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• All sources are variable - short (<100 yrs) and long timescales (>1000 yrs)


• Variability - periodic, stochastic, flaring, quasi-periodic, dimming, 
brightening, other types?



• Echos of the primary variations:


• reverberation - primary radiation reflected from the medium


• enhanced emission as the ‘wave’ propagates through the medium


• Light bending -> gravitational lensing -> delayed variations between images



(1) Reverberation - primary radiation reflected/reprocessed by the medium

https://archive.stsci.edu/hlsp/storm

https://archive.stsci.edu/hlsp/storm


(2) Reverberation - primary radiation reflected/reprocessed from the medium


Structure - look into unresolved center of active galaxies  (< 1pc) 

Measurements of black hole mass 

NGC5548 STORMCackett, Bentz & Kara 2021

Mass ~ Emission line width * time-delay



Light echos - ‘enhanced’ emission as the ‘wave’ propagates through the medium


Light Echo in the Galactic CenterV404 Cyg

Credit: NASA/CXC/ Chandra Press Images



Strong gravity bends lights

• Lens - a galaxy cluster 


• Arcs - images of lensed galaxies 
at larger distance

Gravitational Lensing



Images of Lensed Quasars



Strong Lensing time-delay cosmography in the 2020s

Astronomy & Astrophysics Review


Treu, Suyu & Marshall 2020



From Tewes et al 2012



Light curves obtained from monitoring individual images of lensed quasars

Rathna Kumar et al 2013

COSMOGRAIL
https://obswww.unige.ch/~millon/d3cs/COSMOGRAIL_public/

Millon et al 2020 - data release

https://obswww.unige.ch/~millon/d3cs/COSMOGRAIL_public/
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Figure 1. Data for doubly lensed quasar SDSS J1001+5027
Kumar et al. (2013), studied in Section 5.3 of this work.

ing e↵ects induce extra variability in the observed mag-
nitudes. First, strong gravitational lensing magnifies
the brightness of each light curve to di↵erent degrees.
Therefore x and y can exhibit di↵erent average magni-
tudes. Tak et al. (2017) take this e↵ect into account by
introducing an intercept term ✓0 as follows:

Y (t) = X(t��) + ✓0. (2)

Second, additional extrinsic long-term variability
might be caused by microlensing, a lensing e↵ect occur-
ring when a light ray passes close to a moving object near
the lensing galaxy. This e↵ect is typically modeled by
a polynomial regression of order m on time (Kochanek
et al. 2006; Courbin et al. 2011; Morgan et al. 2012; Tak
et al. 2017). That is,

Y (t) = X(t��) +wm(t��)✓, (3)

where wm(t � �) = {1, t � �, . . . , (t � �)m} is the
vector containing the polynomial time variables, and
✓ = {✓0, . . . , ✓m} is the microlensing (regression) co-
e�cients. We treat m as a hyperparameter. That is,
it indexes the choice of model and its value is set by
comparing several values as part of statistical model se-
lection, see Section 3.1.
Given the parameters � and ✓, we can construct a

composite light curve that combines two lensed light
curves (as if they were a single light curve) by adjust-
ing one light curve according to the model in (3). The
combined observation times are composed of the origi-
nal observation times and the time-delay-shifted obser-
vation times, t� = {ti}ni=1[{ti��}ni=1. We denote the
magnitudes of the composite light curve by z = {zj}2nj=1,
where each zj is defined as

zj =

8
<

:
xi for some i if t�j is in t,

yi �wm(tj ��)✓ for some i if t�j is in t��.

(4)
We can similarly define the vector of measurement

error standard deviations as �z = {�zi }2ni=1 with:

�zj =

8
<

:
�xi for some i if t�j is in t,

�yi for some i if t�j is in t��.
(5)

We assume that the vector of measurements for the com-
posite light curve z is the discrete realization of an un-
observed continuous-time light curve Z(t), which repre-
sents the true source magnitude of the AGN at time
t 2 R. Therefore, given � and ✓, we only need to
model the stochastic variability of the single latent light
curve Z(t). The DRW and CARMA processes have been
widely used to model the stochastic nature of the in-
trinsic variability in AGN light curves since Kelly et al.
(2009, 2014) introduced them to the astronomical com-
munity.

