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Preprocessing solar images while preserving their
latent structure
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Telescopes such as the Atmospheric Imaging Assembly
aboard the Solar Dynamics Observatory, a NASA satellite,
collect massive streams of high resolution images of the Sun
through multiple wavelength filters. Reconstructing pixel-
by-pixel thermal properties based on these images can be
framed as an ill-posed inverse problem with Poisson noise,
but this reconstruction is computationally expensive and
there is disagreement among researchers about what reg-
ularization or prior assumptions are most appropriate. This
article presents an image segmentation framework for pre-
processing such images in order to reduce the data volume
while preserving as much thermal information as possible
for later downstream analyses. The resulting segmented im-
ages reflect thermal properties but do not depend on solving
the ill-posed inverse problem. This allows users to avoid the
Poisson inverse problem altogether or to tackle it on each of
∼10 segments rather than on each of ∼107 pixels, reducing
computing time by a factor of ∼106. We employ a paramet-
ric class of dissimilarities that can be expressed as cosine
dissimilarity functions or Hellinger distances between non-
linearly transformed vectors of multi-passband observations
in each pixel. We develop a decision theoretic framework
for choosing the dissimilarity that minimizes the expected
loss that arises when estimating identifiable thermal prop-
erties based on segmented images rather than on a pixel-
by-pixel basis. We also examine the efficacy of different dis-
similarities for recovering clusters in the underlying thermal
properties. The expected losses are computed under scientif-
ically motivated prior distributions. Two simulation studies
guide our choices of dissimilarity function. We illustrate our
method by segmenting images of a coronal hole observed on
26 February 2015.

Keywords and phrases: Clustering, Decision theory, Dis-
similarity measure, Hellinger distance, Image segmentation,
Latent structure, Solar physics, Space weather.

1. SOLAR IMAGE SEGMENTATION

1.1 Tracing the differential emission
measure

The solar corona is the region of the Sun’s atmosphere
furthest from its surface; it consists of hot plasma that is
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more than about 106 km above the surface. One of the ma-
jor unsolved questions in coronal astrophysics is the mecha-
nism by which the energy stored in magnetic fields is trans-
ferred to the plasma to heat the corona to its observed
ultra high temperatures (106–107 Kelvin), millions of de-
grees hotter than at the surface of the Sun. Understanding
such mechanisms is important not just in astronomy: so-
lar activity directly affects Earth’s climate, and solar flares
and coronal mass ejections can seriously affect both ground-
and spaced-based electronic infrastructure (e.g., Odenwald,
2001; Bolduc, 2002).

To study the solar corona, astronomers monitor the Sun
closely and nearly continuously using space-borne platforms
like Hinode and the Solar Dynamics Observatory1 (SDO).
The Atmospheric Imaging Assembly (AIA) aboard the SDO
is a four-telescope array that obtains snapshots of the solar
corona in seven different extreme ultraviolet and soft X-
ray filters; the distribution of electromagnetic wavelengths
recorded by each filter is called its passband. The snapshots
are obtained at the very high cadence rate of approximately
one single-passband 4096×4096 image every second; Fig-
ure 1 illustrates a single snapshot in six of the seven pass-
bands. Future observatories will offer even more impressive
imaging. The (optical) Daniel K. Inouye Solar Telescope is
currently under construction in Hawaii and is expected to
resolve solar features 30 km in diameter.

To manage these massive data streams, new automated
feature recognition and tracking methods are critically
needed, especially those that account for underlying physical
processes, such as thermal properties. The ability to reliably
isolate and track thermal structures in the solar corona may
provide strong constraints on the theoretical descriptions of
the emergence of magnetic structures, loop formation, coro-
nal heating, and other phenomena.

Temperature varies naturally across the solar corona, and
its distribution is characterized by the so-called differential
emission measure (DEM). The DEM quantifies the amount
of plasma present at a given temperature.2 We can define

1http://sdo.gsfc.nasa.gov
2The DEM can be viewed as a density function of the plasma temper-
ature; it quantifies the amount of plasma existing with temperature in
each infinitesimal temperature bin. Formally, the DEM is the deriva-
tive of the emission measure with respect to plasma temperature (or
log10 temperature). The emission measure quantifies the amount of
plasma that is emitting thermal X-ray or extreme ultraviolet photons,
and is the product of the volume, the number density (particle count
per unit volume) of electrons, and the number density of protons in
that volume.
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Figure 1. An image of the Sun taken on 26 February 2015 in six of the seven extreme ultraviolet AIA passbands. Each
passband records a 4096×4096 pixel image of photon counts; higher image intensity represents higher photon counts. The
hues are artificial, but emphasize the differing wavelength ranges in each filter. The first row correspond to the passbands
centered at 94Å, 131Å, and 171Å and the second row to 193Å, 211Å, and 335Å; ten Angstroms (Å) is one nanometer.

(Courtesy of NASA/SDO and the AIA, EVE, and HMI science teams.)

the DEM of the entire solar corona or of some subvolume.
Each image pixel corresponds to a subvolume of the corona,
specifically the massive three dimensional column of the
corona extending from the surface of the Sun toward the
telescope. A pixel’s DEM characterizes the distribution of
the temperature of the plasma in the coronal column cor-
responding to that pixel. This distribution, however, is un-
normalized: a pixel’s (temperature) integrated DEM is a
measure of the total amount of plasma in that pixel.

We are interested in how the DEM varies from pixel to
pixel and in clusters of pixels with similar DEMs. More pre-
cisely, to better understand the thermal structure and ener-
getics of the corona, we aim to identify coherent patterns of
thermal activity in streams of multi-passband solar images,
such as those produced by the AIA. Typically this corre-
sponds to looking for regions with similar temperature dis-
tributions, that is regions with similar normalized DEMs.
Thus, we aim to identify structure in how the normalized
DEM varies across the corona. Unfortunately, the observed
passband data are only an imperfect proxy for the ther-

mal characteristics of interest. Using them to accurately re-
construct thermal characteristics or to directly estimate the
pixel DEMs poses significant challenges (e.g., Judge et al.,
1997). As described in Section 1.2, we propose a strategy
that avoids such direct estimation.

In this article, we formulate our notation and method-
ology in terms of images obtained with the AIA. In a
multi-passband image, we observe each pixel in b passbands.
We denote the resulting b values in pixel i by the vector
yi = (yi1, . . . , yib) and the collection of pixels in a multi-
passband image by the set of vectors {y1, . . . ,yn}, where n
is the number of pixels. Each yij is a count of the number
of photons recorded by the detector. Each of the b filters
is characterized by a temperature response function describ-
ing the sensitivity of that filter to photons emitted from
plasma at a given temperature. In practice, temperature is
discretized into nT bins so that the temperature response
functions can be collected into a b × nT matrix R, where
each row of R is the temperature response function for a
particular passband; these are plotted in Figure 2. Typi-
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Figure 2. The temperature response functions of the 6 AIA passbands for the images in Figure 1. Using a discretization of
temperature, these response functions make up the rows of the matrix R in (1).

cally, the temperature is represented as a uniform grid in
log10(degrees Kelvin) ranging from 5.5 to 8, with bin widths
of 0.05 or 0.1. Integrating the pixel-specific DEM over each
of these temperature bins, we can summarize it with the
nT × 1 vector μi = (μi1, . . . , μinT

). The exposure times of
the b filters may differ and are tabulated in a diagonal ma-
trix A = diag(τ1, . . . , τb), where τj is the exposure time in
passband j. Given R, A, and μ, we can model the observed
counts in pixel i, yi, as independent Poisson random vari-
ables with mean vector

(1) λi = ARμi,

where λi = (λi1, . . . , λib) is the vector of expected (multi-
passband) counts in pixel i. Typically, the thermal charac-
teristics of interest (for example, the mean temperature),
are functions only of θi = μi/νi, where νi =

∑nT

j=1 μij is
a nuisance parameter. Our scientific goal is to identify in-
teresting spatial or spatiotemporal structure in the values of
θi. The standard strategy is to first fit (1) separately in each
pixel and then to identify patterns in the fitted μ̂i. Because
it is not feasible in practice to do this on ∼107 pixels (in
each time frame), researchers focus on smaller subregions of
the Sun.

