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Goodness-of-Fit problem

Let X be a continuous random variable with support X ⊆ R with unknown
distribution function P and density p. The goodness-of-fit (GOF) problem aim to
assess if P belongs to a family of continuous distribution functions Gβ, with PDF
gβ, where β ∈ B ⊆ Rp. Formally, this corresponds to the hypothesis

H0 : p = gβ, for some β ∈ B versus H1 : p ̸= gβ, for all β ∈ B. (1)

Smooth tests also have solutions for GOF problem when X is discrete or X ⊆ Rd .
To reduce the technicality of the talk, we will not focus on them today.
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Orthonormal expansions of the density ratio

Assuming that P is absolutely continuous with respect to Gβ (P ≪ Gβ). If the
density ratio p/gβ ∈ L2(X ,Gβ), then it can be expanded via a series of
orthonormal basis functions {ψj}j∈N ∈ L2([0, 1],Gβ)

p(x)

gβ(x)
= θ0β +

∞∑
j=1

θjβψj

(
Gβ(x)

)
= 1 +

∞∑
j=1

θjβhjβ(x), for all x ∈ X , (2)

where θ0β = 1 and we denote ψj(Gβ(x)) as hjβ(x). The coefficients satisfy

θjβ =

∫
X
hjβ(x)

p(x)

gβ(x)
dGβ(x) =

∫
X
hjβ(x)dP(x). (3)
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Smooth Models and Smooth Tests

Given a point of truncation m, a smooth model for the true density p(x) is

pm(x) = gβ(x)

[
1 +

m∑
j=1

θjβhjβ
(
x
)]
, (4)

where the last term is the truncation of the expansion in (2) at order m.

By the smooth model, we have the test

H0 : for some β ∈ B, θ1β = ... = θmβ = 0 versus

H1 : for all β ∈ B, there exists at least one j , such that θjβ ̸= 0.
(5)

and this is commonly referred to as the “smooth test”.

Compared with the classical GOF tests, smooth tests concentrate the power
towards a finite number of possible directions specified by {h1β, ..., hmβ}.
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Smooth estimator and test statistics

A particularly appealing feature of smooth tests is that, when the null model is
rejected, they naturally correct for it. This correction is called the smooth
estimator

p̂m(x) = gβ(x)

[
1 +

m∑
j=1

θ̂jβhjβ
(
x
)]
, (6)

where

θ̂jβ =

∫
X
hjβ(x)dPn(x) =

1

n

n∑
i=1

hjβ(xi ). (7)

where Pn(x) =
1
n

∑n
i=1 1{Xi≤x} and 1{·} is the indicator function.

Assuming m is given and β is known, the score statistics can be written as

Sm = n
m∑
j=1

θ̂2jβ.

Under H0 and as n → ∞, Sm
d−→ χ2

m.
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Real data example: RT Cru

Background: RT Cru is a symbiotic system where a high-mass white dwarf
accretes from the wind of an M5 III red giant companion. RT Cru exhibits
variability features like aperiodic flickering at timescales of a few ks, and a strong
correlation of spectral intensities with overall brightness. The question that arises
then is what the origin of this variability could be.

Based on the observed X-ray spectrum produced by RT Cru, the origin can be
modeled as an intrinsic change in the soft thermal emission component as well as
changes in a continuum component due to intervening absorption. The presence of
spectral lines during increases in soft flux, especially if they are the dominant
contributors to soft emission, would support the former scenario, while the lack of
such lines would favor the latter scenario.

Problem: The Chandra/LETGS+HRC-S data was originally obtained to settle this
question, but the analysis was limited because of the relatively high instrument
background encountered.
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Real data example: RT Cru (cont.)

Solution (First-step): Perform the smooth tests to the background model using
the background-only data. Use the smooth estimator as the corrected background
distribution if rejected.