2.3. DRW and CARMA Processes

The DRW process has already been integrated into
time delay estimation methodology by Tak et al. (2017),
and we propose an extension of this method by mod-
elling the intrinsic light curve Z(t) with the more general
CARMA processes.
The Damped Random Walk (DRW) process is defined

as the solution of the stochastic di↵erential equation:

dZ(t) = �1

⌧
(Z(t)� µ)dt+ ✏(t), (6)

where µ is the long-term mean of the process, ⌧ is the
timescale for the process to revert to its long-term mean
and ✏(t) is a white noise process with variance �2 (that
is, ✏(t) ⇠ N(0,�2)) governing the stochastic fluctuations
in the process (Brockwell & Davis 2002).
A CARMA process is indexed by two hyperparam-

eters: its auto-regressive order p and moving average
order q. The process is denoted CARMA(p, q) and is
defined as the solution of the stochastic di↵erential equa-
tion:

dpZ(t)

dtp
+↵p�1

dp�1Z(t)

dtp�1
+ · · ·+ ↵0Z(t) =

µdt+�q
dq✏(t)

dtq
+ �q�1

dq�1✏(t)

dtq�1
+ · · ·+ ✏(t), (7)

where ↵ = {↵0, . . . ,↵p�1} are the auto-regressive pa-
rameters, � = {�1, . . . ,�q} are the moving average co-
e�cients and ✏(t) is a white noise process with variance

4 Meyer et al.

model parameters used by TD-CARMA ranges
from 6 to 15. Parsimonious methods are easier to
interpret scientifically and also statistically, since
better behaved likelihoods produce more Gaussian
estimators, and more easily quantifiable errors.

The rest of the paper is organized as follows. Sec-
tion 2 presents the time delay estimation method TD-
CARMA. Section 3 details our Bayesian inferential
procedure, including MultiNest. In Section 4, we
show through simulation studies that the CARMA-
based time delay estimation method is more applica-
ble and accurate than several popular methods. In Sec-
tion 5, we apply the method to doubly lensed quasars
HS 2209+1914, SDSS J1001+5027, SDSS J1206+4332,
SDSS J1515+J1511, SDSS J1455+1447 and SDSS
J1349+1227. Finally, Section 6 presents further research
directions and concludes. Background material and de-
tailed results from our numerical studies appear in a
number of appendices.

2. A CARMA-BASED TIME DELAY MODEL

Strong gravitational lensing can produce multiple
copies of the observed source’s light curve. While our
statistical model is explicitly designed for the doubly
lensed case, it can be applied pairwise to more complex
systems (as in Tak et al. 2017) and could be generalised
to the quadruply lensed case in order to account for cor-
relations among the time delay parameters. Henceforth,
however, we consider the doubly lensed case.

2.1. Data

The data for a doubly lensed quasar observed for
n epochs can be written as D = {ti, xi, �xi , yi, �

y
i }ni=1,

where ti denotes the measurement time (in days) of ob-
servation epoch i, xi and yi denote the observed bright-
ness of the light curves of the two lensed images of the
same quasar at time ti (typically measured in apparent
magnitude), and �xi and �yi denote the standard devi-
ation of the measurement error on xi and yi (thus en-
coding the heteroskedasticity of measurement errors).
Table 1 summarizes the symbols used in this work. Fig-
ure 1 shows the data for doubly lensed quasar SDSS
J1001+5027, where light curve B is delayed from light
curve A, for � ⇡ 119.3 days according to previous anal-
yses (a figure reproduced from Kumar et al. 2013).

2.2. Time Delay Estimation Framework

The general idea of our time delay estimation frame-
work is to reconstruct the common intrinsic quasar light
curve from the measurements of its two lensed coun-
terparts, under the assumption that they are time and

Table 1. Glossary of notation used in this work.

Data

Symbol Description

t Observation times

x Brightness measurements for light curve A

y Brightness measurements for light curve B

z Composite light curve

�x Standard deviations for light curve A

�y Standard deviations for light curve B

Model Parameters

Symbol Description

� Time delay (days)

✓ Microlensing polynomial regression coe�cients

↵ CARMA auto-regressive coe�cients

� CARMA moving average coe�cients

⌧ DRW mean-reversion timescale

�2 CARMA and DRW white noise variance

µ CARMA and DRW long-term mean

⌦ Full set of either DRW or CARMA parameters

Model Hyperparametersa

Symbol Description

p Auto-regressive order

q Moving average order

m Microlensing polynomial regression order

Other Symbols

Symbol Description

Z Bayesian evidence

Zi Bayesian evidence for Model i or Mode i

⇡i Relative probability of Model i or Mode i

� Generic parameter vector

� Range of possible values for generic parameter �
a The hyperparameters index competing models. Values for
the hyperparameters are selected via the Bayesian evidence
or the relative probabilities of the models considered; see
Section 3.1.