Poisson models with mean of the form given in (1) are
quite common in practice (e.g., in image reconstruction
problems such as positron emission tomography) and fit-
ting them via maximum likelihood poses notorious compu-
tational difficulties, both because R may be ill-conditioned

or singular and because μ is constrained to be positive (e.g.,
Shepp and Vardi, 1982; Green, 1990; Esch et al., 2004; Bard-
sley and Goldes, 2009). In the best of cases, the likelihood
tends to be highly multimodal and favor irregular choices of
μ. In our setting, such difficulties are exacerbated because
the number of passbands is fewer than the desired number
of bins in the reconstructed DEM. Thus, some sort of regu-
larization is essential.

Although the choice of regularization can be quite in-
fluential in practice, there is no agreement as to what
characteristics in the DEM should be encouraged by reg-
ularization (e.g., smoothness). The result is an array of
methods for DEM reconstruction that can give different
results. These methods range from forward-fitting splines
(xrt dem iterative2.pro, part of the Solar SoftWare pack-
age used to analyze solar data), to Chebyshev polynomials
(see, e.g., Brosius et al., 1996), sums of log-Normal func-
tions (Warren et al., 2013), regularized inversion using a
Lagrangian multiplier on an L2 norm (Hannah and Kon-
tar, 2012), pragmatic thermal-response-basis deconvolution
(Plowman et al., 2013), and an MCMC method that car-
ries out variable smoothing across temperature space based
on the widths of the emissivity curves (Kashyap and Drake,
1998). A number of studies have attempted to evaluate and
compare the methods (see, e.g., Warren and Brooks, 2009;
Hannah and Kontar, 2012; Plowman et al., 2013; Testa
et al., 2012), but there is no consensus on which reconstruc-
tions are most useful or on the systematic errors or biases
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inherent in each. Nonetheless, the various methods exhibit
certain relative advantages and disadvantages. For example,
the inversion methods are generally extremely fast, but can-
not guarantee positivity of the solutions, nor do they gener-
ate uncertainty estimates. The forward-fitting methods are
slower, but are adequately fast in practical situations. Al-
though they usually produce uncertainty estimates via para-
metric bootstrap of the data, these methods are strongly
constrained by the adopted model for regularization. The
MCMC based method is the slowest, and generally cannot
be applied as a black box because of the nature of MCMC,
making it difficult to apply on a pixel-by-pixel basis. How-
ever, it uses the most physically justifiable regularization,
and generates meaningful uncertainty estimates on all pa-
rameters.

1.2 Image segmentation

We aim to avoid the problematic choice of regulariza-
tion and/or computational expense associated with pixel-
by-pixel DEM reconstruction. Instead we focus on identi-
fying solar regions with similar normalized DEMs without
(at least initially) specifying what those DEMs are. Such
regions, if they exist, are quite interesting from a scientific
perspective. Differing normalizations among otherwise sim-
ilar DEMs can largely be attributed to differing volumes
occupied.3 Thus, regions with similar normalized DEMs are
likely to have similar underlying thermal structures, even
if they are spatially separated. Identifying these regions can
be viewed as data preprocessing in that the clusters of pixels
may be subject to secondary analyses that aim to explore
their thermal properties and/or their evolution. This might
involve fitting the DEM via (1) in each of ∼10 regions rather
than on in each of ∼107 pixels. This reduces the computa-
tional expense by a factor of ∼106, enabling more principled
regularization in each fit.

Identifying these regions requires us to segment the so-
lar image. In particular, we seek to group pixels together
according to their (unobserved) thermal distributions, θi,
while ignoring the variation in the nuisance parameters νi.
For simplicity, we do so without imposing model-based spa-
tial structure on the image. Ideally, we could estimate a
dissimilarity function between θi and θj in each pixel pair
and group pixels with small dissimilarity. To avoid estimat-
ing (θ1, . . . ,θn), however, we base our segmentation on a
surrogate dissimilarity between the observations yi and yj ,
instead of the desired dissimilarity between the temperature
distributions θi and θj . We aim to define a surrogate dis-
similarity that leads to segmentations that are as faithful as
possible to underlying clustering among the values of θi.

Stein et al. (2012) also formed clusters of pixels using
the observed yi with the goal of identifying solar regions

3This is because we expect higher electron densities to correspond to
higher temperatures, and it is unlikely that the electron density and
volume will conspire to produce the same normalized DEM.

with similar underlying thermal activity. To avoid depen-
dence on the nuisance parameter ν = (ν1, . . . , νn), they
formed clusters with similar normalized observed passbands,
ri = yi/||yi||1, where ||yi||1 =

∑b
j=1 yij . In particular, they

proposed a k-means algorithm based on Hellinger distance
instead of Euclidean distance, calling the resulting cluster-
ing algorithm H-means. This amounts to using Hellinger dis-
tance as a surrogate dissimilarity function. H-means is a spe-
cial case of a general class of clustering algorithms based on
entropy-like distances (Teboulle et al., 2006). The Hellinger
distance is a reasonable choice both because it reduces the
influence of ν and because it accounts for heteroscedasticity
via the variance stabilizing transformation for the Poisson
model. Stein et al. (2012), however, did not quantify the effi-
cacy of this choice for identifying pixel clusters with similar
normalized DEMs nor did they attempt to find the opti-
mal dissimilarity function for this task. We address both of
these issues within a broad class of parametrized dissimilar-
ity measures.

Image segmentation is one of the most well-studied prob-
lems in image processing and computer vision; among the
more popular methods are those of Comaniciu and Meer
(2002); Shi and Malik (2000); Felzenszwalb and Hutten-
locher (2004). Much work in this area is motivated by the
challenge of segmenting images of scenes into distinct ob-
jects. It is extremely difficult to create appropriate crite-
ria and efficient algorithms for this task, and Estrada and
Jepson (2009) find that state-of-the-art segmentation algo-
rithms fall short of the performance of humans segment-
ing images by hand (Szeliski, 2010, Ch. 5). We do not ad-
dress this task, but instead focus on segmenting solar images
as a preprocessing step for later scientific analyses. As in
the more traditional problem of segmenting scenes into dis-
tinct objects, segmenting multi-passband images of the Sun
according to their thermal properties requires us to clus-
ter pixels according to an appropriate similarity between
pixels. However, the solar image segmentation problem is
distinct when viewed as a preprocessing step because we
judge methods on how well they preserve information for
subsequent analyses, not on how correctly they separate
distinct objects. Our approach is also different from com-
pression/quantization frameworks (e.g., Gray and Neuhoff,
1998) that judge methods on how well they preserve the
original signal: in principle, we would not object to a seg-
mentation that failed to preserve all features of the original
signal but did preserve all information required for later sta-
tistical analyses, such as sufficient statistics.