Solution (Second-step): Perform the smooth tests to the corrected background
model using the data containing potential emission lines. If the tests get rejected,
we claim the existence of such emission lines, otherwise, we set upper limits on the
intensity of the expected signals.
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Efficient score functions

Let uβ be the score function of the postulated distribution Gβ and let Γβ be the
Fisher information matrix. Then, the normalized score function bβ is

bβ(x) = Γ
−1/2
β uβ(x) =

[
bβ1

(x), . . . , bβp
(x)

]T
, for all x ∈ X . (8)

Define the efficient score functions, {h̃jβ}mj=1, as

h̃jβ(x) = hjβ(x)−
p∑

k=1

⟨hjβ, bβk ⟩Gβ
bβk (x), j = 1, . . . ,m. (9)

for all x ∈ X , where ⟨hjβ, bβk ⟩Gβ
=

∫
X hjβ(x)bβk (x)dGβ(x).
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Generalized score statistic

Suppose β̂n be the maximum likelihood estimate (MLE) of β and define V̂ as

V̂ = [vG ,n(h̃1β̂n
), ..., vG ,n(h̃mβ̂n

)]T , (10)

where vG ,n(h̃jβ̂n
) := 1√

n

∑n
i=1 h̃jβ̂n

(xi ). The generalized score statistic is:

Tm = V̂
T
Σ−

V̂
V̂ , (11)

where ΣV̂ is the covariance matrix of V̂ , with elements (ΣV̂ )ij =
〈
h̃iβ̂n

, h̃jβ̂n

〉
G
β̂n

.

Under H0 and as n → ∞, Tm
d−→ χ2

r , where r is the rank of ΣV̂ .

This result can be extened for any
√
n-consistent estimator (

√
n(β̂n −β) = Op(1)).
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Dara-driven order selection

The power of the test depends on how well the true distribution is approximated
by the m-dimensional smooth model.

The determination of the m can be seen as a model selection problem to find the
best nonparametric density estimates of the true distribution. For instance,
Kallenberg and Ledwina (1997) propose the following BIC-type selection criteria

i. As the first step, choose a suitably large value M (usually 10).

ii. Then, obtain the MLE β̂n of β and calculate vG ,n(h̃jβ̂n
) for all j = 1, ...,M.

iii. Finally, choose the smallest m that maximizes

BIC(m) =
m∑
j=1

v 2
G ,n(h̃jβ̂n

)−m log n. (12)
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Post-selection Inferences

Traditional inference is typically constructed assuming the model under study has
been selected independently from the data. However, the order selection is
data-driven. The limiting distributions of test statistics are strongly affected by the
additional source of variability associated with the selection process.

We may consider the data splitting or suitable post-selection adjustments for the
p-values. But those either need extra sample sizes or are conservative.

Bootstrap allows for the selection process to be repeated for each bootstrap
replicate, which appropriately accounts for the randomness associated with the
selection process.
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Limitations of classical data-driven smooth tests

Even without the order selection, the convergence of the generalized score statistic
Tm to its limiting distribution is slow. For instance, Klar (2000) demonstrated that
sample sizes as large as 10, 000 are required to in testing normal distribution to
achieve a satisfactory approximation of the asymptotic null distribution.

In practice, p-values and critical values are recommended to be determined using
parametric bootstrap procedures (Thas, 2010). However, parametric bootstrap
procedures can be computationally inefficient due to the complexity involved in
1. samplings from the postulated distributions,
2. performing likelihood or score function evaluations,
3. estimating the parameters and test statistics,
which makes the procedures infeasible.
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Projected parametric bootstrap

Repetitive estimations of unknown parameter β within each bootstrap replicate
can be costly. Moreover, the generalized score statistic requires the re-estimation
of the efficient score functions, {h̃jβ̂n

}mj=1, and their covariance matrix.

Suppose the parametric bootstrap samples from Gβ̂n
are denoted as x1,boot , . . . ,

xn,boot , and let β̂boot be the parameter estimated based on the bootstrap samples.

