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ABSTRACT
We propose a new soft clustering scheme for classifying galaxies in different activity classes
using simultaneously 4 emission-line ratios; log([N ii]/Hα), log([S ii]/Hα), log([O i]/Hα) and
log([O iii]/Hβ). We fit 20 multivariate Gaussian distributions to the 4-dimensional distribu-
tion of these lines obtained from the Sloan Digital Sky Survey (SDSS) in order to capture
local structures and subsequently group the multivariate Gaussian distributions to represent
the complex multi-dimensional structure of the joint distribution of galaxy spectra in the 4
dimensional line ratio space. The main advantages of this method are the use of all four
optical-line ratios simultaneously and the adoption of a clustering scheme. This maximises
the use of the available information, avoids contradicting classifications, and treats each class
as a distribution resulting in soft classification boundaries and providing the probability for an
object to belong to each class. We also introduce linear multi-dimensional decision surfaces
using support vector machines based on the classification of our soft clustering scheme. This
linear multi-dimensional hard clustering technique shows high classification accuracy with
respect to our soft-clustering scheme.
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1 INTRODUCTION

The production of electromagnetic radiation in galaxies is domi-
nated by two main processes: star-formation and/or accretion onto
a supermassive central black-hole, the latter witnessed as an Active
Galactic Nucleus (AGN). The characterization of these processes
and the study of their interplay is key for understanding the demo-
graphics of galactic activity and the co-evolution of nuclear black-
holes and their host galaxies (e.g. Kormendy&Ho 2013). One of the
most commonly used tools for characterising the type of activity in
galaxies is its imprint on the emerging spectrum of the photoionised
interstellar medium (ISM). AGN generally produce harder ionising
continua which result in spectra with stronger high-excitation lines
compared to the spectra we can obtain from photoionization by
young stellar populations (e.g. Ferland 2003).

The importance of characterising the ionising source of
emission-line regions was recognised early on and led to the first
systematic presentation of optical emission-line diagnostic tools
by Baldwin, Phillips & Terlevich (1981). This work introduced
two-dimensional diagrams involving the ratios of various opti-
cal emission lines (e.g. [Nev] λ3426, [O ii] λ3727, [O iii] λ5007,
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[O i] λ6300, [N ii] λ6584He ii λ4686, Hα, andHβ) that can separate
emission-line regions excited by stellar photoionizing continuum,
power-law photoionizing continuum, or shocks. Therefore, these
diagrams, known as Baldwin-Phillips-Terlevich (BPT) diagrams,
were able to discriminate between star-forming galaxies (SFGs)
and galaxies dominated by AGN activity. At the same time, a third
class of galaxies was recognized by Heckman (1980) on the basis
of their relatively stronger lower-ionisation lines (Low-Ionisation
Nuclear Emission line Regions; LINERs). The format of the BPT
diagrams that are typically used today was refined by Veilleux &
Osterbrock (1987) to involve the log([O iii]λ5007/Hβ) emission-
line intensity ratios plotted against one of the log([N ii]λ6584/Hα),
log([S ii]λλ6716, 6731/Hα), log([O i]λ6300/Hα) emission-line in-
tensity ratios, and they can discriminate between all three classes of
objects (SFGs, LINERs, AGN).

However, the exact demarcation between SFGs and AGNs is
generally defined empirically and hence it is subject to considerable
uncertainty. Based on stellar population synthesis and photoiniza-
tion models Kewley et al. (2001) introduced a maximum ’starburst’
line on the BPT diagrams which defines the upper bound for the
SFGs. Driven by the fact that AGN and SFGs observed in the Sloan
Digital Sky Survey (SDSS; York et al. 2000) show two distinct loci
extending below the demarcation line of Kewley et al. (2001), a new
empirical upper bound for the SFGs was put forward by Kauffmann
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et al. (2003) in order to distinguish the pure SFGs. The objects
between this new empirical SFG line and the demarcation line of
Kewley et al. (2001) belong to the class of Composite galaxies (also
referred to as Transition objects in previous studies; e.g. Ho et al.
1997). The spectra of these Composite galaxies have been tradition-
ally interpreted as the result of significant contributions from both
AGN and star-forming activity, although, more recently it has been
proposed that their strong high-excitation lines could be the result
of shocks (e.g. Rich et al. 2014). Based on the density of the objects
in the 2-dimensional diagnostic diagrams, Kewley et al. (2006)
introduced another empirical line for distinguishing Seyferts and
LINERs. More recently, Shi et al. (2015) explored other emission-
line intensity ratios that could improve the classification. They used
support vector machines to test the classification accuracy using a
dataset of galaxies classified as either SFG, AGN, or Composite
based on Kauffmann et al. (2003).

The currently used classification scheme suffers from a signif-
icant drawback. The use of multiple diagnostic diagrams indepen-
dently of one another often gives contradicting classifications for
the same galaxies (e.g. Ho et al. 1997). According to Kewley et al.
(2006), 8% of the galaxies in their sample are characterised as am-
biguous in that they were classified as belonging to different classes
based on at least two diagnostic diagrams. For clarity, throughout
this paper, we use the term contradicting to emphasise that the dif-
ferent 2-dimensional diagnostics can give different classifications.
Such contradictions arise because BPT diagrams are projections
of a complex multi-dimensional space onto 2-dimensional planes.
This limits the power of this diagnostic tool and may lead to incon-
sistencies between the different diagnostic diagrams. Moreover, the
number of extragalactic emission-line objects for which accurate
spectra are available has grown rapidly in recent years, especially
with the advent of the SDSS. This massive dataset reveals incon-
sistencies between the theoretical and empirical upper bounds and
the actual distribution of the observed line ratios for the different
classes (e.g. Kauffmann et al. 2003).

This limitation of the existing approach gives rise to the ques-
tion of whether we can use a multidimensional data-driven method
to effectively classify the galaxies. Recently, Vogt et al. (2014), gen-
eralised the diagnostics originally proposed by Kewley et al. (2006)
by providingmulti-dimensional surfaces in different groups of diag-
nostic lines that separate different activity classes. These, however,
do not include the standard BPT diagnostic ratios. Similarly, de
Souza et al. (2017) explore the use of Gaussian mixture models for
the activity classification of galaxies in the 3-dimensional parameter
space defined by the [O iii]/Hβ, [N ii]/Hα, line ratios and the Hα
equivalent width (EW(Hα)).

In this article we propose a classification scheme, the soft data-
driven allocation (SoDDA)method, which is based on the clustering
of galaxy emission-line ratios in the 4-dimensional space defined
by the [O iii]/Hβ, [N ii]/Hα, [S ii]/Hα, and [O i]/Hα ratios. This is
motivated by the clustering of the SFG, AGN, and LINER loci on
the 2D projections of the emission-line diagnostic diagrams. Our
classification scheme arises from a model that specifies the joint
distribution of the emission-line ratios of each galaxy class to be a
finite mixture of multivariate Gaussian (MG) distributions. Given
the emission line ratios of each galaxy, we compute its posterior
probability to belong to each galaxy class. This allows us to achieve
a soft clustering without hard separating boundaries between the
different classes. A similar approach was successfully implemented
by Mukherjee et al. (1998) in another clustering problem in which
they used a mixture of MG distributions to discriminate between
distinct classes of gamma-ray bursts.

This paper is organised as follows. In Section 2 we describe
the proposed methodology. Section 3 discusses the implementa-
tion of the method on galaxy spectra from the SDSS DR8, and
Section 4 compares our multidimensional data driven classification
scheme with the commonly used diagnostic proposed by Kewley
et al. (2006). Section 5 introduces multidimensional linear decision
boundaries that we compare in terms of their prediction accuracy
with both the SoDDA and the scheme of Kewley et al. (2006). In
Section 6 we review our results and discuss further research direc-
tions.

2 CLUSTERING ANALYSIS

Cluster analysis is a statistical method that aims to partition a dataset
into subgroups so that the members within each subgroup are more
homogeneous (according to some criterion) than the population as
a whole. In this article we employ a class of probabilistic (model-
based) algorithms that assumes that the data are an identically
and independently distributed (i.i.d.) sample from a population de-
scribed by a density function, which is taken to be a mixture of com-
ponent density functions. Finite mixture models have been studied
extensively as a clustering technique (Wolfe 1970). It is common to
assume that the mixture components are all from the same paramet-
ric family, such as the Gaussian. The use of mixture models arises
naturally in our problem, since the population of galaxies is made
up of several homogeneous and often overlapping subgroups from
a spectroscopic perspective: SFGs, Seyferts, LINERs and Compos-
ites.