The remainder of this article is organized into five sec-
tions. We propose to preprocess solar images by segmenting
them into clusters of pixels with similar thermal activity.
Section 2 formalizes a decision theoretic approach for quan-
tifying information loss due to this preprocessing. Section 3
introduces our approach to image segmentation: we define a
parameterized dissimilarity function for pairs of pixels with
the aim of selecting parameters that minimize information
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loss. Numerical methods for selecting good parameter values
for the dissimilarity function are presented in Section 4 and
an application to AIA data appears in Section 5. The paper
concludes in Section 6 with a discussion on the secondary
analysis of our segmented images and a broader perspective
on preprocessing and data reduction in the context of the
science-driven analysis of big data.

2. OPTIMAL PREPROCESSING

2.1 Tunable preprocessing

We focus on image preprocessing that involves aggregat-
ing counts across multiple pixels. In particular, we consider
methods that segment images into clusters of pixels with
similar features and summarize each cluster by the sum of
its pixel counts in each band. This essentially imposes the
assumption that θi = θj for pixels i and j that are assigned
to the same cluster. In this section, we address the question
of how much is lost if we impose this assumption when it
is not true. Of course, this can only be addressed insofar as
the observed passband intensities are sensitive to differences
in θ.

To formally define the aggregate versions of y across clus-
ters of pixels, let Π(α) denote a partition of the pixel indices,
{1, . . . , n}, into k clusters, I(1), . . . , I(k), where α represents
parameters of the process leading to the choice of partition.
Specifically, we let α be the parameter of a dissimilarity
measure between the observations, and the partition is the
result of clustering observations according to this dissimi-
larity measure. We can then define the aggregation of y to
be

S(y;α) =

⎧⎨
⎩Π(α),

∑
i∈I(1)

yi, . . . ,
∑

i∈I(k)

yi

⎫⎬
⎭ ,

where S(y;α) contains both the partition, Π(α), and the
sums of the multi-passband pixel counts in each of the clus-
ters. Our goal is to choose a good or even an optimal value
of α in order that the aggregated data, S(y;α), preserve as
much information as possible for later analyses, compared
to the raw counts y.

2.2 Parametric common ground

Because we face an ill-posed inverse problem, neither the
full DEM, νiθi, nor the normalized DEM, θi, is identifi-
able without additional constraints or prior information. We
quantify the loss of statistical information due to preprocess-
ing in terms of a sufficient identifiable parameter. Let Pξ

denote a family of probability measures indexed by a param-
eter ξ. Barankin (1960) defines a sufficient parameter as a
function f(ξ) such that, for all ξ and ξ′, f(ξ) = f(ξ′) implies
that Pξ = Pξ′ (see also Picci, 1977; Dawid, 1979). An identi-
fiable parameter, on the other hand, is a function f(ξ) such
that, for all ξ and ξ′, Pξ = Pξ′ implies that f(ξ) = f(ξ′). If

f(ξ) is a sufficient and identifiable parameter, and the den-
sity of the data given ξ is p(y | ξ), then the likelihood can
be expressed as p(y | ξ) = p(y | f(ξ)). Intuitively, sufficiency
ensures that the parameter f(ξ) is rich enough to capture
the likelihood, and identifiability ensures that f(ξ) is not
too rich for the likelihood to be informative about f(ξ).

In ill-posed inverse problems with no general consensus
as to the choice of prior distribution or regularization func-
tion, a sufficient identifiable parameter can provide common
ground. Such is the case for solar DEM analysis. A sufficient
identifiable parameter offers an estimand that all researchers
(who agree on the likelihood) can agree on as a valid infer-
ential target, even if the researchers disagree about how best
to address the ill-posedness. For this reason, we target esti-
mators of sufficient identifiable parameters when quantifying
the loss of statistical information due to preprocessing. More
generally, if there are multiple nested statistical models un-
der consideration, we should use a sufficient identifiable pa-
rameter under the largest of these models to measure the
loss of statistical information for the widest range of possi-
ble downstream analyses.

In model (1), an obvious sufficient identifiable parame-
ter is λi = νiARθi, the vector of expected counts in each
passband. Unfortunately, λi is a function of the nuisance
parameter, νi. This is undesirable: if we tailor preprocessing
to best preserve estimation of λi, we may (unintentionally)
sacrifice the quality of estimation of the parameter of in-
terest, θi. In other words, we may sacrifice information that
aides estimation of parameters we care about because we are
tuning the conservation of information toward better esti-
mating a nuisance parameter. To avoid this, we decompose
a sufficient identifiable parameter into a nuisance-dependent
component and a nuisance-free component. We then quan-
tify information loss due to preprocessing in terms of the
quality of estimation of the nuisance-free component.

By focusing on the nuisance-free component, we sacri-
fice sufficiency for the full likelihood but may maintain
partial sufficiency. In particular, consider decomposing λi

into the nuisance-dependent component,
∑b

j=1 λij , and the
nuisance-free component,

(2) φi = λi/

b∑
j=1

λij = ARθi/

b∑
j=1

τjR
�
j θi,

where R�
j denotes the jth row of R. The likelihood for pixel

i factors as

p(yi | λi) = p(yi | yi+,φi) p(yi+ |
∑b

j=1λij),

where yi+ = ||yi||1, p(yi | yi+,φi) is a multinomial distri-
bution with size yi+ and probability vector φi, and p(yi+ |∑b

j=1 λij) is a Poisson distribution with mean
∑b

j=1 λij . Al-
though the nuisance-free parameter φi is not sufficient for
the full likelihood of yi, it is a sufficient identifiable param-
eter of the conditional distribution of yi given ||yi||1.
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2.3 Quantifying the loss of statistical
information

We propose a Bayesian decision theoretic approach to
choosing the tuning parameter, α, used for image segmenta-
tion. In particular, we consider minimizing the expected loss
due to preprocessing. Consider an estimator φ̂i(S(y;α)) for
φi, based on the aggregate data S(y;α). Given a loss func-

tion, L(φ, φ̂), let R(φ, φ̂) = E{L(φ, φ̂) | φ} be the risk,
with the expectation taken with respect to y. Given a prior
distribution p(ν,θ), the optimal choice of α is simply the
Bayes estimator

α∗ = argmin
α

RB(α),

where

(3) RB(α) = E

{
1

n

n∑
i=1

R
(
φi, φ̂i(S(y;α))

)}
,

is the Bayes risk and the expectation in (3) is taken with
respect to p(ν,θ). We use the notation α∗ instead of α̂ to
emphasize that α∗ is simply an optimal choice of tuning
parameter for a preprocessing step, not an estimator of a
scientifically meaningful parameter.

In practice, preprocessing often involves somewhat ad hoc
or heuristic algorithms. In image segmentation, the cluster-
ing of pixels typically comes down to an iterative algorithm
such as k-means. In these cases, it is hopeless to attempt to
obtain α∗ analytically. Instead, we approximate the Bayes
risk via simulation from a scientifically motivated prior dis-
tribution p(ν,θ), and find the optimal α∗ via a grid search.
The computational expense is somewhat mitigated by the
fact that we limit the size of the simulated datasets for this
tuning stage.