magnitude shifted versions of one another, up to a mi-
crolensing term, where the time shift corresponds to the
time delay �.
The magnitude measurements x = {xi}ni=1 and y =

{yi}ni=1 are assumed to be discrete realizations of un-
observed continuous light curves X(t) and Y (t), which
represent the true source magnitudes at time t 2 R. As
a result of the strong gravitational lensing phenomenon,
we assume that Y (t) is a time shifted version of X(t),
which yields

Y (t) = X(t��), (1)

where � is the time delay in days. In addition to the
intrinsic brightness fluctuations of the source, two lens-
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ing e↵ects induce extra variability in the observed mag-
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the brightness of each light curve to di↵erent degrees.
Therefore x and y can exhibit di↵erent average magni-
tudes. Tak et al. (2017) take this e↵ect into account by
introducing an intercept term ✓0 as follows:

Y (t) = X(t��) + ✓0. (2)

Second, additional extrinsic long-term variability
might be caused by microlensing, a lensing e↵ect occur-
ring when a light ray passes close to a moving object near
the lensing galaxy. This e↵ect is typically modeled by
a polynomial regression of order m on time (Kochanek
et al. 2006; Courbin et al. 2011; Morgan et al. 2012; Tak
et al. 2017). That is,

Y (t) = X(t��) +wm(t��)✓, (3)

where wm(t � �) = {1, t � �, . . . , (t � �)m} is the
vector containing the polynomial time variables, and
✓ = {✓0, . . . , ✓m} is the microlensing (regression) co-
e�cients. We treat m as a hyperparameter. That is,
it indexes the choice of model and its value is set by
comparing several values as part of statistical model se-
lection, see Section 3.1.
Given the parameters � and ✓, we can construct a

composite light curve that combines two lensed light
curves (as if they were a single light curve) by adjust-
ing one light curve according to the model in (3). The
combined observation times are composed of the origi-
nal observation times and the time-delay-shifted obser-
vation times, t� = {ti}ni=1[{ti��}ni=1. We denote the
magnitudes of the composite light curve by z = {zj}2nj=1,
where each zj is defined as

zj =

8
<

:
xi for some i if t�j is in t,

yi �wm(tj ��)✓ for some i if t�j is in t��.

(4)
We can similarly define the vector of measurement

error standard deviations as �z = {�zi }2ni=1 with:

�zj =

8
<

:
�xi for some i if t�j is in t,

�yi for some i if t�j is in t��.
(5)

We assume that the vector of measurements for the com-
posite light curve z is the discrete realization of an un-
observed continuous-time light curve Z(t), which repre-
sents the true source magnitude of the AGN at time
t 2 R. Therefore, given � and ✓, we only need to
model the stochastic variability of the single latent light
curve Z(t). The DRW and CARMA processes have been
widely used to model the stochastic nature of the in-
trinsic variability in AGN light curves since Kelly et al.
(2009, 2014) introduced them to the astronomical com-
munity.

2.3. DRW and CARMA Processes

The DRW process has already been integrated into
time delay estimation methodology by Tak et al. (2017),
and we propose an extension of this method by mod-
elling the intrinsic light curve Z(t) with the more general
CARMA processes.
The Damped Random Walk (DRW) process is defined

as the solution of the stochastic di↵erential equation:

dZ(t) = �1

⌧
(Z(t)� µ)dt+ ✏(t), (6)

where µ is the long-term mean of the process, ⌧ is the
timescale for the process to revert to its long-term mean
and ✏(t) is a white noise process with variance �2 (that
is, ✏(t) ⇠ N(0,�2)) governing the stochastic fluctuations
in the process (Brockwell & Davis 2002).
A CARMA process is indexed by two hyperparam-

eters: its auto-regressive order p and moving average
order q. The process is denoted CARMA(p, q) and is
defined as the solution of the stochastic di↵erential equa-
tion:

dpZ(t)

dtp
+↵p�1

dp�1Z(t)

dtp�1
+ · · ·+ ↵0Z(t) =

µdt+�q
dq✏(t)

dtq
+ �q�1

dq�1✏(t)

dtq�1
+ · · ·+ ✏(t), (7)

where ↵ = {↵0, . . . ,↵p�1} are the auto-regressive pa-
rameters, � = {�1, . . . ,�q} are the moving average co-
e�cients and ✏(t) is a white noise process with variance
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Figure 1. Data for doubly lensed quasar SDSS J1001+5027
Kumar et al. (2013), studied in Section 5.3 of this work.