Fraley & Raftery (2002) proposed a general framework to
model a population as a mixture of K subpopulations. Specifically,
let xi be a vector of length p containing measurements of object i
(i = 1, ..., n) from a population. In our application the xi tabulates
the p = 4 emission line ratios for galaxy i. A finite mixture model
expresses the likelihood of xi as:

p(xi |θ, π) =
K∑
k=1

πk fk (xi |θk ), (1)

where fk and θk are the probability density and parameters for
the distribution of subpopulation k, and πk is the relative size of
subpopulation k, with πk ≥ 0 and

∑K
i=1 πk = 1. Given a sample of

n independent galaxies x = (x1, x2, ..., xn), the joint density can be
expressed as:

p(x |θ, π) =
n∏
i=1

K∑
k=1

πk fk (xi |θk ), (2)

where θ = (θ1, ..., θK ) and π = (π1, ..., πK ).

2.1 Estimating the parameters of a finite mixture model

Dempster, Laird & Rubin (1977) propose a framework that can
be used to compute the maximum likelihood estimators (MLE) in
finite mixture models using the Expectation-Maximization (EM)
algorithm. We denote the unknown parameters as φ = (θ, π). The
MLE is φ? = argmaxφp(x | φ), where argmaxφ is an operator
that extracts the value of φ that maximises the likelihood function,
p(x | φ). The EM algorithm is an iterative method for computing
the MLE.

In the context of finite mixture models, Dempster et al.
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(1977) introduced an unobserved vector z (n × K), where zi• is
the indicator vector of length K with zik = 1 if object i belongs
to subpopulation k and 0 otherwise. Because the zi• are not
observable, they are called latent variables. In this case they specify
to which subpopulation each galaxy belongs. Given a statistical
model consisting of observed data x, a set of unobserved latent
data z, and a vector of unknown parameters φ = (θ, π), the EM
algorithm iteratively performs alternating expectation (E) and
maximisation (M) steps:
E-step: Compute Q(φ|φ(t)) = E[log p(x, z |φ)|x, φ(t)],

M-step: Set φ(t+1) = argmaxφ Q(φ|φ(t)),

where the superscript t indexes the iteration, and E[.] is the weighted
mean evaluated by marginalising over all possible values of z. The
EM algorithm enjoys stable convergence properties, in that the
likelihood, p(x |φ), increases in each iteration and the algorithm is
known to converge to a stationary point of p(x |φ), which is typically
a local maximum.

The joint distribution p(x, z |θ, π) can be factorised as
p(x, z |θ, π) = p(z |θ, π)p(x |z, θ, π), where p(z |θ, π) is a product of n
multinomial distribution p(z |θ, π) =

∏n
i=1

∏K
k=1 π

zik
k

. Conditional
on zik = 1, p(xi) = fk (xi |θk ). The logarithm of the conditional
distribution of x and z given (θ, π), i.e. the log-likelihood, is:

`(θ, π |x, z) = log p(x, z | θ, π) =
n∑
i=1

K∑
k=1

zik log[πk fk (xi |θk )]. (3)

The E-step requires us to compute the conditional expectation
of Equation 3 given (θ(t), π(t)). Because Equation 3 is linear in
the components of each zi•, it suffices to compute the conditional
expectation of the components of each zi• given x and (θ(t), π(t)).
This is the conditional probabilities of i belonging to subpopulation
k given (θ(t), π(t)). More specifically:

E[zik |θ(t), π(t), x] =
π
(t)
k

fk (xi |θ
(t)
k
)∑K

k=1 π
(t)
k

fk (xi |θ
(t)
k
)
= γ(zik ) (4)

The M-step requires us to maximise the conditional expec-
tation of Equation 3 with respect to π and θ, i.e. to maximise∑n
i=1

∑K
k=1 γ(zik ) log[πk fk (xi |θk )]. The particular form of the M-

step depends on the choice of density distributions, fk , for the
subpopulations. Here we assume MG distributions for each sub-
population.

MG mixture models can be used for data with varying struc-
tures due to the flexibility in the definition of variance matrices. The
density of the MG distribution for subpopulation k is:

fx(xi) =
1√

(2π)p |Σk |
exp

(
−

1
2
(xi − µk )

T
Σ
−1
k (xi − µk )

)
. (5)

The EM formulation for an MG mixture is presented in detail
in Dempster et al. (1977). The E-step has the same formulation as in
Equation 4, with fk given in Equation 5 with θk = (µk, Σk ), where
µk represent the means and Σk the covariance matrices of the xi line
ratios for galaxies in subpopulation k. For the M-step, the updates
of the parameters have closed form solutions (Bilmes et al. 1998),

π
(t+1)
k

=
1
n

n∑
i=1

γ(zik ) (6)

µ
(t+1)
k

=

∑n
i=1 xiγ(zik )∑n
i=1 γ(zik )

(7)

Σ
(t+1)
k

=

∑n
i=1 γ(zik )(xi − µ

(t+1)
k
)(xi − µ

(t+1)
k
)T∑n

i=1 γ(zik )
. (8)

We implement this EM algorithm using the scikit-learn Python
library1 under the constraint that the covariance matrices are full
rank, and the diagonal elements cannot be smaller than 10−3 to
avoid overestimation, i.e. converging to a small number of data
points. Because this algorithm can be sensitive to the choice of
starting values, we routinely rerun it with 5 different randomly
selected sets of starting values. The values of the likelihood for the
different starting values differ less than 0.5%. We choose the value
among the 5 converged points with the largest likelihood to be the
MLE, denoted (π?, µ?, Σ?).

2.2 Choosing the value of K

Fraley &Raftery (2002) point out that mixtures ofMG distributions
are appropriate if the subpopulations are centred at the means, µk ,
with increased density for data closer to the means. As a result, the
practical use of MG mixture models could be limited if the data ex-
hibit non-Gaussian features, including asymmetry, multi-modality
and/or heavy tails. In the SDSS DR8 dataset that we examine, it is
apparent that the subpopulations exhibit non Gaussians character-
istics such as convexity, skewness and multimodality. In order to
account for these non-Gaussian features, we use a mixture of MG
distributions with K considerably larger than the actual number of
galaxy classes. In this way, we represent each galaxy class by a
mixture of several MG subpopulations. This allows a great deal of
flexibility in the class-specific distributions of emission line ratios.
With the fitted (large K) MG mixture in hand we can then perform
hyper-clustering of the K MG subpopulations so as to concatenate
them into clusters representing the four desired galaxy classes.

The number (K >> 4) of MG subpopulations that we fit to our
data is chosen using the Bayesian Information Criterion (BIC) of
Schwarz et al. (1978) and the gap statistic (Tibshirani et al. 2001).
BIC is a model selection criterion based on the maximum log-
likelihood obtained with each possible value of K , and penalised
by the increased complexity associated with more subpopulations .
More specifically, it is defined as BIC(K) = −2 · L?(K) + K log(n),
where L?(K) = p(x | θ?(K), π?(K)) is the maximised value of
the likelihood when the number of subpopulations is fixed at K .
The value of K with the lowest BIC is preferred. The gap statistic
compares the normalised intra-cluster distances between points in a
given cluster, WK , for different total number of subpopulations K ,
with a null reference distribution obtained assuming data with no
obvious clustering. The null reference distribution is generated by
sampling uniformly from the original datasets bounding box multi-
ple times. The estimate for the optimal number of subpopulations K
is the value for which the WK falls the farthest below the reference
curve.

SoDDA accomplishes the hyper-clustering of the K subpopu-
lations into the four galaxy classes using the classification scheme

1 http://scikit-learn.org/stable/
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of Kewley et al. (2006). More specifically, we treat the fitted sub-
populations means (µ?1 , ..., µ

?
K
) as a dataset and classify them into

the four galaxy classes. For example, suppose we fit 10 MG distri-
butions and the means of the distributions 1, 3 and 5 are classified
by Kewley et al. (2006) as SFGs, then the distribution of the SFGs
under SoDDA would be

fSFG(xi) =
π?1 f1(xi |θ?1 , π

?
1 ) + π

?
3 f3(xi |θ?3 , π

?
3 ) + π

?
5 f5(xi |θ?5 , π

?
5 )

π?1 + π
?
3 + π

?
5

.