3. TUNABLE DISSIMILARITIES

3.1 Pairwise dissimilarity functions

Image segmentation is fundamentally a clustering prob-
lem. It involves clustering pixels into groups corresponding
to distinct—but not necessarily contiguous—image regions.
One strategy is to define a numerical dissimilarity between
each pair of pixels and then to optimize the partition of pix-
els into clusters such that within-cluster dissimilarities are
small. This is typically accomplished via a function which
returns the dissimilarity or simply the distance between any
pair of pixels. For example, a common approach is to use a
weighted sum of the spatial distance and the distance be-
tween pixel-specific covariates such as intensity, color, or tex-
ture (e.g., Shi and Malik, 2000). As discussed in Section 1.2,
the spatial distance is not of primary interest in our case and
may not be pertinent, so that dissimilarity is based solely on
differences in the observed photon counts in each passband.

The Minkowski distance,

dp(yi,yj) = ||yi − yj ||p, where ||x||p =

{
b∑

l=1

|xl|p
}1/p

,

offers a general class of dissimilarity functions, including
the special cases of Euclidean distance (p = 2), Manhat-
tan distance (p = 1), and Chebyshev distance (in the limit
as p → ∞). The Euclidean distance in particular is ubiq-
uitous in image segmentation and more general clustering
problems. In our setting, however, any Minkowski distance
between vectors of raw counts, yi and yj , is strongly influ-
enced by the nuisance parameters, νi and νj . As illustrated
numerically in the case of Euclidean distance in Section 4.2,
this can overwhelm comparisons between the corresponding
normalized DEMs, θi and θj , which are of primary interest.
The total count in each pixel, ||yi||1, is a sufficient statistic
for the nuisance parameters νi, and thus we prefer dissimilar-
ity functions that depend on the pixel counts only through
their Lp normalized values, yi/||yi||p. While yi/||yi||1 is an
obvious choice, we shall see that L1 and L2 normalizations
are related in such a way that we lose nothing by focusing
first on the L2 normalization (see (9) below).

A choice of dissimilarity function that achieves this is the
cosine dissimilarity,
(4)

dcos(yi,yj) =
1

2
d22

(
yi

||yi||2
,

yj

||yj ||2

)
= 1−

y�
i yj

||yi||2 ||yj ||2
;

this is one minus the cosine of the angle between the vectors
yi and yj . Cosine dissimilarity is widely used in text min-
ing applications in which documents are compared by word
frequencies with the goal of identifying documents with sim-
ilar word distributions while ignoring document length (e.g.,
Hotho et al., 2005; Huang, 2008).

3.2 Parameterizing dissimilarity functions

To formulate a more flexible class of dissimilarity func-
tions, we consider parametric dissimilarities D(yi,yj ;α),
where α is a vector of parameters that specify the dis-
similarity. In particular, we introduce α through a trans-
formation of yi. We limit our attention to transformations
having the same dimension as yi, which can be denoted
T (y;α) = (T1(y;α), . . . , Tb(y;α)). The parameterized dis-
similarity is simply a familiar distance or dissimilarity be-
tween transformed observations, i.e.,

(5) D(yi,yj ;α) = d
(
T (yi;α),T (yj ;α)

)
,

where d(·, ·) could be, for example, Euclidean distance or
cosine dissimilarity.

There is a large literature on learning distance metrics.
One common approach (see, for example, Xing et al., 2002;
Shalev-Shwartz et al., 2004; Weinberger et al., 2005; Davis
et al., 2007; Jain et al., 2012) is to assume that the param-
eter α is a matrix, say M , and to find M such that the
Euclidean distances between the linearly transformed ob-
servations ||Myi − Myj ||2 satisfy an optimality criterion,
such as increasing distances between pairs of training obser-
vations labeled dissimilar and decreasing distances between
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pairs labeled as similar. Motivated by the problem of facial
recognition, Nguyen and Bai (2011) consider learning cosine
dissimilarities instead of Euclidean distances, but also focus
on linear transformations.

Instead of linear transformations, we consider the family
of power transformations,

(6) Tj(yi;α) = (yij + γ)β , for j = 1, . . . , b,

where β > 0, γ ≥ 0, and α = (β, γ). Special cases of (6)
include the variance stabilizing transformation for a Pois-
son random variable (β = 1/2, γ = 0) and one half of the
Anscombe (1948) transform (β = 1/2, γ = 3/8). Following
(5), we explore the use of cosine dissimilarities between ob-
servations transformed according to (6), i.e., we use

(7) Dcos(yi,yj ;α) = dcos

(
T (yi;α),T (yj ;α)

)
.

The Hellinger distance between the two probability vectors,
ri = yi/||yi||1 and rj = yj/||yj ||1, is a special case because,
if α = (1/2, 0), then

Dcos(ri, rj ;α) =
1

2
d22

(
T (ri;α),T (rj ;α)

)
(8)

=
1

2

b∑
l=1

(√
ril −

√
rjl

)2

= d2H(ri, rj)

where the first equality follows from (4). More generally,

Dcos

(
yi,yj ; (β, γ)

)
(9)

= d2H

(
T (yi; (2β, γ))

||T (yi; (2β, γ))||1
,

T (yj ; (2β, γ))

||T (yj ; (2β, γ))||1

)
;

see Appendix A for details. This final expression means that
the class of dissimilarities in (7) encompasses not only the
(L2-normalized) Euclidean distance or cosine dissimilarity,
but also the (L1-normalized) Hellinger distance.

Stein et al.’s (2012) use of d2H(ri, rj) to segment solar im-
ages can be justified by a desire to reduce the influence of
the nuisance parameters, νi, through the use of the cosine
dissimilarity and to stabilize the variance of observations
with different total count via the square root transforma-
tion, specified here by α = (1/2, 0). Together, these con-
siderations provide a principled justification for the use of
Hellinger distance in Stein et al. (2012). In this paper, we
consider the possibility that other choices of α may lead to
better performance. Section 4 develops a numerical frame-
work for computing good values of α.

3.3 Clustering and numerical issues

Once we have identified a dissimilarity function, the next
step is to partition the pixels into clusters that (approx-
imately) minimize the within-cluster dissimilarities. Given
the relationship between the cosine dissimilarity and Eu-
clidean distance given in (4), this can easily be accomplished

using the k-means algorithm. In particular, for any choice
of α the parametrized dissimilarity function in (7) can be
written

(10) Dcos(yi,yj ;α) =
1

2
d22

(
T (yi;α)

||T (yi;α)||2
,

T (yj ;α)

||T (yj ;α)||2

)
.

Applying the k-means algorithm to the transformed obser-
vations T (yi;α)/||T (yi;α)||2 efficiently partitions pixels by
minimizing the sum of squared Euclidean distances between
the transformed observations and their nearest cluster cen-
troids.

Unfortunately, the final partition produced by k-means
can be sensitive to the initial locations of cluster centroids.
To numerically mitigate this, we use the k-means++ algo-
rithm of Arthur and Vassilvitskii (2007) to choose the initial
centroids. This is a randomized algorithm that encourages
dispersed initial centroids. We rerun k-means++ with five
different random seeds and choose the resulting partition
(from the five) that yields the minimum within-cluster sum
of squared distances.

Using k-means requires us to choose k, the number of
clusters. Although there are many available methods that
accomplish this (e.g., Milligan and Cooper, 1985; Tibshi-
rani et al., 2001), we do not view this choice as a statistical
problem, at least in this setting. This is because there is not
some number, k < n, of distinct DEM types and so there
is not a true number of clusters that we are trying to es-
timate. Instead, we view the choice of k as governing the
degree of image compression: fewer clusters correspond to
higher image compression. Therefore, we anticipate that in
practice the choice of k will be guided by considerations that
are not just statistical (e.g., bandwidth and storage limita-
tions), and thus we do not propose a specific method here
for choosing k.

