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AXAF Data Analysis Challenges

Aneta Siemiginowska1, Martin Elvis1, Alanna
Connors2, Peter Freeman3, Vinay Kashyap3, and
Eric Feigelson4

ABSTRACT The high quality of the AXAF X-ray data provides new
challenges for the X-ray data analysis. It is clear that an “old” approach
is not enough to fully exploit the capabilities of the AXAF instruments.
We describe a few of the statistical and computational problems that we
have so far identified. Some of them appear to be theoretically solvable
but computationally challenging, while others state problems for theoreti-
cal statistics which, so far as we know, are unsolved.The problems divide,
from an astronomical point of view, into: Modeling the Data (e.g. nonlin-
ear parameter estimation, uncertainties in the model, weighting the data,
correlated residuals), Source Detection (events in N-space, use of wavelets,
significance of detected structures) and Instrument Related Issues (pile-up
in AXAF ACIS, overlapping orders in grating spectra).

1 Introduction

Study of X-ray emission from stars and galaxies requires placing highly
specialized telescopes and detectors on space-based satellites, because X-
rays do not penetrate the Earth’s atmosphere. Following the initial discov-
eries of cosmic X-ray sources in the early 1960s, 28 satellite-borne X-ray
missions have been launched by several nations (Bradt et al. 1992). NASA’s
forthcoming “Advanced X-ray Astronomy Facility” (AXAF) mission will
provide the highest spatial and spectral resolution yet achieved in X-ray
astronomy (see Zombeck 1996, 1982, 1979).

For the first time X-ray astronomy will obtain comparable resolution
to that commonly available in the other regions of the spectrum. Detec-
tion of very faint point sources (∼10 times fainter than ROSAT) becomes
possible because of the reduced background per beam, and accurate lo-
cations of sources facilitate their identification with counterparts at other
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wavelengths. Moreover one of the imaging detectors records a spectrum
in each spatial pixel allowing spatially resolved spectroscopy. Transmission
gratings provide wavelength resolution which improves linearly with the
reductions in a beam size, so that high resolution spectroscopy (E/∆E
∼ several hundred), particularly at low energies, becomes feasible. How-
ever, these instrumental advances will generate new computational and
conceptual challenges for X-ray data analysis. The statistical methodology
traditionally used in X-ray astronomy may not prove adequate for AXAF.

Table 1 compares the basic characteristics of AXAF and the two X-ray as-
tronomy satellites now operating: the German Röntgen Satellite (ROSAT)
and the Japanese Advanced Satellite for Cosmology and Astrophysics (ASCA).
Both carry US instrumentation. ROSAT has high spatial resolution and low
spectral resolution, while the reverse applies to ASCA. AXAF will outper-
form these satellites in both respects although its field of view is more
limited. Though the X-ray data is transmitted by the satellite to ground
stations in a linear telemetry stream, each observation can be considered
to be a four-dimensional multivariate database where each photon is char-
acterized by its position in the detector (representing two- dimensional
location in the sky or wavelength along a grating spectrum); its energy in
units of kilo-electron Volts (keV); and its arrival time. Different analysis
problems can thus be viewed as challenges in image restoration, interpre-
tation of spectra, and time series analysis.

TABLE 1.1. Instrument characteristic

Instrument Mirror PSFa ∆Eb

[arcsec] [keV]

ROSAT PSPC 5 0.4
ASCA SIS 150 0.1
AXAF ACIS 0.5 0.1
AXAF ACIS/HETG 0.5 (1-D) 0.005

a Width of the Point Spread Function; b Energy resolution at 1 keV.

2 Example of X-ray Data Analysis Problems

2.1 Spectral Analysis of ROSAT, ASCA and AXAF data

A quasar spectrum, or plot of X-ray photon flux Fx against energy E,
observed with ROSAT PSPC (Position Sensitive Proportional Counter) is
shown in Figure 1.
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FIGURE 1. Upper panel shows the best fit power law emission model to the
ROSAT PSPC quasar spectrum (3C 351). Lower panel shows the residuals. Large
deviations from the model indicate more complicated structure present in the
data. Thanks to Fabrizio Nicastro.

