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Definitions

Convex Set A set C ⊆ Rd is convex if for every two points x, y ∈ C the
whole segment xy is also contained in C.

Convex Hull The convex hull of a set of points X in Rd is denoted by
CH(X), is the intersection of all convex sets in Rd containing X. In

algorithms, a convex hull indicates points of a shape invariant minimal

subset of CH(X) (vertices, extreme points), connecting these points

produces a wrap of CH(X).
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Convex Hull Peeling
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Convex Hull Peeling Depth (CHPD)

[CHPD:] For a point x ∈ Rd and the data set X = {X1, ..., XN−1}, let
C1 = CH{x, X} and denote a set of its vertices V1. We can get
Cj = Cj−1\Vj−1 through CHP until x ∈ Vj (j = 2, ...). Then,

CHPD(x) =
](∪k

i=1
Vi)

N
for k s.t. k = minj{j : x ∈ Vj} ; otherwise CHPD

is 0.

I Tukey (1974): Locating data center (median) by the Convex Hull Peeling
Process.

I Barnett (1976): Ordering based on Depth

I p̂th quantiles are 1 − p̂thCHPDs.

I Hyper-polygons of 1 − p̂th depth obtainable from any dimensional data.

I QHULL(Barber et. al., 1996) works for general dimensions (http://qhull.org).

I Why CHPD...
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Challenges in
Nonparametric Multivariate Analysis

How to Order Multivariate Data?
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Challenges in
Nonparametric Multivariate Analysis

How to Order Multivariate Data?

Ordering Multivariate Data → Data Depth
I Mahalanobis Depth : Mahalanobis (1936)

I Convex Hull Peeling Depth: Barnett (1976)

I Half Space Depth: Tukey (1975)

I Simplical Depth : Liu (1990)

I Oja Depth : Oja (1983)

I Majority Depth : Singh (1991)

I Ordering is not uniformly defined
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Statistical Data Depth
(Zuo and Serfling, 2000)

(P1) (Affine invariance) D(Ax + b; FAX+b) = D(x; FX) for all X (A
nonsingular matrix) holds for any random vector X in Rd, any d × d

nonsingular matrix A, and any d-vector b;

(P2) (Maximality at center) D(θ; F ) = supx∈Rd D(x; F ) holds for any
F ∈ F having center θ;

(P3) (Monotonicity) for any F ∈ F having deepest point θ,
D(x; F ) ≤ D(θ + α(x − θ); F ) holds for α ∈ [0, 1]; and

(P4) D(x; F ) → 0 as ||x|| → ∞, for each F ∈ F .
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Convex Hull Peeling Depth

I affine invariance

I maximality at center

I monotonicity relative to deepest point

I vanishing at infinity

CHPD has these properties and points of smallest depth are possible
outliers
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Quantile Estimation

I Median: A point(s) left after peeling
(will show robustness of this estimator later)

I pth Quantile: Level set whose central region contains ∼ 100p% data
(will define the level set and the central region later)

I No Closed Form; Empirical Process
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Empirical Density Estimation

Density Estimation with CHPD on Bivariate Normal Data (McDermott, 2003)

100000 Bivariate Normal Sample
Quantiles={0.99,0.95,0.90,0.80,...0.20,0.10,0.05,0.01}
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Lessons and Further Studies

I Sample from a convex distribution (no doughnut shape)

I Works on Massive data
−→ Sequential Method

I Without previous knowledge, no model or prior is known to start an
analysis. Exploratory data analysis for a large database

I Nonparametric and non-distance based approach

I Where CHP can be applied and how?
−→ Multi-color diagram from astronomy, where a plethora of free
data archives is available.
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Color Magnitude diagram

Two dimensional Color-Color diagram or
Celebrated Hertzsprung-Russell diagram (switch)

Hyunsook Lee, Department of Statistics, Penn State Univ – p. 12



Color Magnitude diagram

Two dimensional Color-Color diagram or
Celebrated Hertzsprung-Russell diagram (switch)

What if we can see beyond 2 dimensions without bias (projection)
Then, 3 or higher dimensional color diagrams might have popularity.
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Color Magnitude diagram

Two dimensional Color-Color diagram or
Celebrated Hertzsprung-Russell diagram (switch)

What if we can see beyond 2 dimensions without bias (projection)
Then, 3 or higher dimensional color diagrams might have popularity.