In practice, we recommend spatially smoothing the im-
ages before applying k-means. From a scientific point of
view, this allows us to focus on solar structures of interest
(e.g., loops) and to suppress smaller features. Smoothing
also stabilizes the cosine dissimilarities which can be noisy
when the denominators in (10) are small. Smoothing effec-
tively takes advantage of spatial similarities to yield better
estimates of intensities in regions with few counts, reducing
the noise in the ratios in (10).

4. NUMERICAL SELECTION OF
DISSIMILARITY FUNCTIONS

4.1 Simulation design

In practice we must determine what value of α to use
in the definition of the dissimilarity function. We propose
to do so numerically, by conducting a simulation study and
choosing the optimal value of α (e.g., the value that min-
imizes the Bayes risk) in the simulation. If the simulation
is designed to mimic the scientific setting of interest, the
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Table 1. The prior distribution for μi = νiθi parameterized in
terms of ψi = (πi,mi1,mi2, σi1, σi2, νi) as in (11)

Parameter Explanation

πi ∼ Beta(3.5, 3.5), Pr(0.1 < πi < 0.9) = 99%

mi1,mi2
iid∼ Uniform[5.5, 8.0] Uniform over a plausible range

of log10(temperature)

log σi1, log σi2
iid∼ N(−1.8, 0.72) E(σij) ≈ 0.2 and

Pr(0.025 < σij < 1.0) = 99%
log10 νi ∼ Uniform[26.5, 28], For a uniform DEM, this prior

implies that E
(∑b

j=1 yij
)

ranges from approximately 50†

to 1500
†Although 50 is relatively high for the minimum expected count
under a uniform DEM, the expected count can be much lower for a
non-uniform DEM.

optimal value of α under the simulation can be expected
to behave well in the actual scientific data analysis. To en-
sure this, we rely on subjective, informative prior distribu-
tions (see Table 1) that are based on our experience with
the range of potential shapes of DEMs. For example, solar
DEMs often have one or two peaks between approximately
106 and 107 K; see Kashyap and Drake (1998) for numerous
examples. To allow for the possibility of unexpected DEM
shapes, we choose hyperparameters that yield prior distri-
butions that are somewhat more diffuse than our subjective
prior expectations.

We conduct a pair of simulation studies in which there
are two distinct clusters among the (θ1, . . . ,θn). We denote
the centroids of the two clusters by ϑ(1) and ϑ(2) and write

θi �
{
ϑ(1) if pixel i belongs to cluster 1

ϑ(2) if pixel i belongs to cluster 2

and θi1 � θi2 if pixels i1 and i2 are in the same cluster. This
induces a partition of the pixels and we let I(c) = {i : θi �
ϑ(c)} for c = 1, 2. (For simplicity in this section, we assume
that the number of clusters is well defined and known.) The
nuisance parameters, (ν1, . . . , νn), on the other hand, may
take on values unrelated to this partition. This means that
while i1, i2 ∈ I(c) implies that θi1 � θi2 , it does not im-
ply any relationship between νi1 and νi2 . Scientifically, this
corresponds to assuming that there are a limited number
of distinct thermal profiles (i.e., temperature distributions)
but that the amount of plasma along any line of sight varies
independently of the thermal profile.

To mimic the scientific expectation of the variability
among the possible shapes of the solar DEM, we suppose
that each μi is constructed as a discretized version of a trun-
cated mixture of two Gaussian density functions. In partic-
ular, we let μij = νiθij , where

θij =
1

A

{
πi

1

σi1
φ

(
log10 Tj −mi1

σi1

)
(11)

+ (1− πi)
1

σi2
φ

(
log10 Tj −mi2

σi2

)}
,

log10 Tj = 5.5, 5.55, . . . , 8.0 is a grid of values for the coronal
temperature, φ(·) is the standard normal density function,
πi is the relative size of the first Gaussian distribution, mi1

and mi2 are the means of the component Gaussian distribu-
tions, σi1 and σi2 are the standard deviations, and

A =

nT∑
j=1

{
πi

1

σi1
φ

(
log10 Tj −mi1

σi1

)

+ (1− πi)
1

σi2
φ

(
log10 Tj −mi2

σi2

)}
.

This specification of μi depends on the unknown parameter
ψi = (πi,mi1,mi2, σi1, σi2, νi). We can set a prior distribu-
tion on μi (or equivalently on θi and νi) by specifying a
prior distribution on ψi. For consistency of notation, we use
p(θi, νi) to denote our choice for the prior on ψi, which is
given in Table 1. A sample of normalized DEMs, θi, param-
eterized as in (11) and simulated via p(θi, νi), appears in
Figure 3.

To illustrate how simulation studies can be used to select
α, we consider images with n = 100 pixels that can be par-
titioned into two clusters, each with 50 pixels. We conduct
two simulations. In Simulation I, there is no variability
among the normalized DEMs within each cluster. That is,
i1, i2 ∈ I(c) implies that θi1 = θi2 . In Simulation II, on the
other hand, there are two clusters, each with similar, but not
necessarily equal, normalized DEMs. That is, i1, i2 ∈ I(c)
implies that θi1 � θi2 . Thus in Simulation I the clusters
are noiseless and in Simulation II they are noisy.

In each simulation, we generate 5000 such images. Specif-
ically, letting � = 1, . . . , 5000 index the simulated images, we

first sample ϑ
(�)
(1) and ϑ

(�)
(2) from p(θi) as described in Table 1

and in (11). In Simulation I we noiselessly set

θ
(�)
i =

⎧⎨
⎩
ϑ
(�)
(1) for i = 1, . . . , 50,

ϑ
(�)
(2) for i = 51, . . . , 100.

In Simulation II we set π
(�)
(c),m

(�)
(c)1,m

(�)
(c)2, σ

(�)
(c)1, and σ

(�)
(c)2

to the values corresponding to ϑ
(�)
(c) for the two cluster cen-

troids, c = 1, 2, and noisily sample

π
(�)
i =

{
π
(�)

(1), for i = 1, . . . , 50,

π
(�)

(2), for i = 51, . . . , 100,

m
(�)
ij ∼

{
N(m

(�)

(1)j , 0.1
2), for i = 1, . . . , 50 and j = 1, 2,

N(m
(�)

(2)j , 0.1
2), for i = 51, . . . , 100 and j = 1, 2,

log σ
(�)
ij ∼

{
N(log σ

(�)

(1)j , 0.1
2), for i = 1, . . . , 50 and j = 1, 2,

N(log σ
(�)

(2)j , 0.1
2), for i = 51, . . . , 100 and j = 1, 2.
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Figure 3. A sample of normalized DEMs parameterized as in (11) and simulated with the prior distributions described in
Table 1.

An example of two noisy DEM clusters sampled in this way
appears in Figure 4, along with a comparison with the noise-
less clusters used in Simulation I. Finally, in both simu-

lations, for each pixel, i, we sample ν
(�)
i

iid∼ p(ν), compile

μ
(�)
i , and simulate the six passband counts as independent

Poisson random variables with means given in (1) with μi

replaced by μ
(�)
i . We denote the simulated images by y(�)

for � = 1, . . . , 5000. For the results reported in this paper,
we simulated the six passband counts from the truncated

Poisson distribution conditional on y
(�)
i+ > 0. In results not

reported here, we repeated Simulations I and II without
this truncation but with the restriction that γ > 0 (so that
a strictly positive pseudo count was added to every obser-
vation when computing pairwise dissimilarities); the results
were qualitatively similar to those reported.

