Improved Astronomical Inferences via Nonparametric Density Estimation

Chad M. Schafer, InCA Group

www.incagroup.org

Department of Statistics

Carnegie Mellon University

Work Supported by NSF, NASA-AISR Grant

January 2010

1

The Core Collaborators

Susan M. Buchman

Peter E. Freeman

Ann B. Lee

Joseph W. Richards

Theory predicts **the distribution of** observables as a function of cosmological parameters.

For example,

- $\Omega_m = \text{total matter density}$
- Ω_b = baryonic matter density
- $\Omega_{\Lambda} = \text{dark energy density}$
- H_0 = the Hubble parameter
 - τ = the optical depth
- n_s = spectral index of initial spectrum
- A = amplitude of initial spectrum

parameterize the power spectrum of the CMB anisotropy.

For example,

Ω_m	=	total matter density	0.40
Ω_b	—	baryonic matter density	0.056
Ω_{Λ}	=	dark energy density	0.60
H_0	=	the Hubble parameter	64.6 km/s/Mpc
au	=	the optical depth	0.075
n_s	=	spectral index of initial spectrum	0.99
A	=	amplitude of initial spectrum	0.79

parameterize the power spectrum of the CMB anisotropy.

Image courtesy of WMAP Science Team.

The key role of **Density estimation**, i.e., estimating the distribution from which a sample of data were drawn

Assuming a parametric form is convenient, but often difficult to justify.

Nonparametric density estimation drops these restrictions

Histogram of 1,425 galaxy redshifts.

Compared with best fitting gamma distribution.

Nonparametric case: Contribution of assumptions is controlled by λ_n . Optimally, $\lambda_n = o(n^{-1/(4+d)})$, where d = dimension of data.

Kernel density estimation puts a smooth mass at each data point. λ_n controls the width of the "bumps."

Parametric versus nonparametric estimate (kernel density estimate).

 λ_n chosen too small, i.e. too much weight on data

 λ_n chosen too large, i.e. too much weight on assumptions

Truth is not quite a Gaussian distribution.

Even at moderate sample sizes, nonparametric estimator superior.

Bivariate Density Estimation

Bivariate luminosity function estimate (Schafer (2007))

Bivariate Density Estimation

Cross-sections, compared with "standard" approach.

Working in Higher Dimensions

SDSS galaxy spectrum.

Working in Higher Dimensions

3,846 galaxy spectra, colored by redshift (Richards, Freeman, Lee, Schafer (2009a))

Working in Higher Dimensions

Examples of galaxy image data.

200 galaxies, colored by eccentricity.

The Big Picture

Once represented in low-dimensional space encoding space, nonparametric density estimation useful for comparing observations and theory

References

Buchman, Lee, and Schafer (2009). To appear in *Statistical Methodology*. arXiv:0907.0199

Richards, et al. (2006) ApJ. 131 2766

Richards, Freeman, Lee, and Schafer (2009a). ApJ. 691 32-42.

Schafer (2007). *ApJ* 661 703-713.

Schafer and Stark (2009). J. Amer. Stat. Assoc.