(9)

Via the allocations of the means of the K subpopulations into
the four galaxy classes, we have defined the distribution of the
emission line ratios for each galaxy class as a finite mixture of
MG distributions. Specifically, let fSFG(x), fLINER(x), fSeyfert(x),
and fComp(x) be the distributions under SoDDA of the emission
line ratios of SFGs, LINERs, Seyferts and Composites galaxies
respectively. Then, given the four emission line ratios xi of a galaxy
i, the posterior probability of galaxy i belonging to class c is:

ρic = Pr(galaxy i is of class c) (10)

=
fc(xi)∑
z fz (xi)

, for z in {SFG,LINER, Seyfert,Comp}. (11)

3 IMPLEMENTATION OF THE CLASSIFICATION
SCHEME

The SDSS provides an excellent resource of spectra of the central
regions (∼ 5.5 kpc for z < 0.1) of galaxies covering all different
activity types (e.g. Kauffmann et al. 2003). For the definition of
our multi-dimensional activity diagnostics we use the "galspec"
database of spectral-line measurements from the Max-Plank In-
stitute for Astronomy and Johns Hopkins University group. We
used the version of the catalog made publicly available through
the SDSS Data Release 8 (Aihara et al. 2011a,b; Eisenstein et al.
2011), which contains 1,843,200 objects. The spectral-line mea-
surements are based on single Gaussian fits to star-light subtracted
spectra, and they are corrected for foreground Galactic absorption
(Tremonti et al. 2004; Kauffmann et al. 2003; Brinchmann et al.
2004). Since the same catalog has been used for the definition of the
two-dimensional and multi-dimensional diagnostics of Kauffmann
et al. (2003) and Vogt et al. (2014) respectively, it is the best bench-
mark for testing the SoDDA. Before proceeding with our analysis
we applied the corrections on the line-measurement errors reported
in Juneau et al. (2014), and we corrected the flux of the Hβ line
following Groves et al. (2012). From this catalog we selected all
objects satisfying the following criteria, which closely match those
used in the reference studies of Kauffmann et al. (2003) and Kewley
et al. (2006):

• RELIABLE=1 "galspec" flag.
• No warnings for the redshift measurement (Z_WARNING=0).
• Redshift between 0.04 and 0.1.
• Signal-to-noise ratio (SNR) greater than 3 on each of the strong

emission-lines used in this work
: Hα, Hβ, [O iii]λ5007 [N ii]λ6584, [S ii]λλ6716, 6731. This en-

sures the use of reliable line flux measurements for our analysis.
• The continuum near the Hβ line has SNR> 3.
• Ratio of Hα to corrected Hβ greater than the theoretical value

2.86 for star-forming galaxies. This excludes objects with problem-
atic starlight subtraction and errors on the line measurements (c.f.
Kewley et al. 2006)

Figure 1. The Bayesian Information Criterion (BIC) computed over a grid
of values of K (in increments of 5) using the data of the SDSS DR8. The
BIC is a model selection criterion based on the log-likelihood; the model
with the lowest BIC value is preferred, indicating that in this case the optimal
number of subpopulations is K = 25.

Figure 2. The Gap statistic computed over a grid of values of K (in incre-
ments of 5) using the data of the SDSS DR8. The Gap statistic compares the
intra-subpopulation distances between points in a given subpopulation with
a null reference distribution of the data, i.e., a distribution with no obvious
clustering. This figure shows that the smallest value of K for which the data
measure exceeds the randomly generated measure is K = 10.

The final sample consists of 130,799 galaxies, and it provides a di-
rect comparison with the reference diagnostics of Kauffmann et al.
(2003) and Kewley et al. (2006) which have used very similar selec-
tion criteria. Given the difficulty in correcting for intrinsic extinction
in the cases of Composite and LINER galaxies we do not attempt
to apply any extinction corrections (apart from the requirement for
the galaxies to have positive Balmer decrement).

We apply the BIC and gap statistic for values of K ranging
from 5 to 50 in increments of 5. Figures 1 and 2 plot the BIC and
gap statistics. BIC suggests an optimum value of around K = 25,
while the gap statistic suggests a value of K = 10. Since we are
ultimately concatenating the subpopulations, we err on the side of
large K , with K = 20, so as to capture as much detail in the data as
possible without over-fitting.

Figure 3 displays the BPT diagnostic diagrams for SDSS DR8
with each point colour coded according to its most probable sub-
population among the K = 20 fit. The means of the subpopulations
are plotted for k = 1, . . . , 20. To visualize the spacial extent of each
of the 20 subpopulation, Figure 4 plots the [N ii]/Hα vs [O iii]/Hβ
diagnostic diagram for each subpopulation (Subpopulation 18 con-
tains very few objects, mostly capturing objects with large errors
in the [O i]/Hα ratios). We emphasize that the full 4-dimensional
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Table 1. The suggested classification of the 20 subpopulations means.

Class Subpopulation ID

SFG 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 16, 19
Seyferts 5, 20
LINER 14

Composites 2, 15, 17, 18

geometry of the subpopulations cannot be seen in the 2-dimensional
projections.

SoDDA associates each of the 20 subpopulations with one
activity class based on the projection of their mean on the 2-
dimensional BPT diagnostic diagrams, and their location with re-
spect to the activity-class separating lines reported in Kewley et al.
(2006). The allocations are given in Table 1 for the 20 subpopula-
tions means. All but subpopulation 5 can be clearly associated with
one activity class in all three diagnostic planes. Themean of subpop-
ulation 5 is located within the Seyfert class, but its extent transcends
the Composite and Seyfert classes. Since the main discriminator be-
tween Composite galaxies and Seyferts is the [N ii]/Hα diagnostic
and the mean of this subpopulation is clearly above the maximum
‘starburst’ line on the BPT diagrams introduced by Kewley et al.
(2001) as an upper bound of SFGs, we include Subpopulation 5 in
the Seyfert class. After combining the 20 subpopulations to form
the 4 galaxy classes as described in Table 1, we compute the pos-
terior probability of each galaxy being a SFG, Seyfert, LINER, or
Composite using Equation 11. The second row in Figure 5 shows the
BPT diagnostic diagrams for SDSS DR8 with each galaxy colour
coded according to its most probable galaxy class (red for SFGs,
yellow for Seyferts, blue for LINERs, and green for the Compos-
ites) under SoDDA. To highlight the spatial extent of each cluster,
we plot the BPT diagrams for each activity class (SFGs, Seyferts,
LINERs and Composites) individually in Figure 6.

Figure 7 depicts a 3-dimensional projection of the SDSS DR8
sample on the ([N ii]/Hα, [S ii]/Hα, [O iii]/Hβ) volume. This
3-dimensional projections illustrate the complex structure of the
4 galaxy activity classes. 3-dimensional rotating projections can
be found at http://hea-www.harvard.edu/AstroStat/etc/
gifs.pdf

The data used for Figs 7, 5, 6 are presented in Table 2. This
table gives the SoDDA-based probability that each galaxy in the
sample considered here belongs to each one of the activity classes,
along with the galaxy’s SPECOBJID, the key diagnostic line-ratios,
and the activity classification based on the class with the highest
probability. Table 2 contains the details for five galaxies of the
sample we used. We include the table for the entire sample in the
online version of the paper.

MNRAS 000, 1–22 (2017)
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Figure 3. The BPT diagnostic diagrams for the SDSS DR8 sample; each galaxy is coloured according to its most probable allocation to one of the 20
subpopulations. The maximum ’starburst’ line of Kewley et al. (2001) is shown by the solid red line and the empirical upper bound on SFG of Kauffmann et al.
(2003) is plotted as dashed blue line. The empirical line for distinguishing Seyferts and LINERs of Kewley et al. (2006) is depicted by the solid blue line.