We consider two methods to evaluate the choice of α,
its ability to recover the true underlying partition and its
estimated Bayes risk. Results for the two criteria under our
simulation study are reported in the next two sections.

4.2 Recovering a true partition

We first use the adjusted Rand index to evaluate the
choice of α in terms of its ability to recover the true un-
derlying partition of the pixels. The Rand (1971) index is
computed by summing (a) the number of pairs of units that
are in the same cluster in truth and in the reconstruction
and (b) the number of pairs of units that are in different
clusters in truth and in the reconstruction, and dividing by

the total number of pairs of units. The adjusted Rand index
(Hubert and Arabie, 1985) attempts to adjust the Rand in-
dex for chance groupings. As with the Rand index, an exact
recovery of the true clustering corresponds to an adjusted
Rand index of 1.

Figure 5(a) plots the adjusted Rand index for Simula-

tion I, averaged over the 5000 simulated images described
in Section 4.1. The best performance is achieved when β is
near 1/2, but the optimal β depends on γ: if γ = 0, then the
optimal β > 1/2, whereas for γ > 0, the optimal β is slightly
less than 1/2. Among the class of dissimilarities considered,
optimal recovery of the underlying clusters is achieved at
β∗ = 0.45 and γ∗ = 0.38, with an adjusted Rand index of
0.925.

The average adjusted Rand index for Simulation II is
shown in Figure 5(b). The optimal adjusted Rand index is
0.73; this is substantially lower than for Simulation I be-
cause it is much harder to recover the true partition when
the clusters of normalized DEMs are noisy. Under the sim-
ulation design used in Simulation II, the normalized ex-
pected photon counts, φi, occasionally exhibit substantial
overlap between the two clusters. As in Simulation I, the
best performance is achieved when γ∗ = 0.38. Here, the op-
timal choice of β∗ = 0.22 is lower than in Simulation I.
Using the Simulation I-optimal value of α∗ = (0.45, 0, 38)
in Simulation II, however, reduces the adjusted Rand in-
dex by only 0.03.

For comparison, we perform standard k-means clustering
in both simulations. That is, we cluster the untransformed

Preprocessing solar images while preserving their latent structure 543



Figure 4. A comparison of the noiseless and noisy clustering of the normalized DEMs used in Simulations I and II,
respectively. The normalized DEMs plotted in blue in panels (a) and (b) represent ϑ1 and ϑ2 while those plotted in black and
red represent the corresponding samples of θi used in one of the images sampled under Simulation II. Panel (c) plots the

resulting normalized expected photon counts, φ, in three of the six passbands, using the same color coding.

(β = 1, γ = 0) counts using squared Euclidean distance in-
stead of the cosine dissimilarity. This results in an average
adjusted Rand index of just 0.08 for Simulation I and 0.06
for Simulation II. The optimal α-transformed cosine dis-
similarity offers a substantial improvement over this base-
line.

4.3 Decision theoretic choice of α

We now consider choosing an optimal α under the de-
cision theoretic framework of Section 2. Here we use the
quadratic loss function L(φ, φ̂) = ||φ̂ − φ||22, but in prac-
tice this could be replaced by any reasonable loss function.
We can then approximate the Bayes risk via Monte Carlo.
For example, using the n = 5000 images simulated in Sec-
tion 4.1,

(12) R̂B(α) =
1

5000n

5000∑
�=1

n∑
i=1

R
(
φi, φ̂i

(
S(y(�);α)

))
,

where y(�) are sampled from their prior predictive distribu-
tion as described in Section 4.1 and thus average over both
p(y | θ,ν) and over p(θ,ν). The estimator of φi in (12) is

given by

(13) φ̂ij

(
S
(
y(�);α

))
=

∑
l∈I[i] y

(�)
lj∑

l∈I[i]
∑b

j′=1 y
(�)
lj′

, j = 1, . . . , b,

where I[i] denotes the cluster containing pixel i. Note that
φ̂i is the maximum likelihood estimator of φi under the
model that assumes that θi1 = θi2 for all i1, i2 ∈ I(c), for
each cluster c. (The denominator of (13) is never zero be-

cause we simulate images conditional on y
(�)
i+ > 0; see Sec-

tion 4.1.)
Figures 5(c) and (d) plot log

(
R̂B(α)

)
for a range of β

and γ, for Simulations I and II, respectively. For Simula-
tion I, the minimum Bayes risk is achieved at β∗ = 0.3 and
γ∗ = 0.5; for Simulation II, at β∗ = 0.45 and γ∗ = 0.5.
Adding a positive fractional pseudo count provides a sub-
stantial benefit in Simulation I: the optimal Bayes risk at
γ∗ = 0.5 is 45% lower than the best Bayes risk that can
be achieved with γ = 0. In Simulation II, the contrast
is less dramatic, with an optimal Bayes risk only 5% lower
than the minimum Bayes risk when γ = 0. Similarly, using
a power transformation offers substantial benefits in Simu-

lation I (41% reduction in Bayes risk compared to the best
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Figure 5. Average adjusted Rand index for (a) Simulation I and (b) Simulation II, and log Bayes risk for (c)
Simulation I and (d) Simulation II for a range of values of α = (β, γ). Gray scales are chosen so that lighter shades
correspond to better performance. Diamonds indicate the locations of maximum adjusted Rand index in (a) and (b) or
minimum Bayes risk in (c) and (d). While the four comparisons do not agree precisely on the optimal value of α, they

unanimously exclude the untransformed cosine dissimilarity (β = 1, γ = 0) and highlight the advantage of adding fractional
pseudo counts when using the Hellinger distance (if β = 1/2, γ should be positive).

when β = 1) and less dramatic but still notable benefits in
Simulation II (9% reduction in Bayes risk).

The optimal α-transformed cosine dissimilarity offers
a substantial reduction in Bayes risk when compared to
squared Euclidean distances on the untransformed counts.
In Simulation I, the optimal α∗ resulted in a 99% reduc-

tion in Bayes risk. In Simulation II, the reduction was
89%.

Together, the simulation results under the two optimal-
ity criteria suggest that substantial gains can be achieved by
choosing 0.3 < β < 0.5 and 0.4 < γ < 0.5, approximately.
Although they do not agree precisely on the optimal choice
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of (β, γ), the simulations are unanimous in their exclusion of
Euclidean distance and the untransformed cosine dissimilar-
ity (i.e., (β, γ) = (1, 0)). They also highlight the advantage
of adding fractional pseudo counts when using the Hellinger
distance: γ should be chosen to be positive when β = 1/2.
Based on these results we compare (β, γ) = (0.3, 0.5) and
(0.5, 0.5) in the data analyses in Section 5.

5. APPLICATION TO AIA DATA

We apply our method to the set of six SDO/AIA solar
images depicted in Figure 1. These images were collected
on 26 February 2015 at 20:57 UT using the AIA filters cen-
tered on 94Å, 131Å, 171Å, 193Å, 211Å, and 335Å. The fil-
ters are designed to capture the most prominent features in
the coronal spectrum when observing plasma in the tem-
perature range of 106–107 Kelvin. Particular ions in plas-
mas of this temperature produce significant electromagnetic
emission in narrow wavelength ranges. The filters capture
such spectral features, in particular those resulting from
FeXVIII, FeVIII/Fe XXI, Fe IX, FeXII/FeXXIV, FeXIV,
and FeXVI, respectively.