Detection of the X–ray photons is an intrinsically Poisson process. When
binned, and with high enough source counts per bin, a Gauss–Normal dis-
tribution is a reasonable approximation. Further, a “smearing” of the true
energy and angular position of each photon by an instrument response
function is fundamental to the X–ray measurement process. The wider the
“smearing”, the lower the spatial or energy resolution. The ROSAT spec-
trum contains just a few independent energy channels (3-4) binned on a
finer scale (32 bins) between 0.1 and 2.5 keV; this is a low resolution spec-
trum with resolution ∆E ≃ 0.5 keV). In a simple analysis of this source,
the model spectrum of a power law (Fx ∝ E−α) with the galactic absorp-
tion (a complicated nonlinear function) has been assumed. The χ2 statistic
has been used to find the best-fit model parameters: spectral index α of
the power law emission and a column density of the absorber. Note that
the overall shape of the spectrum is not a simple power law because the
nonlinear spectral reflectivity of the focussing mirrors and of the detector
have been included in the model. Additional features in the spectrum are
identified by comparing the model prediction to the observed data and
searching through the residuals (Figure 1, lower panel). For example, ab-
sorption edges from ionized oxygen are present in this spectrum around
0.6-0.8 keV, but this low resolution spectrum does not allow us to distin-
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FIGURE 2. Upper panel shows the best fit power law model to the ASCA SIS
spectrum of the Seyfert 1 galaxy (NGC 7469, observed in 1993). The complicated
structure (emission lines and edges) above 5 keV is clearly present in this data.

guish between different ionization states (O VII and O VIII) or to decide
whether both edges or only one are present.

A higher resolution quasar spectrum obtained with the ASCA CCD de-
tectors (the “SIS”, Solid-state Imaging Spectrometer) is shown in Figure 2.
Compared to the ROSAT PSPC detection, the SIS spectrum contains more
independent channels over a wider range of energies (0.5-10 keV) and pro-
vides higher spectral resolution (∆E ∼0.1 keV). The data are binned into
256 energy bins. More features, emission lines and edges, can be found in
such a spectrum, such as the likely iron line complex around 6-7 keV. These
data were analyzed in exactly the same way as in the ROSAT PSPC exam-
ple. First a power law emission model is assumed and plot of the residuals
to this fit is made. Strong deviations are identified. The significance of the
additional features is estimated by comparing the χ2 values of different
models (e.g. power law, power law + emission lines, blackbody emission,
plasma emission). This spectrum is similar to these we will get from each
pixel of ACIS, the CCD spectral imager on AXAF.

AXAF spectra at much higher resolutions can be obtained with the help
of grating elements. An example of a simulated High Energy Transmission
Grating (HETG) spectrum is presented in Figure 3. The energy covered
with this spectrum ranges from 0.4-10 keV similar to the ASCA SIS spec-
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FIGURE 3. Simulated high resolution spectra of a stellar X-ray source (UX Ari)
observed with the AXAF ACIS/HETG. The spectra obtained with the AXAF
ACIS – dotted line, from zero order photons – and the AXAF/HETG (with
medium energy grating of the HETG instrument) – solid line, are plotted on
the same scale for the comparison. The assumed source model was a continu-
ous emission measure distribution with a peak near logT=7.0. Courtesy David
Huenemoerder.

trum, but with much higher spectral resolution (∆E ∼ 0.005 keV) for a
point source. A forest of emission lines is clearly visible in this simula-
tion, though each may be represented by only a few photons. Using the
HETG, for the first time, the quality of X-ray spectra will be comparable
to those obtained in the optical band. Global statistics like χ2 are unlikely
to be effective in modeling such complex and low- signal (e.g. no longer
Gauss–Normal) spectra.