ing e↵ects induce extra variability in the observed mag-
nitudes. First, strong gravitational lensing magnifies
the brightness of each light curve to di↵erent degrees.
Therefore x and y can exhibit di↵erent average magni-
tudes. Tak et al. (2017) take this e↵ect into account by
introducing an intercept term ✓0 as follows:

Y (t) = X(t��) + ✓0. (2)

Second, additional extrinsic long-term variability
might be caused by microlensing, a lensing e↵ect occur-
ring when a light ray passes close to a moving object near
the lensing galaxy. This e↵ect is typically modeled by
a polynomial regression of order m on time (Kochanek
et al. 2006; Courbin et al. 2011; Morgan et al. 2012; Tak
et al. 2017). That is,

Y (t) = X(t��) +wm(t��)✓, (3)

where wm(t � �) = {1, t � �, . . . , (t � �)m} is the
vector containing the polynomial time variables, and
✓ = {✓0, . . . , ✓m} is the microlensing (regression) co-
e�cients. We treat m as a hyperparameter. That is,
it indexes the choice of model and its value is set by
comparing several values as part of statistical model se-
lection, see Section 3.1.
Given the parameters � and ✓, we can construct a

composite light curve that combines two lensed light
curves (as if they were a single light curve) by adjust-
ing one light curve according to the model in (3). The
combined observation times are composed of the origi-
nal observation times and the time-delay-shifted obser-
vation times, t� = {ti}ni=1[{ti��}ni=1. We denote the
magnitudes of the composite light curve by z = {zj}2nj=1,
where each zj is defined as

zj =

8
<

:
xi for some i if t�j is in t,

yi �wm(tj ��)✓ for some i if t�j is in t��.

(4)
We can similarly define the vector of measurement

error standard deviations as �z = {�zi }2ni=1 with:

�zj =

8
<

:
�xi for some i if t�j is in t,

�yi for some i if t�j is in t��.
(5)

We assume that the vector of measurements for the com-
posite light curve z is the discrete realization of an un-
observed continuous-time light curve Z(t), which repre-
sents the true source magnitude of the AGN at time
t 2 R. Therefore, given � and ✓, we only need to
model the stochastic variability of the single latent light
curve Z(t). The DRW and CARMA processes have been
widely used to model the stochastic nature of the in-
trinsic variability in AGN light curves since Kelly et al.
(2009, 2014) introduced them to the astronomical com-
munity.

2.3. DRW and CARMA Processes

The DRW process has already been integrated into
time delay estimation methodology by Tak et al. (2017),
and we propose an extension of this method by mod-
elling the intrinsic light curve Z(t) with the more general
CARMA processes.
The Damped Random Walk (DRW) process is defined

as the solution of the stochastic di↵erential equation:

dZ(t) = �1

⌧
(Z(t)� µ)dt+ ✏(t), (6)

where µ is the long-term mean of the process, ⌧ is the
timescale for the process to revert to its long-term mean
and ✏(t) is a white noise process with variance �2 (that
is, ✏(t) ⇠ N(0,�2)) governing the stochastic fluctuations
in the process (Brockwell & Davis 2002).
A CARMA process is indexed by two hyperparam-

eters: its auto-regressive order p and moving average
order q. The process is denoted CARMA(p, q) and is
defined as the solution of the stochastic di↵erential equa-
tion:

dpZ(t)

dtp
+↵p�1

dp�1Z(t)

dtp�1
+ · · ·+ ↵0Z(t) =

µdt+�q
dq✏(t)

dtq
+ �q�1

dq�1✏(t)

dtq�1
+ · · ·+ ✏(t), (7)

where ↵ = {↵0, . . . ,↵p�1} are the auto-regressive pa-
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e�cients and ✏(t) is a white noise process with variance
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Some Future Projects

• Time-delays for a complete set of available lensed images 


• Unresolved light curves in gravitationally lensed systems


• Modeling light curves in multiple bands 


• Meta-analysis - use all available data 
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Abstract