The images in Figure 1 feature a prominent coronal hole
(CH) near the southern pole of the Sun. A CH is an area
of mostly open magnetic field lines where the solar wind
originates. Generally speaking, these regions are thought to
have less variation in thermal properties than, for example,
the active regions around Sun spots. This CH has many
bright points within it that appear to be due to low-lying
closed loops, surrounded by low-brightness, uniform regions.
It is bordered by areas of significant activity, characterized
by prominent loop structures. The limb of the Sun is also
visible in this field, bordering the CH at the bottom of the
image. While the CH appears to extend beyond the visual
horizon of the limb, loops from the CH border areas are
visible sticking past the limb.

Figure 6 displays the results of segmenting a cutout of the
images in Figure 1 containing the CH into twenty segments.
The segmentations in the top and middle panels are based on
the cosine dissimilarities in (7) with (β, γ) = (0.3, 0.5) and
(0.5, 0.5), respectively. That in the bottom panel was based
on squared Euclidean distances on the untransformed ob-
servations, i.e., the standard k-means algorithm directly ap-
plied to the observations. Prior to segmentation, we mildly
spatially smoothed each image with a Gaussian filter with
standard deviation 5. This standard deviation corresponds
to the approximate size of the structures of interest on the
Sun, such as loops, and suppresses smaller features. There
are several evident differences between the features revealed
by the cosine- and Euclidean-based segmentations. For ex-
ample, in the off-limb corona at the bottom of the images,
the cosine-based segmentations reveal funnel-shaped struc-
tures, while the Euclidean-based segmentation separates
this region into horizontal striations. The horizontal stria-
tions are clearly attributable to simple intensity variations.

Moreover, in the Euclidean-based segmentation, there is an
abrupt border between the CH and the active regions sur-
rounding it, while in the cosine-based segmentations, there
appears to be a more gradual transition between the CH
and its surroundings. We interpret these differences as an
indication that potentially interesting thermal features can
be disguised by off-the-shelf image segmentation techniques,
in this case k-means.

Figure 7 provides a detailed comparison of the two seg-
mentations based on cosine dissimilarities. In order to focus
on structure within the CH and eliminate structure outside
it, we created an approximate mask for the CH,4 masked
the region surrounding the CH, and segmented the result-
ing image into five segments using the same dissimilarities
as in the top and middle panels of Figure 6. The two choices
of β lead to similar segmentations that disagree primarily
on detailed features at the edges of segments. We can quan-
tify the agreement between two segmentations by applying
the adjusted Rand index to the partitions corresponding to
each segmentation; there is no need for one of the parti-
tions to be ground truth. The segments based on the two
values of β are in strong agreement, as evidence by an ad-
justed Rand index of 0.91. This supports the conclusion that
within the recommended range of β, the segmentations are
not extremely sensitive to the particular choice of β.

From a practical point of view, Figure 7 illustrates a fast
method for enhancing the contrast of solar images by ob-
taining segmentations that highlight spectral/thermal infor-
mation rather than intensity as do the standard brightness
maps in Figure 1. We emphasize that spatial cohesion of the
segments in Figure 7 is not imposed by our method (except
insofar as we spatially smooth the observed images prior
to segmentation)—we do not account for pixel locations.
Rather, spatial cohesion stems from the spectral (and hence
thermal) similarity of nearby pixels.

6. DISCUSSION

6.1 Secondary science-based statistical
analyses

Our ultimate goal is to feed thermally-segmented solar
images into a secondary statistical analysis. While a full ex-
ploration of such secondary analyses is beyond the scope
of this paper, there are hints as to the power of this ap-
proach. The arrows in the first two panels of Figure 6, for
example, identify a bulb-shaped region of seemingly high-
temperature plasma that is on first inspection predictive of
a reconnection event. These occur when magnetic fields un-
der stress reconnect and release energy in the form of flares,

4We created the mask by first smoothing the images with a Gaus-
sian filter with standard deviation 30, and then segmenting the images
into two segments, using the cosine dissimilarities (7) with (β, γ) =
(0.5, 0.5). We applied the mask to images smoothed with a Gaussian
filter with standard deviation 5—i.e., less smoothing than used to cre-
ate the mask.
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Figure 6. Segmentation results for the 1026× 1536 pixel cutout of the images in Figure 1 containing the coronal hole.
Segmentations were based on cosine dissimilarities with (β, γ) = (0.3, 0.5) (top); cosine dissimilarities with (β, γ) = (0.5, 0.5)
(middle); and squared Euclidean distances between untransformed observations (bottom). (That is, the segmentation in the
bottom panel is based on the off-the-shelf k-means algorithm.) In all cases the number of segments was set to twenty. Colors
(in online version of this article) or gray scale values (in printed version) represent the labels of clusters of pixels with similar
thermal properties, not the temperature values within those clusters. (A color version of this figure is available free of charge
at arXiv.org , paper ID: 1512.04273.) While there is substantial agreement between the two segmentations based on cosine

dissimilarities, they both differ substantially from the k-means segmentation. The arrows in the top and middle panels indicate
the bulb-shaped region discussed in Section 6.1.

coronal mass ejections, or plasma jets. Such events have the
potential to adversely affect the near-Earth space-based in-

frastructure. Thus, their prediction is a high scientific pri-
ority. Inspection of the CH over time reveals that the fea-
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Figure 7. A comparison of the cosine-dissimilarity segmentation results for the coronal hole region of the images in Figure 1
and discussed in Section 5. Again we compare β = 0.3 (solid lines) and β = 0.5 (dotted lines). Differences between the two

five-cluster segmentations are highlighted in pink. (These differences were found by first relabeling the image segments to find
the greatest agreement between the two segmentations, and then highlighting the pixels on which the resulting segment labels

disagree.) The gray scale values in the unmasked regions are determined by the intensity in the 171Å passband.

ture highlighted in Figure 6 was indeed the precursor of a
plasma jet. An eruption becomes visible about one half hour
after the data analyzed in Figure 6 were recorded, at ∼21:20
UT on 26 February 2015. Clearly this single event does not
establish the predictive power of our segmentation, but it
does highlight its potential and motivate further investiga-
tion.

The most common current approach is to estimate the
DEM for each pixel in the the image using one of the meth-
ods described in Section 1, and, from these estimates to
visually identify regions with similar thermal profiles. This
pixel-by-pixel approach is computationally costly even for
the faster methods, both in time and in disk space, tak-
ing about 3–5 hours on a 2.5 GHz machine to estimate each
pixel-specific DEM in a 1024×1024 cutout of the full image.
In practice, standard errors are also needed to compare and
ultimately cluster the fits. Errors are computed via paramet-
ric bootstrap with many tens of bootstrap replicates needed
for each pixel so that the computational expense quickly
multiplies.

Our approach reverses these steps; we first cluster pixels

using their observed passbands and a dissimilarity measure
tuned to preserve latent thermal structure. This computa-
tion is fast, taking only about two minutes5 on a 3.7 GHz
machine to produce each image in Figure 6, including run-
ning the k-means algorithm five separate times with random
initial cluster centroids and choosing the best of the five re-
sulting clusterings. More importantly, we need only estimate
the DEM for each of ∼10 image segments (or as many as
we can afford computationally) rather than for each of as
many as ∼107 pixels (in a full 4096× 4096 image). Even if
we use the most principled available Bayesian method with
MCMC fitting (i.e., Kashyap and Drake, 1998) the compu-
tational gain will be substantial.