2.2 Spatial Analysis and Imaging with ROSAT and ASCA

The spatial resolution of ROSAT allows us to distinguish individual point
sources or extended emission regions. However, a point source always spreads
over a finite region of the detector mostly because of non-ideal optics. A
“Point Spread Function” (PSF) is used to characterize the way the pho-
tons are spread around the central position of a point source. The half
power diameter of the AXAF PSF will be less than 0.5 arcsec (Table 1).
The pixel size in ACIS is 0.5 arcsec so the PSF is undersampled, although
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the random jitter of the spacecraft and analysis of ‘split events’ may allow
sub-pixel imaging.

The high imaging resolution allows us to identify and separate sources
in the image. The improved energy resolution of ACIS will simultaneously
provide spatially resolved spectra of particular regions in the image, which
was not possible with previous missions. Combined spectral-spatial analy-
sis, with complicated nonlinear parametric models in both domains, will be
important in studying supernova remnants, galaxies and clusters of galax-
ies, and in general for any extended X-ray source. The high quality of the
AXAF X-ray data provides new challenges for the X-ray data analysis. It
is clear that the current approaches can not fully exploit the capabilities of
the AXAF instruments. Here, we describe a few of the statistical and com-
putational problems that we have so far identified. Some of them appear
to be theoretically solvable but computationally challenging, while others
state problems for mathematical statistics which, so far as we know, are un-
solved. From an astronomical point of view, the problems can be classified
as follows: Modeling the Data, Source Detection, and Instrument Related
Issues.

3 Modeling the Data

The properties of X-ray detectors, combined with low source and back-
ground fluxes and fast read-out times, allow the position (x, y), time (t)
and energy (E) of each photon to be recorded. Most traditional methods in-
volve binning (grouping) the data so that Gaussian statistics apply and χ2

can be calculated for each bin. But this results in loss of spatial, temporal
or spectral resolution, and unbinned methods are preferable. Tests based
on the empirical distribution functions (Kolmogorov-Smirnov, Cramer-von
Mises, Anderson-Darling) are available, but are not readily applicable to
multivariate datasets. For univariate data, some astronomers use these tests
repeatedly for parameter estimation (Fasano et al. 1993), but the validity of
this approach has not been evaluated statistically. Bayesian methods based
on the Poisson likelihood in four dimensions are possible, but are not fully
developed or easy to apply. In general, we have difficulty envisioning a full
data analysis system performed in the unbinned “event space”.

Another goal is to develop analysis tools that simultaneously treat spa-
tial, temporal and/or spectral information. The complex temporal vari-
ability of some X-ray sources is discussed in the chapters by J. Swank and
M. van der Klis in this volume. For joint spatial-timing analysis, Giommi
et al. (1995) suggest visualizing the image where the value in each pixel
represents the Kolmogorov-Smirnov statistic measuring source variability.
Kashyap (1996) suggests a source detection algorithm to be applied in the
3D space. More general statistical tools are needed for modeling the multi-
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dimensional datasets.

3.1 Searching a large parameter space

Complex global models have to be used to describe the new X-ray data.
They are derived from astrophysical theory, can have highly nonlinear forms
(e.g. with sharp discontinuities due to atomic absorption and emission lines)
and include many parameters to be estimated. The main scientific goal of
the investigations is to constrain these parameters with the high-quality
AXAF data. When fitting complex models, such as fitting multiple plasma
temperatures and elemental abundances to the grating spectrum of a star,
or fitting a non-equilibrium ionization model to a spatially resolved super-
nova remnant, there may be dozens of model parameters. In such a complex
parameter space, many ‘best fit’ solutions with similar “goodness of fit”
statistics may be present. How can we efficiently search for the minima in
the large parameter space? Is it possible to know when the entire param-
eter space has been adequately explored? Can the statistical probabilities
of distant minima be evaluated? How should parameter confidence inter-
vals be determined in cases where the goodness-of-fit statistic is unusually
low or high (e.g. reduced χ2 far from unity)? How should the confidence
intervals be represented when there are many model parameters?