Figure 4. The 20 subpopulations plotted on the [N ii]/Hα vs [O iii]/Hβ projection of the 4-dimensional diagnostic diagram. The subpopulations are numbered
following the scheme in Figure 3. This figure shows the spatial extent of each subpopulation and their location with respect to the standard diagnostic lines in
the [O iii]/Hβ diagram. Since these are 2-dimensional projection of the 4-dimensional distribution in each subpopulation, they only give an indication of the
extent and location of each subpopulation.

MNRAS 000, 1–22 (2017)
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Table 2. Activity classification of the emission-line galaxies in the SDSS-DR8 based on the SoDDA. Column (1): SPECOBJID in SDSS DR8; Columns (2), (3), (4), (5): Logarithm of the diagnostic line-ratios (see
ß3); Columns (6), (7), (8), (9): Probability that a galaxy belongs to each one of the 4 activity classes based on the SoDDA analysis; Column (10): Highest-ranking activity class: 0 for SFGs, 1 for Seyferts, 2 for
LINERs, and 3 for Composites. We include the table for the entire sample in the online version of the paper.

Line Ratio SoDDA Probability
SPECOBJID log([N ii]/Hα) log([S ii]/Hα) log([O i]/Hα) log([O iii]/Hβ) SFG Seyfert LINER Composite Activity Class

299491051364706304 -0.525441 -0.556073 -1.623533 -0.621178 0.992937 0.000052 3.217684e-09 0.007011 0
299492700632147968 -0.442478 -0.479489 -1.467312 -0.572390 0.983635 0.000046 8.869151e-08 0.016319 0
299493525265868800 -0.516100 -0.482621 -1.482500 -0.262816 0.989069 0.000207 7.396101e-07 0.010723 0
299493800143775744 -0.665688 -0.392920 -1.630935 -0.081032 0.999946 0.000007 1.841213e-09 0.000048 0
299494075021682688 -0.305985 -0.285281 -1.293723 -0.274226 0.189374 0.006725 7.278570e-04 0.803174 3
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SoDDA provides a robust classification for the vast majority of
the galaxies in the SDSS DR8 sample. For 87.8% of the galaxies,
maxc ρic is greater than 75%. That is, the most probable class for
each of 87.8% of the galaxies has a posterior probability greater than
75%, indicating strong confidence in the adopted classification (the
difference in the classification probability with the second largest
class is at least 50%). The difference between the largest and the
second largest ρic (among the classes for each object), is a good
indicator of the uncertainty of the classification. We find that this
difference is greater than 50% for 88.3% of the galaxies, suggesting
that the classifications are robust for the vast majority of the sample.
The difference between the maxc ρic and the second largest ρic is
smaller than 10% for 2.1% of the galaxies, and smaller than 1%
for only 0.17% of the galaxies. This indicates that the classification
is uncertain for very few galaxies in the overall sample. This is
illustrated in Figure 8 which plots maxc ρic , against the difference
between maxc ρic and the second largest ρic among the classes.
The red lines denote a difference between the two highest values of
ρic (among the classes) of 1% and 50%.
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Multidimensional AGN Classification 9

Figure 5. The BPT diagrams for the galaxies in the SDSS DR8 sample, based on the Kewley et al. (2006) scheme (top) and SoDDA (bottom). Each galaxy
is colour coded according to its classification: red for SFGs, yellow for Seyferts, blue for LINERs, green for the Composite galaxies, and black for the
Contradicting classifications. Note the lack of any contradicting classifications (black points) in the SoDDA results (bottom). For reference we also plot the the
maximum ’starburst’ line of Kewley et al. (2001) (solid red), the empirical upper bound on SFG of Kauffmann et al. (2003) (dashed blue), and the empirical line
distinguishingSeyferts andLINERs (Kewley et al. 2006; solid blue). 3-dimensional rotating projections of the 4-dimensional diagramof the SoDDAclassification
(depicted in the bottom row of the figure in 2-dimensional projections) are available online: http://hea-www.harvard.edu/AstroStat/etc/gifs.pdf.
The animated figures can also be found as supplementary material.
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Figure 6. The locus of galaxies classified into the different activity types using SoDDA plotted on the three BPT diagrams. Each set of panels shows a different class (clockwise from top left): (a) SFGs (red), (b)
Seyfert (yellow); (c) LINERs (blue), (d) Composite (green). For reference the full sample is also plotted in grey. The maximum ’starburst’ line of Kewley et al. (2001) is plotted as a solid red line, the empirical upper
bound on SFG of Kauffmann et al. (2003) is plotted as a dashed blue line, and the empirical line distinguishing Seyferts and LINERs (Kewley et al. 2006) is plotted as a solid blue line.
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Multidimensional AGN Classification 11

In order to assess the stability of the classification we randomly
select a bootstrap sample consisting of 90% of the SDSS DR8 data
(sampled without replacement). Using the bootstrap sample, we re-
tune the classifier by estimating the means, weights, and covariance
matrices for the 20 subpopulations, assigning each to one of the 4
activity classes, and recalculating the probability that each galaxy
belongs to each of the 4 classes. We denote these probabilities,
ρboot
ic

, to distinguish them from those computed with the full SDSS
DR8 sample, namely ρic . There is excellent agreement between the
original classification and that obtained using the bootstrap sam-
ple. Specifically, 94.9% of the galaxies are classified into the same
activity type with both classifiers. Similarly, 88.4% of the galaxies
classified as Composites (the class with the largest degree of mixing
with the other classes; c.f. Figs. 5, 4) using the original classifier
are classified in the same way using the set of parameters obtained
from using the bootstrap sample. The figures are 95.1% for Seyferts,
98.9% for LINERs, and 95.8% for SFGs.

Overall there is little difference between the class probabilities
of the individual galaxies computed with the full data and with the
bootstrap sample. To illustrate this, we plot maxc ρic −maxc ρboot

ic
against maxc ρic in Figure 9. Galaxies that are classified differently
by the two classifiers are plotted in red. Again, there is excellent
agreement: Not only is the classification of the vast majority of
galaxies the same for both classifiers, but the probabilities of be-
longing to the chosen class are both similar and high. Of the galaxies
(5.1%) that are classified differently, 89.9% have maxc ρic < 75%,
meaning their classification was not clear to begin with. Overall, our
classifier appears robust to the choice of sample used for defining
the classification clusters.

4 COMPARISONWITH 2-DIMENSIONAL
CLASSIFICATION SCHEME

In contrast to the standard approach of using hard thresholds to
define the different classes, SoDDA uses soft clustering. This al-
lows for the natural mixing between the different classes given that
there is a continuous distribution of galaxies in the emission-line
diagnostic diagrams. We thus calculate the posterior probability of
each galaxy belonging to each activity class. Moreover, SoDDA
is not based on any particular set of two-dimensional projections
of the distributions of emission-line ratios, but rather it takes into
account the joint distribution of all 4 emission-line ratios, which
maximizes the discriminating power of the diagnostic. Thus, the
main difference between the two schemes is that SoDDA does not
produce contradictory classifications for the same galaxy. Rather
SoDDA provides a single coherent summary based on all diagnos-
tic line ratios: a posterior membership probability for each galaxy.
This allows us to select a sample of galaxies at the desired level of
confidence, either in terms of absolute probability of belonging in a
given class, or in terms of the odds in belonging in different classes.

MNRAS 000, 1–22 (2017)
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Figure 7. A 3-dimensional projection of the SDSS DR8 sample used in our study on the ([N ii]/Hα, [S ii]/Hα, [O iii]/Hβ) volume, in which each galaxy is
colour coded according to its SoDDA classification (red for SFGs, yellow for Seyferts, blue for LINERs and green for the Composites). The 3-dimensional
projections illustrates the complex structure of the 4 galaxy activity classes. Each of the four 3-dimensional rotating projection of the full 4-dimensional diagram
are available online: http://hea-www.harvard.edu/AstroStat/etc/gifs.pdf.

