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Typical flow of a Markov-Chain Monte Carlo spectral fitting process, modified to account for uncertainty in calibration

Strategy

� Generate a sample of ARFs that represen t the uncertain t y in the e�ectiv e area ( Figure 1 )

� Sim ulate a set of lo w-resolution A CIS sp ectra for a sp eci�c mo del (in this case, p o w er-la w with index

� = 2 and H column densit y N

H

= 10

23

cm

� 2

) for 10

4

and 10

5

coun ts

� Compute the p osterior probabilit y densit y functions ( p df s) for the mo del parameters for all com bi-

nations of sp ectra and ARFs and test that the statistical uncertain t y is w ell determined ( Figure

2 )

� Determine the e�ect of ARF uncertain t y on the p osterior p df s ( Figure 3 )

� Estimate the sensitivit y of the magnitude of the systematic errors to the n um b er of distinct ARFs

( Figure 4 )

� A new MCMC-based mec hanism to include the ARF uncertain t y directly within sp ectral �tting ( Fig-

ure 5 )

� A prop osal to extend the HEASAR C ARF standard suc h that ARF uncertain ties can b e co di�ed for

general use based on a principal comp onen t decomp osition of the ARFs ( Figure 6 )

Figure 2: E�ect of statistical error on parameter estimates. The p osterior p df s of � and N

H

calculated for individual pairs of sim ulated sp ectrum

and ARF are sho wn for a v ariet y of cases (thin blue histograms). F or di�eren t sp ectra adopting the default ARF ( left panels ), and for a small set

of represen tativ e sp ectra but adopting di�eren t ARFs ( righ t panels ). The p df s are generated b y obtaining parameter dra ws from a Mark o v-Chain

Mon te Carlo (MCMC) algorithm and are binned in to a histogram. The thic k red stepp ed histogram represen ts the p df generated using the dra ws

com bined from all the runs sho wn in eac h panel. The set of plots on the left are for sp ectra with 10

4

coun ts and those on the righ t, for 10

5

coun ts. Note

that the width of the p df decreases with increasing coun ts, as is exp ected: the parameters are b etter determined when coun ts statistics are higher. Also

note that the p df width for the cum ulativ e case when the ARF is held unc hanging is similar to the p df width for the individual runs: the com bined

p df preserv es the statistical error inheren t in the data while eliminating the o�set biases in tro duced for individual sim ulations. The v ariations in the

p df s when the sp ectrum is held unc hanged while the ARFs are c hanged sho ws that the e�ect of the ARF uncertain t y on the parameters.

Figure 1: Uncertain t y in A CIS-S e�ectiv e area. The dashed white line sho ws the

default e�ectiv e area for a nominal observ ation at the aimp oin t, as a function of energy .

Numerous e�ectiv e area curv es w ere syn thesized b y incorp orating the uncertain ties in

the subsystems (see Drak e et al. 2007, CCW P oster #109), and these are sho wn as

the shaded curv es that brac k et the default. Curv es are colored according to ho w m uc h

they di�er in toto from the default: blac k for those whic h exceed the default and red

for the rev erse, and the shades represen t the exten t of the di�erence. Note that the

sim ulated curv es are tangled in a highly complex manner, and the absolute di�erence

b et w een the e�ectiv e areas do es not translate to a segregation of the curv es in to sp eci�c

regions.