In some cases, a solution may be mathematically “best” or acceptable but
have physically unreasonable parameters. Can “unphysicality” be included
as a constraint on the fitting process in advance of obtaining solution?
Perhaps physical priors can be established within a Bayesian approach.
The search through a large parameter space is a serious computational
challenge: effective and rapid search algorithms are needed. A Euclidean
grid search is not good enough; perhaps Metropolis or Markov Chain Monte
Carlo algorithms would be helpful.

3.2 Uncertainties in the Model

The models applied during data analysis may contain some intrinsic uncer-
tainties from the astrophysical theory. For example, many X-ray emission
lines do not have fully determined atomic physics to predict their strength,
or even their wavelength, and the physicist often can estimate the ampli-
tude of these uncertainties. Modeling of the high resolution spectra would
require us to include these atomic physics uncertainties with known vari-
ances in the model. Are there techniques to assign uncertainties to the
predictions, knowing that each wavelength bin may contain many lines?
In the Bayesian approach, uncertainties on the model can sometimes be
included directly in the priors. Is it possible to include uncertainties on the
model using the frequentist (i.e. maximum likelihood) approach? In either
case, how do errors propagate through the calculations when both a model
and data contain uncertainties?
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In cases where the count rate is sufficiently high (or one is willing to
bin the data sufficiently) so that Gaussian probability distribution apply,
then one might apply a modified χ2 statistic where errors in both the data
and model are used to weight the variance. A best-fit solution in a least-
squares sense could then be obtained. But in general AXAF data will lie in
the Poisson regime, and specialized likelihood, semiparametric or Bayesian
methods must be developed for this problem.

3.3 Weighting Data by its Information Content

In general a spectrum can be divided into continuum and emission/absorption
lines components. In a grating spectrum, most of the counts and most of
the bins will be due to continuum emission. The continuum is usually fully
determined by just a few parameters (e.g. plasma temperature, density and
volume).

Overwhelmingly, most of the interesting physical constraints will be made
using the emission lines. Line ratios can provide information about the
temperatures or ionization structures of the emitter, and line profiles can
be used to study dynamics of the emitting system. However, the lines may
contain only 10% of the signal. Some lines contain more information than
others; for instance, the existence of some lines or a ratio of certain lines,
may determine the density of the emitting gas uniquely. Are there methods
for weighting the data by the astrophysical information it carries, rather
than simply by its signal-to-noise? Once again, χ2 is not and adequate
statistic.

3.4 Correlated Residuals

X-ray astronomers normally use χ2 statistic to find a global best fit, and
then examine the residuals of the fit (data–model) to find new structures or
features (lines or edges) in the spectra. Often these residuals are obviously
correlated (Figures 1-2). This usually indicates a localized feature (e.g. an
emission line) that cannot drive χ2. χ2 though is blind to the clustering of
the contributors to the statistic. Nonparametric ‘run statistics’ might be
used, but these do not take into account the known measurement errors for
each spectral channel. Are there other statistics available that include this
information?

4 Source Detection

4.1 Analysis of events in N-space

Traditionally, X-ray astronomers find sources in their images, where all tem-
poral and spectral information has been ignored. First the density of counts
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attributable to an “uninteresting” background level is evaluated, and then
a window is passed across the field to locate regions where the local photon
density is significantly above the background (Marshall 1992). Threshold
levels for source existence are set using Poisson probabilities, the likelihood
ratio test based on the Poisson distribution (Cash, W. 1979) or by Monte
Carlo simulation. The window can be a simple square, or can be a filter
matched to the known point spread function of the telescope (Vikhlinin, A.
et al., 1995) These procedures are reasonably successful in locating constant
point sources with continuous spectra, but suffer inefficiencies for spatially
diffuse structure and unusual objects that are discontinuous in spectra or
time.