Figure 8. The difference between the SoDDA probabilities of the most likely and second most likely class for each galaxy in the SDSS D8 sample. The
difference is plotted against the probability of the most likely class. The red lines corresponds to a difference of 1% and 50%. Only 0.21% of the galaxies exhibit
a difference between the probabilities of the most and second most likely classes of less than 1%. 87.8% of the galaxies have maxc ρic > 75%, indicating a
highly confident classification. The histogram in the right of the plot shows the cumulative distribution of the difference between the maximum and the second
highest probability. It is clear that more than 75% of the galaxies have difference well above 0.8.
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Figure 9. (left)A plot of the difference between the class probabilities of the individual galaxies computed with the full data and with the bootstrap sample,
namely a plot of maxc ρic −maxc ρboot

ic against maxc ρic . Galaxies that are classified differently by the two schemes are plotted in red. The vast majority of
galaxies have the same classification under both schemes; those that do not (5.1% of the full sample) have maxc ρic < 75% (89.9% of them), meaning their
classification was not clear to begin with. (right) A histogram of the distribution of the maximum probability (i.e. the probability of the highest class maxc ρic )
for the objects that change classification in the bootstrap analysis. The vast majority of the objects have maxc ρic < 0.75. Note the sheer difference in the
number of objects that change classification with respect to the total number of objects.
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Table 3. A 3-way classification table that compares the SoDDA classification with the standard, 2-dimensional classification scheme (Kewley et al. 2006). Each cell has 3 values: the number of galaxies with
(i) ρic ≥ 75%, (ii) 50% ≤ ρic < 75%, and (iii) ρic < 50%, where ρic is the posterior probability that galaxy i belongs to galaxy class c under SoDDA. Contradictory classifications are called ambiguous
classifications by Kewley et al. (2006).

So
D
DA

Kewley et al. (2006)
SFGs Seyferts LINERs Comp Contradictory Total

≥ 75% 50% − 75% < 50% ≥ 75% 50% − 75% < 50% ≥ 75% 50% − 75% < 50% ≥ 75% 50% − 75% < 50% ≥ 75% 50% − 75% < 50% ≥ 75% 50% − 75% < 50%

SFGs 98363 3521 42 4 2 0 0 1 0 1535 2369 113 1745 99 13 101647 5992 168
Seyferts 0 1 1 3462 241 1 30 48 7 80 336 42 532 497 45 4104 1123 96
LINERs 0 0 0 0 0 0 811 354 21 436 255 23 34 44 26 1281 653 70
Comp 43 791 38 0 0 0 21 147 24 7545 6438 207 157 208 46 7766 7584 315

M
N
RA

S
000,1–22

(2017)



Multidimensional AGN Classification 15

A 3-way classification table that compares SoDDA with the
commonly used scheme proposed by Kewley et al. (2006) appears
in Table 3. Each cell has 3 values: the number of galaxies with (i)
ρic ≥ 75%, (ii) 50% ≤ ρic < 75%, and (iii) ρic < 50%, where
ρic is the posterior probability that galaxy i belongs to galaxy class
c. For example, the cell in the first row and first column shows that
of the galaxies that both the SoDDA and the Kewley et al. (2006)
method classify as SFG, 98,363 are SFGs under SoDDAwith prob-
ability greater than 75%, 3,521 with probability between 50% and
75%, and only 42 with probability less than 50%. In general there
is very good agreement between the SoDDA and the Kewley et al.
(2006) classification for the star-forming and the Seyfert galaxy
classes. In the case of LINERs there is also reasonable agreement,
but with a larger fraction of galaxies classified in the intermedi-
ate confidence (50% ≤ ρic < 75%) regime. In the case of com-
posite objects, however, the fraction of galaxies classified in the
intermediate or low (ρic < 50%) confidence regime increases dra-
matically. This is a result of the overlap between the composite
and the other activity classes in the log([N ii]/Hα), log([S ii]/Hα),
and log([O iii]/Hβ), but not for ([O i]/Hα - [O iii]/Hβ) and the
([S ii]/Hα)- [O iii]/Hβ) diagnostics (Fig. 5, 6). The majority of the
galaxies that have contradictory classifications according to Kew-
ley et al. (2006) are estimated with the SoDDA to be SFGs, and
increasingly reduced fractions are allocated to the Seyfert, LINER,
and Composite classes.

In Figure 5 we show the classification based on the diagnostic
lines presented in Kewley et al. (2006) (top panels) along with the
classification based on the SoDDA method. The colour coding of
the different classes is the same in both panels (red for SFGs, yellow
for Seyfert, blue for LINERs, green for composite galaxies). Ob-
jects with contradictory classifications in the top panel are marked
in black. The overlap between the composite galaxies (green) and
the SFGs (red) is clear in the SoDDA classification (middle and
right panels of Figure 5), indicating that the 2-dimensional projec-
tion of this 4-dimensional parameter space is insufficient for cap-
turing its complex structure and accurately classifying the galactic
activity. The use of hard boundaries defined independently in the
2-dimensional projections is responsible for those galaxies with
contradictory classification. On the other hand the probabilistic ap-
proach of SoDDA simultaneously accounts for the 4-dimensional
structure of the data space and inherently alleviates these incon-
sistent classifications, while at the same time giving a confident
classification of the galaxies to activity classes.

5 MULTIDIMENSIONAL DECISION BOUNDARIES

In order to provide a more immediately usable diagnostic in the
spirit of the classification lines of Kauffmann et al. (2003) and
Kewley et al. (2006), which however, simultaneously employ the
information in all diagnostic lines, we use a support vector ma-
chine (SVM) (Cortes & Vapnik 1995) to obtain multidimensional
decision boundaries based on the SoDDA results. A SVM is a dis-
criminative classifier formally defined by a separating hyperplane.
In other words, given classified galaxies, the algorithm outputs an
optimal hyperplane which can be used to categorize new unlabelled
galaxies. This hybrid approach uses the SoDDA classification to
disentangle the complex multi-dimensional structure of the over-
lapping clusters, while providing easy to use diagnostic surfaces in
the spirit of the commonly BPT-like diagnostics.

5.1 4-dimensional Decision Boundaries

The input data for the derivation of the multidimensional decision
boundaries are the 4 emission line ratios for the galaxies in the
SDSS DR8 sample (i.e. x), and the classification for each galaxy as
obtained with SoDDA (i.e., y). We use the scikit-learn Python
library to fit the SVMmodel, employing a linear kernel function. A
more complex function did not provide an improvement significant
enough to justify its use, especially given the simplicity of a linear
kernel. The SVMalgorithm requires tuning the cost factor parameter
C, that sets the width of the margin between hyperplanes separating
different classes of objects. After a grid search in a range of values
for C, we adopt a value of C = 1 based on 10-fold cross-validation.
K-fold cross-validation is a model validation method for estimating
the performance of the model. The data is split in K roughly equal
parts. For each κ ∈ (1, ...,K)we fit the model in the otherK−1 parts
of the data and calculate the prediction error of the fittedmodelwhen
predicting the κth part of the data (the error is effectively the number
of inconsistent classifications between the SVM analysis on the the
κth part of the data and the classifications obtained by SoDDA for
the same galaxies). By repeating this procedure for a range of values
for the model parameters (C), we choose the values of C that give
us the SVM model with the minimum expected prediction error.

Using the SoDDA classification, we employ an SVM approach
to define multidimensional surfaces separating the galaxy activity
classes. More specifically, we find an optimal separation hyperplane
using the 4 emission line ratios for the galaxies from the SDSS DR8
sample and their most probable classification obtained by SoDDA
as inputs. The 4-dimensional linear decision boundaries for the four
galaxy classes are defined below.
SFG:

−7.31 log([N ii]/Hα) + 2.75 log([S ii]/Hα) − 1.41 log([O i]/Hα)
− 5.91 log([O iii]/Hβ) > 1.92 (12)

−5.32 log([N ii]/Hα) − 6.37 log([S ii]/Hα) − 3.40 log([O i]/Hα)
− 0.42 log([O iii]/Hβ) > 6.51 (13)

−23.01 log([N ii]/Hα) + 0.93 log([S ii]/Hα) − 5.30 log([O i]/Hα)
− 8.10 log([O iii]/Hβ) > 16.38 (14)

Seyferts:

−7.31 log([N ii]/Hα) + 2.75 log([S ii]/Hα) − 1.41 log([O i]/Hα)
− 5.91 log([O iii]/Hβ) < 1.92 (15)

0.37 log([N ii]/Hα) − 4.55 log([S ii]/Hα) − 7.21 log([O i]/Hα))
+ 11.65 log([O iii]/Hβ) > 10.02 (16)

