrt{\operatorname{Var}(C_n(\hat{\boldsymbol{\theta}})|\hat{\boldsymbol{\theta}})}} \to N(0, 1),$$
(13)

where $\mu(\boldsymbol{\theta}) = \mathbb{E}[C_n(\boldsymbol{\theta})], \sigma^2(\boldsymbol{\theta}) = \operatorname{Var}(C_n(\boldsymbol{\theta})) - Q(\boldsymbol{\theta}), Q(\boldsymbol{\theta}) = \mathbf{c}^{\top}(\boldsymbol{\theta})\mathbf{I}^{-1}(\boldsymbol{\theta})\mathbf{c}(\boldsymbol{\theta})$ and $\mathbf{c}(\boldsymbol{\theta}) = \operatorname{Cov} \{C_n(\boldsymbol{\theta}), \mathbf{D}\ell(\boldsymbol{\theta})\} = O_p(n).$

Algorithms of Goodness-of-fit

Algorithm Number (Name)	Method
Algorithm 1 (LR- χ^2)	Likelihood ratio with χ^2 statistics
Algorithm 2a (K-B-Expansion)	Z-test with Polynomial approximation
Algorithm 2b (Bootstrap-Gaussian)	Z-test with bootstrap mean & variance
Algorithm 3a (High-Order-Marginal)	Z-test based on (ii) in Theorem
Algorithm 3b (High-Order-Conditional)	Z-test based on (iii) in Theorem
Algorithm 4a (Parametric-Bootstrap)	Parametric bootstrap with estimated <i>p</i> -value
Algorithm 4b (B-C-Bootstrap)	Parametric bootstrap with bias correction
Algorithm 4c (Double-Bootstrap)	Double bootstrap with adjusted <i>p</i> -value

Table 1: List of algorithms considered in numerical studies.

Alg.1	Alg.2a	Alg.2b	Alg.3	Alg.4a	Alg.4b	Alg.4c
O(1)	$O(n^2)$	$O(Bn^2)$	$O(n^2)$	$O(Bn^2)$	$O((B_1 + B_2)n^2)$	$O(B_1B_2n^2)$

Table 2: Computational complexity of the different algorithms when the link function of s involves summing over all channels.

Spectral Model

2 C Statistics

Bypothesis Testing

Numerical Results: Simulation Experiments

Figure 4.1: Histograms of the null distributions of C_{\min} from Algorithms 1-4 under two case of RMF and a powerlaw spectrum. The bootstrap size is B = 1000.

п	10	30	50	75	100
Single Bootstrap ($B = 100$)	0.90	7.07	20.24	47.36	84.99
High-order	0.02	0.13	0.36	0.77	1.38

Table 3: Average run time (CPU seconds) of Algorithms 2b and 3b under Case 1.

Real Data: quasar PG 1116+215

Figure 4.2: X-ray count spectra of two observations of the quasar PG 1116+215, labeled as OLD and NEW. Each observation has a total number of counts in a small source region (source plus background counts, in black and red), and the total number of counts in a larger background region that needs to be re-scaled by a deterministic factor before subtraction from the total number of counts (in grey and orange). See Bonamente et al. [2016] for details of data processing.

Yang Chen (U-M Stats)

C Statistics

Spectrum	C _{min}	Alg.1	Alg.2b	Alg.3b	Alg.4a
OLD	190.72	0.039*	0.060	0.054	0.060
NEW	167.67	0.284	0.324	0.312	0.313
BACK OLD	171.39	0.221	0.254	0.244	0.257
BACK NEW	153.46	0.587	0.621	0.603	0.614

Table 4: *p*-values of four test methods in each spectrum. The bootstrap size is B = 1000.

	Spectrum	Alg.1	Alg.2b	Alg.3b	Alg.4a
Average pivalue	NEW	0.488	0.361	0.372	0.356
Average <i>p</i> -value	BACK NEW	0.122	0.493	0.499	0.490
Rejections ($lpha=0.10$)	NEW	0	2	2	2
	BACK NEW	11	2	2	2

Table 5: Performance of four test methods in each spectrum with shorter exposure time. The bootstrap size is B = 1000.

References I

- S. W. Allen, R. W. Schmidt, H. Ebeling, A. C. Fabian, and L. van Speybroeck. Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters. *Monthly Notices of the Royal Astronomical Society*, 353: 457–467, Sept. 2004. doi: 10.1111/j.1365-2966.2004.08080.x.
- M. Bonamente. Distribution of the c statistic with applications to the sample mean of poisson data. *Journal of Applied Statistics*, pages 1–22, 2019.
- M. Bonamente, J. Nevalainen, E. Tilton, J. Liivamägi, E. Tempel, P. Heinämäki, and T. Fang. A possible Chandra and Hubble Space Telescope detection of extragalactic WHIM towards PG 1116+215. *Monthly Notices of the Royal Astronomical Society*, 457:4236–4247, Apr. 2016. doi: 10.1093/mnras/stw285.
- J. Kaastra. On the use of c-stat in testing models for x-ray spectra. *Astronomy* & *Astrophysics*, 605:A51, 2017.
- G. B. Rybicki and A. P. Lightman. *Radiative Processes in Astrophysics*. New York, Wiley-Interscience, 1979. URL http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=1979rpa..book.....R&db_key=AST.