Methods that search for clustering of events in the 4-dimensional position-
time-energy space without resorting to binning may be more sensitive than
standard techniques requiring binning, and may be sensitive to different
types of X-ray sources (e.g. bursts, emission-line only sources). Such meth-
ods operate directly on the event files, so the data are not manipulated
and all the original information remains there during the detection process.
Percolation methods such as the “friends-of-friends” algorithm (known in
statistics as single linkage hierarchical clustering) are commonly used to
locate galaxy clusters in in studies of large-scale structure in the Universe
(see Feigelson & Babu 1992). Recently percolation has been used in X-ray
source detection algorithms (Ebeling et al. 1996). The main difficulty is
to evaluate the statistical significance of detected structures and to reli-
ably distinguish real physical structures from statistical noise in regions of
diffuse low surface brightness.

4.2 Multi–scale Analysis of Complex Source Structures

Wavelets can be used in the source detection process as well, as described
by Bijaoui; Damiani et al., Kashyap et al. in these proceedings. Binned
images are correlated with wavelet functions at various scales and the re-
sulting coefficients are compared across the scales in order to determine
source parameters. Methods to extend the use of wavelets to entire fields-
of-view and beyond the detection of point sources are under development
(see the aforementioned contributions). Whereas methods to detect point
sources are in good standing, much work is left to be done with source
characterization: what is the significance of a multi-bin source (and what
defines its extend and shape); and how do we combine information over
multiple scales and statistically characterize the results?

Consider an ACIS image subject to a wavelet transform. Wavelet coeffi-
cients below some amplitude and/or spatial thresholds are deleted, and the
image is reconstructed from the remaining coefficients. What is the statis-
tical error of structures in the transformed image? If an extended source
is present, how sensitive is its shape (size, eccentricity, etc.) to the man-
ner of the reconstruction? And more general question how can we put the
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confidence limits on the source shapes?
In the Bayesian context, progress has been made recently on the devel-

opment of “pixons” (Puetter 1996). The data are described by a model
which is smoothed locally at the best scale for a given structure. Parts
of the image with less structure (e.g. source-free regions) are sufficiently
well represented at large scales, while parts of the image with more struc-
ture (e.g. many point sources in a small region) need smaller scales. As in
the wavelet methods the main problems are related to characterization of
detected sources.

5 Instrument Related Issues

5.1 Photon Pile-up in ACIS

The time between readouts of the AXAF ACIS is 2.7 seconds. If in that
time two photons land in the same pixel, the electric charge created by
the two will be summed. The existence of two photons and their individual
energies will be unknown. This problem is called photon ‘pile-up’. Since
50% of the photons from a point source in AXAF fall into a single pixel
this will be a common occurrence for bright X-ray sources.

As Poisson statistics apply to photon arrival times (assuming a constant
source), it is easy to calculate when pile-up will set in. Pile-up becomes a
10% effect at ∼0.1 ct/s (Figure 4). It will not be clear which photons are
doubly counted. The long tail of the Poisson distribution also means that
triple and quadruple countings will be significant too. If the total charge
exceeds that from a ∼15 keV photon then the total charge collected will
exceed the capacity of the telemetry, and the single “overscale” event is
considered a background event (due to a particle not a photon), and is
lost. Worse still, real events can be ‘split’ over two or more pixels, so if two
counts arrive next to each other they will be considered as a single event
in normal processing. This lowers the pile-up count rate limit by almost a
factor 10, so it will be very common. Figure 5 shows a simulated high count
rate spectrum with pile-up and the corresponding clean spectrum with no
pile-up. It is clear that many soft energy photons were redistributed into
the high energy band changing the slope of the spectrum significantly and
smearing out the structure at high energies. Are there ways to recover the
initial spectrum given an estimate of the fraction of pile-up events, and
possibly given a clean spectrum involving about 10% of the events?

5.2 Overlapping orders in Low Energy Grating data

When a grating spectrum is projected onto the AXAF detectors, the differ-
ent orders of diffraction overlap in space. With the ACIS CCD detector this
is a minor problem since the orders separate quite cleanly in pulse height
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FIGURE 4. Detected event rate vs. incident photon rate for single-pixel case,
left, and (more realistic) 3 × 3 pixel case, right. For the single-pixel case, the
likelihood of multiple-photon (“piled”) events becomes significant (∼ 10%) at
incident rates of only ∼ 0.2 counts per frame. In the 3 × 3 pixel case, photon
confusion (photons arriving in neighboring pixels during a single frame) lowers
this count rate threshold by an order of magnitude. Courtesy Joel Kastner.

space. However, when the other major instrument, the High Resolution
Camera (“HRC”) is used, as it must be for low energy spectra, there is no
direct way to discriminate the different orders, since the HRC has almost
no inherent energy resolution (Figures 6a,6b).