7.14 log([N ii]/Hα) − 3.12 log([S ii]/Hα) + 0.46 log([O i]/Hα)
+ 16.08 log([O iii]/Hβ) > 2.82 (17)

LINERs:

−5.32 log([N ii]/Hα) − 6.37 log([S ii]/Hα) − 3.40 log([O i]/Hα)
− 0.42 log([O iii]/Hβ) < 6.51 (18)

0.37 log([N ii]/Hα) − 4.55 log([S ii]/Hα) − 7.21 log([O i]/Hα)
+ 11.65 log([O iii]/Hβ) < 10.02 (19)

−1.04 log([N ii]/Hα) + 8.94 log([S ii]/Hα) + 6.48 log([O i]/Hα)
+ 6.69 log([O iii]/Hβ) > −6.90 (20)
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Composites:

−23.01 log([N ii]/Hα) + 0.93 log([S ii]/Hα) − 5.30 log([O i]/Hα)
− 8.10 log([O iii]/Hβ) < 16.38 (21)

7.14 log([N ii]/Hα) − 3.12 log([S ii]/Hα) + 0.46 log([O i]/Hα)
+ 16.08 log([O iii]/Hβ) < 2.82 (22)

−1.04 log([N ii]/Hα) + 8.94 log([S ii]/Hα) + 6.48 log([O i]/Hα)
+ 4.69 log([O iii]/Hβ) < −6.90 (23)

Table 4 compares the SoDDA classification with the proposed
classification from the SVM, while Table 5 compares the scheme
from Kewley et al. (2006) with the SVM. We see excellent agree-
ment between the SoDDA and the SVM-based classification. More
specifically, 99.0% of the galaxies classified as SFGs by SoDDA
are classified in the same way as the SVM-based classification. The
figures are 96.9% for Seyferts, 91.2% for LINERs, and 90.2% for
Composites. Similarly, we find very good agreement between the
traditional 2-dimensional diagnostics of (Kewley et al. 2006) and
the SVM method in the cases of SFGs and Seyfert galaxies (Table
5). For Composite objects and LINERs we find a larger number
of objects for which we obtain a different classification based on
the two methods. The largest discrepancy is in the case of LINERs
(agreement for 80% of the LINER sample), which we attribute to
the complex shape on the distribution of the Composite objects for
which the SoDDA analysis shows that they extend to the locus of
LINERs (Figs. 5, 6). We note that such discrepancies are expected,
given the ad-hoc definition of the activity classes, particularly in the
case of composite galaxies.

5.2 3-dimensional Decision Boundaries

Because the [O i] line is generally very weak and hence hard to
measure, it is common to use the flux ratios of the five other strong
lines in the optical spectrum: log([N ii]/Hα), log([S ii]/Hα), and
log([O iii]/Hβ). Thus, we use the SoDDA classification (Section 3)
as the basis for the definition of decision boundaries by apply-
ing the SVM algorithm in the 3-dimensional space defined by the
(log([N ii]/Hα), log([S ii]/Hα), and log([O iii]/Hβ) emission-line
ratios. The resulting 3-dimensional decision surfaces for the four
galaxy classes are presented below.
SFG:

−7.27 log([N ii]/Hα) + 1.523 log([S ii]/Hα)
− 7.02 log([O iii]/Hβ) > 0.25 (24)

−4.08 log([N ii]/Hα) − 9.33 log([S ii]/Hα)
− 1.93 log([O iii]/Hβ) > 3.28 (25)

−19.55 log([N ii]/Hα) − 3.07 log([S ii]/Hα)
− 7.10 log([O iii]/Hβ) > 9.45 (26)

Seyferts:

−7.27 log([N ii]/Hα) + 1.523 log([S ii]/Hα)
− 7.02 log([O iii]/Hβ) < 0.25 (27)

0.23 log([N ii]/Hα) − 9.66 log([S ii]/Hα)
+ 9.29 log([O iii]/Hβ) > 4.03 (28)

7.22 log([N ii]/Hα) − 2.77 log([S ii]/Hα)
+ 16.04 log([O iii]/Hβ) > 3.23 (29)

LINERs:

−4.08 log([N ii]/Hα) − 9.33 log([S ii]/Hα)
− 1.92 log([O iii]/Hβ) < 3.28 (30)

0.23 log([N ii]/Hα) − 9.66 log([S ii]/Hα)
+ 9.29 log([O iii]/Hβ) < 4.03 (31)

−0.13 log([N ii]/Hα) + 13.16 log([S ii]/Hα)
+ 5.04 log([O iii]/Hβ) > −1.84 (32)

Composites:

−19.55 log([N ii]/Hα) − 3.07 log([S ii]/Hα)
− 7.10 log([O iii]/Hβ) < 9.45 (33)

7.22 log([N ii]/Hα) − 2.77 log([S ii]/Hα)
+ 16.04 log([O iii]/Hβ) < 3.23 (34)

−0.13 log([N ii]/Hα) + 13.16 log([S ii]/Hα)
+ 5.04 log([O iii]/Hβ) < −1.84 (35)

The multidimensional decision boundaries achieve a mean
classification accuracy of about 96.7% based on 10-fold cross vali-
dation with respect to the SoDDA classification. Table 6 compares
the SoDDA classification with the proposed classification from the
SVM,while Table 7 compares the scheme fromKewley et al. (2006)
with the SVM. As with the 4-dimensional SVM classification,
we have excellent agreement with the SoDDA classification and
slightly worse agreement with the traditional 2-dimensional diag-
nostics. Surprisingly, we also find very good agreement between the
3-dimensional and the 4-dimensional SVM diagnostics indicating
that removing the fourth line ratio ([O i]/Hα) does not significantly
affect the quality of the classification. More specifically, 98.7% of
the galaxies classified as SFGs by SoDDA are classified in the same
way by the 3-dimensional SVM-based classification. The figures are
96.1% for Seyferts, 76.0% for LINERs, and 85.4% for Composites.
In other words, removing the ([O i]/Hα) line ratio has no impact on
the classification error for SFGs and the Seyferts, and results in a
different classification of 10.9% of galaxies classified as LINERs by
SoDDA and 3.7% of galaxies classified as Composites by SoDDA,
when compared to the complete 4-dimensional diagnostic.

6 DISCUSSION

We propose a new soft clustering scheme, the Soft Data-Driven Al-
location (SoDDA) method, for classifying galaxies using emission-
line ratios. Our method uses an optimal number of MG subpopu-
lations in order to capture the multi-dimensional structure of the
dataset and afterwards concatenate the MG subpopulations into
clusters by assigning them to different activity types, based on the
location of their means with respect to the loci of the activity classes
as defined by Kewley et al. (2006).

The main advantages of this method are: (a) the use of all four
optical-line ratios simultaneously, thus maximising the available in-
formation, avoiding contradicting classifications, and (b) treating
each class as a distribution resulting in soft classification bound-
aries. This allows us to account for the inherent overlap between the
different activity classes stemming from the simultaneous presence
of different excitation mechanisms with a varying degree of inten-
sity. We achieve this by calculating the probability for an object
to be associated with each one of these activity classes given their
distribution in the multi-dimensional diagnostic space.

An issue with data-driven classification methods is the ques-
tion of whether the data have sufficient discriminating power to
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Table 4. Comparison of the SoDDA classification with that of the 4-dimensional SVM ([O iii]/Hβ, [N ii]/Hα, [S ii]/Hα and [O i]/Hα space).

SV
M

SoDDA
SFGs Seyferts LINERs Composites Total

SFGs 106782 14 13 1330 108139
Seyferts 36 5157 39 115 5347
LINERs 22 9 1828 85 1944

Composites 967 143 124 14135 15369
Total 107807 5323 2004 15665

Table 5. Comparison of the classifications of a 4-dimensional SVM with that of the method by Kewley et al. (2006) ([O iii]/Hβ, [N ii]/Hα, [S ii]/Hα and
[O i]/Hα space). Contradictory classifications are called ambiguous classifications by Kewley et al. (2006).