We have proven

vboot
G ,n (h̃

jβ̂boot
) =

1
√
n

n∑
i=1

h̃
jβ̂boot

(xi,boot), (13)

is asymptotically the same as the ones that we use β̂n instead of β̂boot , i.e.,

vboot
G ,n (h̃

jβ̂n
) =

1
√
n

n∑
i=1

h̃
jβ̂n

(xi,boot). (14)

Therefore, test statistics that are continuous functionals of them also have the
same limiting distribution.
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Theorem

Suppose there exists a neighborhood N of β∗, such that

1 for almost all x ∈ X (w.r.t. the probability measure Gβ∗ ), the function β 7→ h̃jβ(x) is
continuously differentiable in the neighborhood of β∗, for all j = 1, . . . ,M, with its
gradient denoted as ∇β h̃jβ(x);

2 the components of the functions ∇β h̃jβ(x) for all β ∈ N are bounded by a
Gβ∗ -integrable function M(x) for almost all x ∈ X ;

then, for each deterministic sequence δn = O(n−1/2),

vG ,n(h̃jβ) = vG ,n(h̃jβ∗ ) + Rn(β), where sup
β∈N:∥β−β∗∥≤δn

Rn(β)
p−→ 0. (15)

Corollary

Assume that the regularity conditions of Theorem 4.1 of Babu and Rao (2004) and the
assumptions of the Theorem above are satisfied. Then,

vboot
G ,n (h̃

jβ̂n
) = vboot

G ,n (h̃
jβ̂boot

) + op(1) = vG ,n(h̃jβ̂n
) + op(1). (16)
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Motivation and main idea of the K-2 transformation

Motivation: Not only be inefficient in re-estimation of MLEs and test statistics,
but also difficult to generate samples, or cannot easily evaluate its likelihood or
score functions.

Main idea of the K-2 transformation: produce new K-2 transformed test
statistics whose limiting distribution under the complicated postulated distribution
is the same as some statistics under a simple reference distribution.

Moreover, this method achieves asymptotically distribution-freeness, thus requiring
only a single simulation from the reference distribution when testing for various
hypothesized distributions.
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Extensions of current work

Extension to binned data: Many real-world problems in physics and astronomy
depend on binned data. In my future work, I will also extend all the methods
described to address the binned data regime. The modeling framework will
incorporate the current work by Algeri S. and Khmaladze E.V..
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Motivation of Smooth Tests From a Theoretical Perspective

Neuhaus (1976) and Milbrodt (1990) shows that

▶ only very few of deviations from gβ with the KS, CVM, AD statistics
are of reasonable local asymptotic power1.

▶ only one direction with the highest local asymptotic power.

▶ ”good” directions correspond to very smooth departures from the
postulated model.

Smooth test considers exatly the smooth departures from the postulated model.

1Local asymptotic power: the power of a test under a sequence of distributions in the
alternative hypothesis, as a way of approximating the finite-sample power function of a
test
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Efficient Score Functions

Apply the Taylor expansion at β around β∗ and θ = 0, we eventually arrive at

p(x)

gβ(x)
=

p (x)

gβ∗ (x)
+ (β − β∗)

t uβ(x) + θThβ (x) .

This approximation demonstrates that the comparison density lives in a subspace
which is spanned by the m-dimensional h, but also by the score functions uβ of
the nuisance parameter β, and the latter actually spans the d-dimensional
subspace of comparison densities that are consistent with the null hypothesis.

Not all of the spanned m-dimensional subspace is relevant for the alternative. It is
therefore more efficient to transform h so that it spans a m-dimensional subspace
that is exclusively relevant for the alternative,
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Order selection test

The so-called order selection test employs a test statistic that directly involves
order selection, thereby removing the need to handle order selection and the
associated post-selection inferences issues. In the context of smooth tests, Aerts et
al. (1999) introduced the order selection test statistic as

T̃m = max
1≤m≤M

Tm

m
, (17)

where Tm is the generalized score test statistic.

Under certain regularity conditions, the asymptotic null distribution T of the test
statistic T̃m is given by

P(T ≤ x) = exp

[
−

∞∑
s=1

P
(
χ2
s > sx

)
s

]
. (18)
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