CHP may assist analyzing multi-color diagrams.
Need a suitable data set with colors.
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Sloan Digital Sky Survey: SDSS

Commissioned 2000, now Data Release 5 is available.
5 bands; 4 variables (u-g, g-r, r-i, i-z)

I Studies on analyzing astronomical massive data received spotlights
recently. http://www.sdss.org

I July, 2005: Data Release Four
6670 square degrees, 180 million objects
Available from http://www.sdss.org/dr4
From SpecPhotoAll with SQL:

I Attributes of photometric data are color indices, u,b,g,i,z along with
coordinates.
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SQL for SDSS

select ra, dec, z, psfMag_u, psfMag_g, psfMag_r,

psfMag_i, psfMag_z

from SpecPhotoAll

where specclass= 2

I Note — 2: galaxies, 3: QSO, 4: HighZ QSO

I Galaxies: 499043

I Quasars: 70204
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Multivariate Descriptive Statistics

I CHP Median

I CHP Skewness

I CHP Kurtosis

with bivariate simulated data and SDSS DR4
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Convex Hull Peeling Median (CHPM)

Multivariate Median: the inner most point among data
→ Survey of Multivariate Median (Small, 1990)

CHPM: recursive peeling leads to the inner most point(s). The average
of these largest depth points is the median of a data set.

Hyunsook Lee, Department of Statistics, Penn State Univ – p. 16



Convex Hull Peeling Median (CHPM)

Multivariate Median: the inner most point among data
→ Survey of Multivariate Median (Small, 1990)

CHPM: recursive peeling leads to the inner most point(s). The average
of these largest depth points is the median of a data set.

Simulations: Sample from standard bivariate normal distribution
n mean median CHPM

104 (0.001338, -0.02232) (-0.005305, -0.01643) (0.000918, -0.010589)

106 (0.000072, 0.000114) (0.001185, -0.000717) (0.002455, -0.000456)

Sequential CHPM → (0.004741, -0.004111)

Setting for the sequential method: m=10000 and d=0.05
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Application: Median

Quasars u-g g-r r-i i-z

Mean 0.4619 0.2484 0.1649 0.1008

Median 0.2520 0.1750 0.1520 0.0770

CHPM 0.2530 0.1640 0.1913 0.0700

Galaxies u-g g-r r-i i-z

Mean 1.622 0.9211 0.4226 0.3439

Median 1.680 0.8930 0.4200 0.3540

CHPM 1.790 0.957 0.424 0.367

Seq. CHPM 1.772 0.950 0.4228 0.363
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Robustness of Convex Hull Peeling Median

Breakdown point of a convex hull peeling median goes to zero as
n → ∞ (Donoho, 1982). Outliers are necessarily located at infinity.
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Robustness of Convex Hull Peeling Median

Breakdown point of a convex hull peeling median goes to zero as
n → ∞ (Donoho, 1982). Outliers are necessarily located at infinity.

Empirical mean square error (EMSE) and Relative Efficiency (RE):
Model:(1 − ε)N((0, 0), I) + εN(·, 4I)

n = 5000, m = 500, Tj=(CHPM, Mean)
EMSE = 1

m

∑m
i=1 ||Tj − µ||2

N((5, 5)t, 4I) N((10, 10)t, 4I)

ε CHPM Mean RE CHPM Mean RE

0 0.002178 0.000417 0.191689 0.002178 0.000417 0.191689

0.005 0.0028521 0.001682 0.589961 0.002891 0.005444 1.88291

0.05 0.016842 0.125522 7.45262 0.017824 0.500610 28.08597

0.2 0.139215 2.00109 14.37612 0.1435910 8.0017 55.7264
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Generalized Quantile Process

EinMahl and Mason (1992)

Un(t) = inf{λ(A) : Pn(A) ≥ t, A ∈ A}, 0 < t < 1.