Figure 4: Sensitivit y of parameter uncertain t y on n um b er of tests. The simplest w a y to accoun t for

the ARF uncertain t y is to carry out sp ectral �ts with di�eren t realizations of the ARF and com bine the

resulting p df s to determine the o v erall error. Clearly , the larger the n um b er of �ts done with separate

ARFs, the b etter the estimate will b e. This �gure sho ws the magnitude of the total error (small square

p oin ts) for di�eren t n um b ers of ARFs used. The left panels are for sp ectra with 10

4

coun ts and the

righ t panels, for 10

5

coun ts. The upp er panels are for � and the lo w er ones for N

H

. The red v ertical

bars denote the accuracy with whic h this error can b e determined for an y sp eci�c set of ARFs, and are

determined for eac h set of N ARFs b y running sp ectral �ts N � 200 times c ho osing di�eren t ARFs eac h

time. The \true" estimate of the total error is seen to reac h an asymptotic v alue when only N � 20 ARFs

are used; including more ARFs in the calculation only serv es to determine this v alue more robustly . F or

comparison, w e also sho w the systematic error estimate computed b y Drak e et al. (2007, SPIE, v6270, p49;

see also P oster #109) as horizon tal dashed lines. These p oin ts are generated b y a v eraging only the b est-�t

parameter v alues calculated for a giv en sp ectrum while c hanging the ARF for eac h �t. Generally , these

v alues agree with eac h other, though the v alues based only on the b est-�t tend to increasingly o v erestimate

the magnitude of the total error as the non-Gaussianit y of the p df s b ecome more relev an t.

Figure 3: E�ect of area uncertain t y on parameter estimates. The p osterior p df s of

� and N

H

calculated b y �rst a v eraging the e�ect of the ARFs on individual sp ectra

(thin blue curv es) are sho wn. As in Figure 2 , the p df s are generated using parameter

dra ws from an MCMC algorithm. The p df resulting from com bining all the dra ws

is also sho wn as the red stepp ed histogram. These curv es include the e�ects of b oth

statistical and systematic errors, and b ecause they represen t dra ws from the true

p osterior distribution functions, automatically pro vide the most optimal descriptions

of the parameter uncertain ties in the presence of e�ectiv e area uncertain ties. Note

that the p df s in the high coun ts case, where the statistical comp onen t is relativ ely

suppressed, sho w that the systematic errors are not Gaussian.

Figure 5: T ypical 
o w of a Mark o v-Chain Mon te Carlo sp ectral �tting pro cess, mo di�ed to accoun t for

uncertain t y in calibration. W e ha v e sho wn ab o v e ( Figures 2, 3 & 4 ) that the brute force approac h of

carrying out sp ectral �ts with di�eren t sim ulated ARFs that represen t our uncertain t y in the calibration

w orks w ell and pro duces reliable estimates of the total error. Ho w ev er, this is extremely ine�cien t b ecause

most of the computational time is w asted in calculating p df s for individual cases. It is p ossible to sp eed

up the pro cess b y t w o or more orders of magnitude b y incorp orating the v arying ARFs within the calcu-

lation. Brie
y , if � are the parameters of in terest, w e can compute p df = p ( � j ARF ; Data ) � p (ARF), where

p (ARF) represen ts the distribution of ARFs. The manner in whic h p (ARF) is included is sho wn here for

a t ypical MCMC data 
o w diagram. The data and calibration (ARFs, RMFs, etc.) are com bined with

a sp ectral mo del, and the program iterates b y dra wing new samples of the parameter v alues (generally

as deviations from the curren t v alues), computing the new lik eliho o d, and adopting the new parameters

as necessary . This pro cess is sligh tly c hanged with an additional selection of a new ARF, sampled from

p (ARF), prior to dra wing new parameter v alues. W e ha v e implen ted this c hange in an MCMC based sp ec-

tral �tting algorithm, and �nd that w e obtain the same p df s as in Figure 3 with an � 100x impro v emen t

in computational sp eed.

Prop osed Extension to ARF standard

Once a set of ARFs fA
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is the a v erage deviation from the default, whic h is usually

exp ected to b e small and close to 0 . N

comp

is formally equal to the n um b er of ARFs

in the sample, but can b e reduced as needed to discard comp onen ts that are ignorable.

T ypically , N

comp

� 10 � 15 is su�cien t to accoun t for > 99% of the v ariance. The

A

0

( E

j

) th us generated is used as the dra w from p (ARF ) in Figure 5 .