In preparation for the era of time-domain astronomy with upcoming large-scale surveys, we propose a state-space
representation of a multivariate damped random walk process as a tool to analyze irregularly-spaced multifilter
light curves with heteroscedastic measurement errors. We adopt a computationally efficient and scalable Kalman
filtering approach to evaluate the likelihood function, leading to maximum O k n3( ) complexity, where k is the
number of available bands and n is the number of unique observation times across the k bands. This is a significant
computational advantage over a commonly used univariate Gaussian process that can stack up all multiband light
curves in one vector with maximum O k n3 3( ) complexity. Using such efficient likelihood computation, we provide
both maximum likelihood estimates and Bayesian posterior samples of the model parameters. Three numerical
illustrations are presented: (i) analyzing simulated five-band light curves for a comparison with independent single-
band fits; (ii) analyzing five-band light curves of a quasar obtained from the Sloan Digital Sky Survey Stripe82 to
estimate short-term variability and timescale; (iii) analyzing gravitationally lensed g- and r-band light curves of
Q0957+561 to infer the time delay. Two R packages, Rdrw and timedelay, are publicly available to fit the
proposed models.

Unified Astronomy Thesaurus concepts: Astrostatistics (1882); Interdisciplinary astronomy (804); Astrostatistics
tools (1887)
Supporting material: data behind figures

1. Introduction

A Gaussian process (GP) is one of the most important data
analytic tools in astronomy due to its well-known computa-
tional and mathematical conveniences. GPs are especially
useful for analyzing astronomical time-series data since they
are continuous-time processes accounting for irregular obser-
vation cadences. Moreover, a GP’s state-space representation
enables modeling of heteroscedastic measurement errors as
well. Such analytic advantages have made GPs so popular that
it is nearly impossible to list all subfields of astronomy where
GPs are useful; 19,483 ApJ articles appear on the webpage of
IOPscience and 18,038 MNRAS articles show up on the
webpage of MNRAS with the keyword “Gaussian process” (on
2020 February 19). However, it is the case that a multi-output
GP, which is suitable for modeling multiband time-series data,
has not been well documented in the astronomical literature.
This vector-output GP is widely used in other fields, e.g.,
cokriging or coregionalization in geostatistics (Journel &
Huijbregts 1978; Gelfand et al. 2004; Álvarez et al. 2012)
and multitask learning in machine learning (Caruana 1997).
The key idea is to model dependence among multisource data
via a covariance function to take advantage of their dependent
structure in making an inference or a prediction.

We propose a state-space representation of a multivariate
damped random walk process as a specific class of a multi-
output GP. This process is also called a multivariate Ornstein–
Uhlenbeck process (Gardiner 2009; Singh et al. 2018) and a
vectorized continuous-time autoregressive model with order
one, i.e., a vectorized CAR(1) or CARMA(1, 0) (Marquardt &
Stelzer 2007). In particular, the proposal is a multivariate
generalization of the work of Kelly et al. (2009). They adopt a

univariate GP with the Matérn(1/2) covariance function (i.e.,
damped random walk process) to fit single-filter quasar light
curves. Using this single-band model, they investigate
associations between model parameters and physical properties
of quasars. Following their work, MacLeod et al. (2010),
Kozłowski et al. (2010), Kim et al. (2012), and Andrae et al.
(2013) show more empirical evidence for such astrophysical
interpretations of the model parameters. The proposed multi-
variate generalization of their analytic tools can incorporate
more data from all available bands into one comprehensive
model. This enables more accurate inference on such physically
meaningful model parameters.
Also, the multivariate aspect of the proposal is essential for

studying stochastic variability in active galactic nuclei (AGNs)
in the era of the Vera C.Rubin Observatory Legacy Survey of
Space and Time (LSST, Ivezić et al. 2019). LSST light curves
are supposed to be sparse when only one band is considered. In
general, it is challenging to extract information about short-
term variability and timescale from sparsely observed single-
band light curves. This problem becomes worse if the actual
timescale of AGN variability is much shorter than the typical
observation cadence in each band. The proposed multiband
model, however, can alleviate this issue of sparse sampling.
This is because it can take advantage of more data points
observed at non-overlapping times in all bands. It will lead to
more accurate inference on short-term variabilities and time-
scales, which in turn will be helpful for investigating AGN
variability and light-curve classification.
From a methodological point of view, the proposed method

is flexible enough to model various aspects of astronomical
multifilter light curves. Above all, the proposed process is a
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