SV
M

Kewley et al. (2006)
SFGs Seyferts LINERs Composites Contradictory Total

SFGs 102455 0 0 3987 1697 108139
Seyferts 0 3708 107 478 1054 5347
LINERs 0 0 1176 677 91 1944

Composites 345 2 181 14237 604 15369
Total 102800 3710 1464 19379 3446

Table 6. Comparison of the classifications of SoDDA with that of the 3-dimensional SVM ([O iii]/Hβ, [N ii]/Hα, and [S ii]/Hα space.

SV
M

SoDDA
SFGs Seyferts LINERs Composites Total

SFGs 106416 16 27 1965 108424
Seyferts 40 5117 111 108 5376
LINERs 31 68 1524 217 1840

Composites 1320 122 342 13375 15159
Total 107807 5323 2004 15665

distinguish the different activity classes. A strong indication in this
direction comes from the fact that the original BPTdiagnostic (Bald-
win et al. 1981) and its more recent redefinition by Kauffmann et al.
(2003) and Kewley et al. (2006) was driven by the clustering of
the activity classes in different loci on the 2-dimensional line-ratio
diagrams. Furthermore, this distinction was supported by photoion-
isation models (Kewley et al. 2001, 2013) which indicate that while
there is a continuous evolution of the location of sources on the
2-dimensional diagnostic diagrams as a function of their metallic-
ity and hardness of the ionising continuum, star-forming galaxies
occupy a distinct region of this diagram. In our analysis we fol-
low a hybrid approach in which we identify clusters based on the
multi-dimensional distribution of the object line-ratios, and we as-
sociate the clusters with activity types based on their location in the
standard 2-dimensional diagnostic diagrams. This gives a physical
interpretation to each cluster, while tracing the multi-dimensional
distribution of their line ratios.

The approach followed in this paper treats the multi-
dimensional emission-line diagnostic diagram as a mixture of dif-
ferent classes. This is a more realistic approach as it does not assume
fixed boundaries between the activity classes. Instead, it takes into
account the fact that the emission-line ratios of the different ac-
tivity classes may overlap, which is reflected on the probabilities
for an object to belong to a given class. This in fact is reflected in
the often inconsistent classification between different 2-dimensional
diagnostics (Ho et al. 1997; Yuan et al. 2010), and is clearly seen
in the complex structure of the locus of the activity classes in the
3-dimensional rotating diagnostics available in the online supple-
ments. Therefore, the optimal way to characterize a galaxy is by
calculating the probability that it belongs to each of the activity
classes, instead of associating it unequivocally with a given class.
This also gives us the possibility to define samples of different types
of galaxies at various confidence levels.

Another advantage of this approach is that we take into ac-
count all available information for the activity classification of
galactic nuclei. This is important given the complex shape of the
multi-dimensional distributions of the emission line ratios (e.g. on-
line 3-dimensional rotating diagnostics; see also Vogt et al. 2014).
This way we increase the power of the 2-dimensional diagnos-
tic tools, and eliminate the contradicting classifications they often
give. This is demonstrated by the excellent agreement between the
classification of the 4-dimensional diagnostic ([O iii]/Hβ, [O i]/Hα,
[N ii]/Hα, [S ii]/Hα) with the 3-dimensional diagnostic excluding
the often weak and hard to detect [O i] line ([O iii]/Hβ, [O i]/Hα,
[N ii]/Hα, [S ii]/Hα; see 5.2). This agreement indicates that the loss
of the diagnostic power of the [O i]/Hα line (which is considered
the main discriminator between LINERs and other activity classes
(e.g. Kewley et al. 2006)) in the 4-dimensional diagnostic, can be
compensated by the structure of the locus of the different activity
classes which allows their distinction even in the 3-dimensional
diagnostic.

A very similar approach was followed by de Souza et al. (2017)
who modeled the ([O iii]/Hβ, [N ii]/Hα, EW(Hα)) 3-dimensional
space with a set of 4 multi-dimensional Gaussians. The different
number of Gaussian components required in our work is the result
of the more complex structure of the distribution of the line ratios in
the 4-dimensional ([O iii]/Hβ, [O i]/Hα, [N ii]/Hα, [S ii]/Hα) space,
in comparison to the simpler shape in the 3-dimensional space
explored by de Souza et al. (2017). The use of the EW(Hα) in the
latter study instead of the [O i]/Hα and [S ii]/Hα line ratios allow the
separation of star-forming from non star-forming galaxies (retired
or passive; Cid Fernandes et al. (2011), Stasińska et al. (2015)).

Although the probabilistic clustering contains more informa-
tion about the classification of each emission-line galaxy, the use
of hard decision boundaries for classification is effective and closer
to the standard approach used in the literature. Therefore, we also
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Table 7. Comparison of the classifications of the 3-dimensional SVM and that of the method by Kewley et al. (2006) ([O iii]/Hβ, [N ii]/Hα, [S ii]/Hα and
[O i]/Hα space). Contradictory classifications are called ambiguous classifications by Kewley et al. (2006).

SV
M

Kewley et al. (2006)
SFGs Seyferts LINERs Composites Contradictory Total

SFGs 102750 0 0 3777 1897 108424
Seyferts 0 3708 173 490 1005 5376
LINERs 0 0 1101 601 138 1840

Composites 50 2 190 14511 406 15159
Total 102800 3710 1464 19379 3446

present hard classification criteria by employing SVM on the dis-
tribution of line-ratios of objects assigned to each activity class.
The classification accuracy with these hard criteria is ∼ 98% when
compared to the soft classification (SoDDA). This indicates that
the extended tails of the line-ratio distributions of the different ac-
tivity classes result in only a small degree of overlap and hence
misclassification compared to the results we get from SoDDA.

Several efforts in the past have introduced activity diagnostic
tools that combine information from multiple spectral bands and
often including spectral-line ratios. For example Stern et al. (2005)
and Donley et al. (2012) introduced the use of near and far-IR
colours for separating star-forming galaxies from AGN. Dale et al.
2006 and Tommasin et al. 2010 have further developed the use of IR
line diagnostics (involving for example emission lines from PAHs,
[O iv], [Ne ii], [Ne iii]), initially proposed by Spinoglio & Malkan
1992. Such diagnostics have been used extensively in IR surveys in
order to address the nature of heavily obscured galaxies, and they
are going to be particularly useful for classifying objects detected
in surveys performed with the James-Webb Space Telescope. Com-
posite diagnostic diagrams involving the [O iii]/Hβ line-ratio and
photometric data that are stellar-mass proxies Weiner et al. (2007),
the stellar mass directly Juneau et al. (2011, 2014), or photometric
colours Yan et al. (2011), have been developed to classify high-
redshift or heavily obscured objects. In a similar vein, Stasińska
et al. (2006) propose a diagnostic based on the stellar-population
age sensitive 4000-break index compared with the equivalent width
of the [O ii]3727 or the [N iii]3869 lines.

These studies demonstrate that inclusion of information from
photometric data, or wavebands other than optical, can extend the
use of the diagnostic diagrams to higher redshifts, or increase
the sensitivity of the standard diagrams in cases of heavily ob-
scured galaxies or galaxies dominated by old stellar populations.
For example, broadening the parameter space to include informa-
tion from other wavebands (e.g X-ray luminosity, radio luminosity
and spectral index, X-ray to optical flux ratio) along with the multi-
dimensional diagnostics discussed in §5 would further increase the
sensitivity of these diagnostic tools by including all available in-
formation that would allow us to identify obscured and unobscured
AGN, or passive galaxies. The fact that our analysis identifies mul-
tiple subpopulations within each activity class can be used to rec-
ognize subclasses with unusual characteristics that merit special
attention. Key for these extensions of the diagnostic tools is to incor-
porate upper-limits (i.e., information about the limiting luminosity
in a given band in the case of non detections) and uncertainties in
the determination of the clusters in the SoDDA classification or the
separating surfaces in the SVM approach.
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APPENDIX A: ANALYSIS OF THE SDSS DATA RELEASE
8 SAMPLEWITH SNR>3 FOR [O i]/Hα

The generally used sample for the definition of the activity classi-
fication diagnostics in the BPT diagrams employing SDSS data in-
cludes the screening criteria listed inß3 (e.g. Kewley et al. (2006);
Kauffmann et al. (2003); Vogt et al. (2014)). However, these screen-
ing criteria do not include the generally weak [O i] λ6300 line. In
order to assess the sensitivity of our results on the presence of noisy
data with low S/N ratio in the [O i] λ6300 line, we included in the
screening criteria presented in ß3 the criterion of S/N≥ 3 for the
[O i] λ6300 line. The final sample which has S/N≥ 3 in all lines
involved, consists of 97,809 galaxies.