The results of the PCA decomp osition can b e stored in �les in the same manner

as ARFs and distributed widely for incorp orating within sp ectral �tting routines. W e

ha v e adopted the follo wing format for the �le, whic h is reminiscen t of the HEASAR C

ARF standard (CAL/GEN 92-002)

� PRIMARY blo c k: NONE

� SPECRESP OFFSET blo c k: similar to the SPECRESP extension, but con taining

� A

j

in place of A

0 j

in the SPECRESP column

� PCA EVALUE blo c k: an arra y of N

comp

v alues of the eigen v alues e

i

, stored in a

single column

� PCA EVECTOR blo c k: an arra y of size N

comp

� N

bin

con taining the eigen v ectors

�

ij

, with eac h ro w in the �le con taining the full eignev ector for that comp onen t,

and with the ro ws matc hing one-to-one with those in the extension PCA EVALUE .

�

+ not necessary to carry out sim ulations for eac h mo del parameter v alue

+ no simplifying Gaussian assumptions made as to the nature of the error distributions

+ not necessary to kno w ho w to generate a sample of ARFs that represen t the correct distribution of

uncertain ties

+ the e�ect of uncertain ties in sp eci�c regions in the ARF can b e dealt with explicitly b y c ho osing PCA

comp onen ts appropriately

- requires a �tting engine that uses Mark o v-Chain Mon te Carlo tec hniques

- care m ust b e tak en to ensure that a discarded comp onen t do es not ha v e a large e�ect on the analysis

in the energy range of in terest

Figure 6: Decomp osition of the principal comp onen ts of v ariations in the

e�ectiv e area. The pro cedure describ ed in Figure 5 relies on the existence

of a sample of sim ulated ARFs, or the abilit y of the researc her to generate

suc h a sample. This is an onerous burden on most astronomers, but there is a

simple w ork around. W e prop ose that the ARF uncertain ties b e decomp osed in to

their most prominen t comp onen ts and stored as �les similar to the ARF itself.

In order to determine these comp onen ts, w e ha v e used Principal Comp onen ts

Analysis (PCA). This is not a unique solution, but is designed to b e eminen tly

practical. The top 8 comp onen ts of the 1000 ARFs in Figure 1 are sho wn

here, as deviations from the default ARF, and the shaded regions represen ting

the range of v ariation accoun ted for b y eac h comp onen t. The fraction of the

total v ariance in the ARFs that is explained b y a giv en comp onen t are sho wn

at the top. The 8 comp onen ts sho wn here together accoun t for > 95% of the

total v ariance.

W e ha v e dev elop ed a robust and general metho d to incorp orate e�ectiv e area

calibration uncertain ties in mo del �tting of lo w-resolution sp ectra. Because

suc h uncertain ties are ignored during sp ectral �ts, the error bars deriv ed for

mo del parameters are generally underestimated. Incorp orating them directly

in to sp ectral analysis with existing analysis pac k ages suc h as Sherpa and XSPEC

is not p ossible without extensiv e case-sp eci�c sim ulations, but it is p ossible

to do so in a generalized manner in a Mark o v-Chain Mon te Carlo (MCMC)

framew ork. W e describ e our implemen tation of this metho d here. W e use the

estimates of A CIS e�ectiv e area uncertain ties (Drak e et al. 2007, SPIE, v6270,

p49) in a MCMC setting, applied to sim ulated A CIS data, to estimate the

p osterior probabilit y densities of p o w er-la w mo del parameters that include the

e�ects of suc h uncertain ties.

This metho d is applicable directly to an y sp ectral mo del in all parts of

the corresp onding parameters space. Because no Gaussian appro ximations are

made in calculating the error bars, and the full p osterior probabilit y densities

of the parameters are constructed, the deriv ed parameter b ounds are optimally

sized. The metho d is also fast and is easily generalizable to accoun ting for the

systematic uncertain ties in an y t yp e of m ultiplicativ e factors.
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