Our approach does not use spatial information, except
indirectly by smoothing the images prior to segmentation.
Incorporating spatial structure in a model-based approach
would be an interesting, though potentially computationally
costly, direction for future work.

5This computation time can be reduced. For example, using the mini-
batch k-means algorithm of Sculley (2010), we obtained qualitatively
similar segmentations to those in Figure 6 in under 5 seconds each.
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Alternative approaches are being explored by other
teams. For example, the SDO/AIA team is developing a
method that uses approximate, but fast, pixel-wise thermal
representations by using a pre-computed dictionary of (three
temperature band) DEMs associated with statistically dis-
tinct clusters of passband intensity values (M. Weber, pri-
vate communication). This amounts to binning each of the
passband intensities and associating a fitted DEM with each
six-way combination of filter-intensity bins. New DEM in-
version solutions only need to be computed when previously
unobserved bin combinations are encountered. In principle,
this strategy has the potential to keep up with the cadence
of AIA images by generating a 4-megapixel 3-temperature-
band DEM map every ten seconds. While this allows for
visual identification and inspection of patterns in thermal
behavior, some form of analysis such as clustering must still
be carried out on the DEM map to objectively identify re-
gions that are thermally similar. It is also possible that by
binning the DEMs into only three temperature bands, some
thermal features obtainable from the six-band filter intensi-
ties could be lost. Because this dictionary-based method is
still in development, we must leave such questions to future
investigations.

6.2 Preprocessing data for science-driven
analyses

Today’s state-of-the-art astronomical data are of excep-
tional quality, composed of diverse and sometimes massive
data streams, and are often tailored to specific scientific
goals. This “big data” is not just “big,” however; it is rich,
deep, and intricate, encompassing, for example, high res-
olution spectrography and imaging across the electromag-
netic spectrum; the intricate measurement of stellar wobble
used to identify exoplanets and estimate their masses, dis-
tances and orbital shapes; and incredibly detailed movies
of the dynamic and explosive processes in the solar atmo-
sphere. These studies aim to improve our understanding of
the evolution of the Universe and of our own origins. Such
ambitious goals require descriptive science-driven statisti-
cal models and methods that relate our best understanding
of underlying physical processes to observables. In the long
run, this will improve understanding of the underlying pro-
cesses, inform future data collection to maximize their infor-
mation content, and enable further advances. Methods that
simply identify patterns in data are not well-suited to such
problems. Instead, we require methods that incorporate un-
derstanding of the underlying physical processes. We refer to
general-purpose methods that aim to identify patterns and
clusters in data and that are generally used for prediction as
data-driven methods. Science-driven methods, on the other
hand, are typically designed for a specific inference problem
and, in astronomy, incorporate physics-based models that
enable scientifically meaningful statistical inference.

While there is no general formula for the implementation
of science-based methods in a big-data environment, some

patterns are emerging. In astrophysics and solar physics, a
focus on the underlying physics must always be the guiding
principal for methodological development. To be scalable,
however, methods require some sort of data filtering—a re-
duction in data volume that insofar as possible maintains
information content. In practice, this often takes the form
of preprocessing the data. In this article, we segment solar
images in anticipation of secondary analyses that investi-
gate thermal properties of the resulting segments and/or
model their evolution. Similar examples abound. The Large
Hadron Collider at CERN, for instance, produces millions
of proton collisions per second (e.g., van Dyk, 2014). The
experiments involved in the discovery of the Higgs Boson
have fast triggers that make decisions about which events
are worth saving, secondary analyses aim to further re-
duce background, and finally a science-driven analysis is em-
ployed to identify excess particles at the fitted Higgs mass.
Data-driven and science-driven methods are combined by
implementing a sequence of discrete analyses: the first anal-
yses filter the data, and latter analyses aim to answer spe-
cific scientific questions. In this paper, we are able to embed
science-driven methods in the initial data reduction phase.
Others have employed similar strategies. Stenning et al.
(2013), for example, used mathematical morphology (e.g.,
Soille, 2003) to efficiently identify and summarize scientifi-
cally meaningful features in solar images of active regions.
The result is a concise numerical summary of the complex-
ity of a magnetic flux distribution that (i) is far easier to
work with than the source images, (ii) efficiently encapsu-
lates scientifically relevant information, and (iii) is amenable
to sophisticated follow-up statistical analyses.

Generally speaking there are significant challenges in
implementing statistically coherent multiphase analyses.
Building on the framework of Multiple Imputation, Blocker
and Meng (2013) develop a theoretical description of a class
of multiphase scenarios. They illustrate a number of pitfalls
that may arise, especially when the model used for prepro-
cessing the data is unknown to the downstream analyst or
is uncongenial with the downstream model; see also Meng
(1994). In principle, this is less of a problem in the cur-
rent setting, at least if the several discrete phases of the
analyses are conducted by the same researcher or the same
team. This being said, the methods employed for data re-
duction (e.g., k-means for image segmentation) are not typi-
cally likelihood based and thus may not be easily integrated
into an overarching probabilistically principled framework.
Bridges can sometimes be built between data-driven meth-
ods and likelihood-based science-driven methods, however,
in an effort to put the overall analysis on a firmer theoretical
footing. Lee et al. (2011) and Xu et al. (2014), for exam-
ple, show how principal component analysis can be used to
markedly reduce the dimension of replicates used to describe
the uncertainty in the instrumental operating characteristic
of X-ray telescopes. They then quantify the results of this
data-driven analysis as a prior distribution for the unknown
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operating characteristics and use it in a secondary science-
driven likelihood-based analysis.

In this article we develop another example of a multi-
phase analysis that aims to implement science-driven meth-
ods in a big-data context. In particular, we develop a suite
of image segmentation methods for massive streams of high-
resolution solar images to map regions in the solar corona
with similar thermal properties. Although our image seg-
mentation methods are largely data-driven, they are de-
signed with the ultimate scientific goal in mind and specifi-
cally aim to improve the efficiency of the follow-up analyses
by producing summaries of the raw data that maintain rel-
evant information and are amenable to science-based model
fitting.

ACKNOWLEDGMENTS

This project was conducted under the auspices of the
CHASC International Astrostatistics Center. CHASC is
supported by NSF grants DMS 1208791, DMS 1209232,
DMS 1513492, DMS 1513484, and DMS 1513546. David
van Dyk also acknowledges support from a Wolfson Re-
search Merit Award provided by the British Royal Society
and from a Marie-Curie Career Integration Grant provided
by the European Commission and Vinay Kashyap from a
NASA contract to the Chandra X-Ray Center NAS8-03060
as well as travel support for collaborative visits as part of
the Indo-US Center for Astronomical Object and Feature
Characterization and Classification, sponsored by the Indo-
US Science and Technology Forum (IUSSTF). In addition,
we thank Durgesh Tripathi, and CHASC members for many
helpful discussions.

APPENDIX A

In this section, we prove (9). To simplify notation, let

zi = (zi1, . . . , zib) = (yi1 + γ, . . . , yib + γ), and let zβ
i =

(zβi1, . . . , z
β
ib) = T (yi; (β, γ)). Then
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Setting p = 2 and dividing by two, we obtain (9).
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