We apply the SoDDA classifier in this new sample, by es-
timating the means, weights, and covariance matrices for the 20
sub-populations. We then assigned each sub-population to one of
the 4 activity classes as presented in Table A1. Figure A1 shows the
locations of the 20 sub-populations on the 2-dimensional projec-
tions of the diagnostic diagram. Comparison with Figs. 3,4 shows
very good agreement on the definition of the sub-populations in
the two analyses, although the sub-populations in the new dataset
(A1) appear to be more compact, as expected from the exclusion
of the data with low [O i] λ6300 SNR. Finally, we calculated the
probability that each galaxy belongs to each one of the 4 classes
(we will refer to the retuned SoDDA classifier as SoDDA-filtered).

Table A1. The suggested classification of the 20 subpopulations means with
SNR>3 for [O i]/Hα

Class Subpopulation ID

SFG 1, 2, 4, 6, 7, 9, 11, 14, 15, 16, 18, 19, 20
Seyferts 8, 13, 17
LINER 3

Composites 5, 10, 12

We denote these probabilities, ρfilter
ic

, to distinguish them from those
computed with the "standard" sample used in ß3, namely ρic .

A 3-way classification table that compares SoDDA-filtered
with the commonly used scheme proposed by Kewley et al. (2006)
appears in Table A2. Each cell has 3 values: the number of galax-
ies with (i) ρfilter

ic
≥ 75%, (ii) 50% ≤ ρfilter

ic
< 75%, and (iii)

ρfilter
ic

< 50%, where ρfilter
ic

is the posterior probability that galaxy i
belongs to galaxy class c. The results are in very good agreement
with those presented in the original analysis (Table 3). More specif-
ically there is excellent agreement between the SoDDA-filtered and
the Kewley et al. (2006) classification for the SFG, Seyfert, and
LINER classes, in the sense that the fraction of objects in each class
that have high-confidence (ρfilter

ic
≥ 75%) SoDDA classifications

that agree with the Kewley et al. (2006) is either similar or larger in
the case of the filtered sample. Only in the case of composite objects
we have a slightly lower fraction of objects (∼ 1.5%) classified with
SoDDA as such at high confidence. In addition while there was
a considerable fraction of composite objects classified as such at
intermediate confidence (50% ≤ ρic < 75%), in the analysis with
the filtered sample this fraction is reduced, and there is an increased
fraction classified as star-forming galaxies. These small differences
are the result of the slightly shifted means and slightly different
widths of the sub-populations defined from the two samples, which
are expected in a classifier that is trained on a subset of the sample.
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Figure A1. The top panel shows the BPT diagnostic diagrams for the SDSS DR8 sample with SNR>3 for all considered emission lines, including the
[O i]λ6300. Each galaxy is colour-coded according to its most probable allocation to one of the 20 subpopulations. The maximum ’starburst’ line of Kewley
et al. (2001) is shown by the solid red line and the empirical upper bound on SFG of Kauffmann et al. (2003) is plotted as the dashed blue line. The empirical
line for distinguishing Seyferts and LINERs of Kewley et al. (2006) is depicted by the solid blue line. The bottom panel shows the 20 subpopulations plotted
on the [N ii]/Hα vs [O iii]/Hβ projection of the 4-dimensional diagnostic diagram. The subpopulations are numbered following the scheme in the top panel.
This figure shows the spatial extent of each subpopulation and their location with respect to the standard diagnostic lines in the [O iii]/Hβ diagram. Since
these are 2-dimensional projections of the 4-dimensional distribution in each subpopulation, they only give an indication of the extent and location of each
subpopulation.
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Table A2. A 3-way classification table that compares the SoDDA classification of the filtered sample with the standard, 2-dimensional classification scheme (Kewley et al. 2006). Each cell has 3 values: the number
of galaxies with (i) ρfilter

ic ≥ 75%, (ii) 50% ≤ ρfilter
ic < 75%, and (iii) ρfilter

ic < 50%, where ρfilter
ic is the posterior probability that galaxy i belongs to galaxy class c under SoDDA filtered. Contradictory classifications

are called ambiguous classifications by Kewley et al. (2006).
So

D
DA

fil
te
re
d

Kewley et al. (2006)
SFGs Seyferts LINERs Comp Contradictory Total

≥ 75% 50% − 75% < 50% ≥ 75% 50% − 75% < 50% ≥ 75% 50% − 75% < 50% ≥ 75% 50% − 75% < 50% ≥ 75% 50% − 75% < 50% ≥ 75% 50% − 75% < 50%

SFGs 73414 2338 25 0 0 0 0 0 0 1973 1552 28 850 151 7 76237 4041 60
Seyferts 33 15 3 3432 3 0 41 66 11 612 564 16 848 108 10 4966 756 40
LINERs 0 0 0 0 0 0 965 198 26 466 172 16 43 39 5 1474 409 47
Comp 392 933 27 0 0 0 3 45 9 4908 2719 49 427 252 15 5730 3949 100
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APPENDIX B: ONLINE MATERIAL

In the online version of this article, we provide the following:

(i) Tables in numpy format including the estimated mean µk ,
covariance matrix Σk , and the weight πk for each subpopulation
k = 1, ..., 20 (named means.npy, covars.npy, and weights.npy
respectively). These are the definitions of the clusters as derived
from the analysis presented is Section 3.
(ii) Tables in numpy format including the estimated mean µk ,

covariance matrix Σk , and the weight πk for each subpopula-
tion k = 1, ..., 20 (named m_filter.npy, c_filter.npy, and
w_filter.npy respectively). These are the definitions of the clus-
ters as derived from the analysis presented is Appendix A for the
filtered sample.
(iii) Tables in numpy format providing the coefficients and

the intercepts for the 4-dimensional (named svm_4d_coefs.npy

and svm_4d_intercept.npy) and the 3-dimensional (named
svm_3d_coefs.npy and svm_3d_intercept.npy respectively)
surfaces based on the SVMmethod (Eqs. 12–23, and 24-35 respec-
tively). These are the definitions of the surfaces as derived from
the analysis presented is Section 4. We also include the trained
SVM model, estimated using the scikit-learn Python library,
for both the 4-dimensional (svm_4d.sav) and the 3-dimensional
(svm_3d.sav) case.

(iv) A python script (classification.py) that allows the
reader to directly apply the SoDDA and the SVM classification
based on the clusters and the separating surfaces, respectively, de-
rived in Sections 3 and 4. It contains a function that given the 4
emission-line ratios log([N ii]/Hα), log([S ii]/Hα), log([O i]/Hα)
and log([O iii]/Hβ), it computes the posterior probability of be-
longing to each of the 4 activity classes (SFGs, Seyferts, LINERs,
and Composites for class 0, 1, 2, and 3, respectively). We also in-
clude two functions which give the classification of a galaxy based
on the 4-dimensional and the 3-dimensional SVM surfaces given
its 4 emission line ratios.
(v) A Readme file that explains the arguments and the output

of the functions in the python script (classification.py) and
contains examples of using them on sample data.
(vi) A table (data_classified.csv) that contains the SoDDA-

based probability that each galaxy belongs to each one of the ac-
tivity classes, derived in the analysis presented in Section 3. It also
includes the galaxy’s SPECOBJID, the key diagnostic line-ratios,
and the activity classification based on the class with the highest
probability.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Table A3. Comparison of the SoDDA classification of the filtered sample (SNR> 3 on all considered diagnostic lines) with that of the SoDDA classification
of the sample considered in ß3. The classification is performed in the ([O iii]/Hβ, [N ii]/Hα, [S ii]/Hα and [O i]/Hα) space.

So
D
DA

fil
te
r

SoDDA
SFGs Seyferts LINERs Composites Total

SFGs 78525 0 1 1812 80338
Seyferts 131 4751 45 835 5762
LINERs 18 10 1757 145 1930

Composites 1698 12 110 7959 9779
Total 80372 4773 1913 10751
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