An iterative deconvolution method may work for continuum points, while
a pattern matching technique may be effective for lines, at least if they are
not so numerous that they are heavily blended with one another. Higher
orders have higher wavelength resolution, which would separate blended
lines, so changing the pattern. The higher orders can dominate the counts,
especially in spectral lines, so the problem is not a perturbative one, and
error propagation and ‘blow-up’ is a concern. Can alternative techniques
be considered?
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FIGURE 5. Modifications to an input continuum spectrum caused by photon
pileup in the detector. Pileup results in false high-energy events, effectively flat-
tening the spectrum. The effect grows more prominent with source strength.
Based on simulated ACIS data produced by Andy Rasmussen.

90968, and the Netherlands Organization for Scientific Research (NWO).
EDF is supported by NASA grants: NAGW-2120 and NAS8-38252. PF and
VK acknowledge support from AXAF Sience Center.



1. AXAF Data Analysis Challenges 13

FIGURE 6. Simulated high resolution spectra of a star (Capella) observed with
AXAF HRC-S/LETG. It is a grating spectrum with many diffraction orders.
a) Only the first order spectrum is plotted. b) The contributions from the odd
orders (1–27) are added and the resulted spectrum is plotted (from Internal
ASC Memorandum by David Huenemoerder, November 1994). Courtesy David
Huenemoerder.
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Discussion by Joseph Horowitz5

There are many statistical questions touched on in the paper of Siemigi-
nowska et al. (referred to briefly as [S+]), most of which are either implicit
or very general. Thus, some of my comments will also be implicit or very
general, consisting, in some cases, only of pointing out some relevant refer-
ences.

Chi-square

The notion of χ2 comes up often in the astronomy literature, and in [S+]
as well. Now χ2 has several possible meanings to statisticians, and Eric
Feigelson was kind enough to clue me in to what astronomers mean by
“χ2”. (I am not the only one who has been confused on this point; see [B],
p.322.)

According to him, the “bible” of statistics for astronomers is ... Numer-

ical Recipes [NR]! In ch.15 of [NR], χ2 refers to the (scaled) error sum
of squares in nonlinear regression, which, under certain conditions, has a
χ2-distribution with the appropriate degrees of freedom.

In more familiar terms (for statisticians), the Pearson χ2-statistic, de-
signed to test hypotheses about Poisson (or multinomial) observations,

χ2

P =

k∑

i=1

(Ni − λi(θ))
2/λi(θ),

is often used in astronomy.
Here N1, . . . , Nk are independent Poisson counts, with means λi(θ), typ-

ically representing photon counts in k distinct energy or spatial bins, and
the parameter θ is some physical characteristic of, for example, an x-ray
source.

When the means are large, the Ni have approximately normal distri-
butions, but then the variances are necessarily equal to the means (also
pointed out in [B]). Then the nonlinear regression material in [NR] be-
comes relevant, but the constraint on the variances is often ignored.

The usual strategy is to fit a model by finding the value θ̂ that minimizes
χ2

P
, and to search the residuals for further structure. The χ2

P
-statistic has

a good intuitive motivation, and its asymptotic distribution is known. The
minimizer θ̂ is asymptotically equivalent, and in some cases identical to,
the maximum likelihood (ML) estimator of θ. For details, see [C], chs. 30,
33.

5Department of Mathematics and Statistics, University of Massachusetts,
Amherst, MA 01003
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Another version of χ2 is the likelihood ratio - χ2,

χ2

LR
= 2

k∑

i=1

(Ni log(Ni/λi(θ)) − (Ni − λi(θ))),

which is asymptotically equivalent to χ2

P
and has the same limiting dis-

tribution. But χ2

LR
is the correct likelihood ratio statistic for testing the

“null” hypothesis, H0, that the Poisson means are given by the model
λ1(θ), . . . , λk(θ), for some θ, against the alternative, that the means are not
of that form. Tests of H0 against specific alternative models allow rigorous
assessment of the reality of features that do not conform to the H0-model.

In this connection, χ2

LR
has good decomposition properties, not shared

by χ2

P
, for certain sequences of nested models of successively greater com-

plexity (see [MN]).

The “Bible”

Although it is a great read, [NR] is no more suitable as a statistical bible
than Ptolemy is for astronomy. A glance at the main statistical references
in [NR], ch.15, confirms this: Bevington 1969, von Mises 1964, Brownlee
1965, Martin 1971, plus two 1976 papers in Ap. J.. It is as though nothing
had happened in statistics over the last 25 years or so. For more recent,
though not necessarily astronomer- (or statistician-) friendly, expositions
of nonlinear regression, see [BW], [SW], [G1]. Some recent linear regression
books, for instance, [M], [R], also contain some nonlinear material.

Searching the Parameter Space

The optimization problems hinted at in [S+], §3.1, are standard, difficult
ones in numerical analysis. Some statistical theory that could be applied
to grid searches for ML and similar estimators is available (e.g., [WS] and
references therein) to the intrepid. The added feature is that accuracy of
the grid estimator with high probability can sometimes be asserted.

Recently, effective Markov Chain Monte Carlo (MCMC) calculations
have been developed for ML and other function optimization problems;
see [G2] and [B+].

The question of “unphysicality” ([S+], §3.1) is of course not a statistical
one. If it can be expressed in a reasonable mathematical form, physicality
can, in principle, be added as a constraint to the model.
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Which Residuals?

Residuals are mentioned several times in [S+] (§§2.1, 3.4). In dealing with
low counts, where the Poisson distribution must be respected, there are var-
ious types of residuals specifically tailored for Poisson data, viz., Anscombe/Cox-
Snell and deviance residuals, all discussed in [MN].

To Bin or Not to Bin

Many of the phenomena discussed in [S+] can be modeled directly, with
no binning.

Let B be the energy × time “box”, E1 ≤ E ≤ E2, t1 ≤ t ≤ t2. As-
trophysical models for the photon count N(B) in B often specify that,
as a random variable, N(B) have a Poisson distribution with mean (t2 −

t1)
∫

E2

E1

g(E) dE, and that, for disjoint energy × time regions, the counts

be statistically independent. The physics is contained in the function g(E).
This type of model is a space-time Poisson point process, although “energy-
time” would be a better term for this example.

If a photon of energy E is detected in the energy interval E′ ± dE′ with
probability k(E, E′)dE′, where k(E, E′) models the detector, then (theo-
rem) N ′(B), the number of detections in the box B, also follows a Poisson
point process model with g-function g′(E′) =

∫
k(E, E′) g(E) dE. The ob-

servations are the counts N ′(B), for all boxes B, which is equivalent to the
full, unbinned data set. The inference problem is to find out information
about the original g(E).

There is an elaborate statistical literature on modeling and inference for
Poisson point processes, some of which is cited elsewhere in these proceed-
ings. For astronomers, a good source for this point is [SM].

Conclusion

Reading between the lines of [S+], many of the statistical questions sound
really fascinating, but it is usually not possible to say whether there are
statistical techniques for this or that purpose without knowing the details
of the problem. Choosing a statistical technique is not like choosing a pair
of shoes off the shelf, especially for such complex phenomena as those dis-
cussed in [S+]. Rather than “statistician as shoe clerk”, a more appropriate
metaphor might be “statistician as psychotherapist”. Serious collaboration
between astronomers and statisticians requires lots of conversation, and
should start early in the project. Recent technological advances are gener-
ating fundamental new statistical and scientific challenges that would be
best met by such collaborative efforts.
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