I Central Region:
RCH(t) = {x ∈ R

d : CHPD(x) ≥ t}

I Level Set:
BCH(t) = ∂RCH(t)

= {x ∈ R
d : CHPD(x) = t}

I Volume Functional:
VCH(t) = V olume(RCH(t))

−→ One dimensional mapping.
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Skewness Measure

Let xj,i be the ith vertex in a level set BCH,j comprised by the jth

peeling process. A measure of skewness:

Rj =
maxi ||xj,i − CHPM || − mini ||xj,i − CHPM ||

mini ||xj,i − CHPM ||

Not only a sequence of Rj visualizes but also quantizes the skewness
along depths.
Denominator for the regularization → affine invariant Rj

symmetric: flat Rj along convex hull peels

skewed: fluctuating Rj
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Simulation: Skewness Measure
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Application: Skewness Measure (Quasars)
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Application: Skewness Measure (Galaxies)
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Kurtosis Measure

Quantile (Depth) based Kurtosis:

KCH(r) =
VCH( 1

2 − r
2 ) + VCH( 1

2 + r
2 ) − 2VCH( 1

2 )

VCH( 1
2 − r

2 ) − VCH( 1
2 + r

2 )

Tailweight:

t(r, s) =
VCH(r)

VCH(s)

for 0 < s < r ≤ 1. Here,
VCH(r) indicates the volume functional at depth r.
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Simulation: Kurtosis Measure (Tailweight)
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Application: Kurtosis Measure (Quasars)
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Multivariate Outlier Detection

I What are Outliers?
I Detecting Algorithms

Level α

Shape Distortion
Balloon Plot
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What are Outliers?

Outliers are...

I Cumbersome Observations

I Lead to New Scientific Discoveries

I Improve Models (Robust Statistics)

I ...

I No Clear Objectives but Come Along Often

CHP: Experience and relative Robustness support the Idea of Outlier
Detection.
⇒ We need a clear definition on outliers; especially, outliers of the 21st
century. And outlier detecting methods.
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Outliers are observations....

I Huber (1972): unlikely to belong to the main population.

I Barnett and Leroy (1994): appear inconsistent with the remainder.

I Hawkins (1980): deviated so much to arouse suspicion.

I Beckman and Cook (1983): surprising and discrepant to the
investigator.
Discordant Observations or Contaminants

I Rohlf (1975): somewhat isolated from the main cloud of points.

Yet, somewhat VAGUE!
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Some Outlier Detection Methods

Univariate: Box-and-Whisker plot, Order statistics, ...
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Some Outlier Detection Methods

Univariate: Box-and-Whisker plot, Order statistics, ...

Multivariate: Mostly bivariate applications

I Generalized Gap Test (Rolhf, 1975)

I Bivariate Box Plot (Zani et. al, 1999)

I Sunburst Plot (Liu et. al., 1999)

I Bag plot (Miller et. al., 2003)

and Mahalanobis distance D(x) = (x − µ̂)Σ̂−1(x − µ̂).
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Some Outlier Detection Methods

Univariate: Box-and-Whisker plot, Order statistics, ...

Multivariate: Mostly bivariate applications

I Generalized Gap Test (Rolhf, 1975)

I Bivariate Box Plot (Zani et. al, 1999)

I Sunburst Plot (Liu et. al., 1999)

I Bag plot (Miller et. al., 2003)

and Mahalanobis distance D(x) = (x − µ̂)Σ̂−1(x − µ̂).

Difficulties of multivariate analysis arise from the complexity of ordering
multivariate data.
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Quantile Based Outlier Detection
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Contour Shape Changes
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Balloon Plot
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A Balloon Plot is obtained by blowing .5th CHPD polyhedron by 1.5
times (lengthwise). Let V.5 be a set of vertices of .5th CHPD hull. The
balloon for outlier detection is

B1.5 = {yi : yi = xi + 1.5(xi − CHPM), xi ∈ V.5}.

In other words, blow the balloon of IQR 1.5 times larger.
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Outliers in Quasar Population
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Outliers in Galaxy Population
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Discussion on CHP

Convex Hull Peeling is..

I a robust location estimator.

I a tool for descriptive statistics.
Skewness and Kurtosis measure.

I a reasonable approach for detecting multivariate outliers.

I a starter for clustering.

⇒Our methods help to characterize multivariate distributions and
identify outlier candidates from multivariate massive data; therefore,
the results initiate scientists to study further with less bias.
CHP as Exploratory Data Analysis and Data Mining Tools.
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Concluding Remarks

Drawbacks of CHPD

I Limited to moderate dimension data.

I CHPD estimates depths inward not outward.

I Convexity of a data set.

I No population/theoretical counterpart.
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Concluding Remarks

Drawbacks of CHPD

I Limited to moderate dimension data.

I CHPD estimates depths inward not outward.

I Convexity of a data set.

I No population/theoretical counterpart.

No assumption on data distribution, Non-distance
based, Affine invariant, Applicable to streaming data,
Detecting Outliers, Providing Multivariate Descriptive
Statistics, Exploratory data analysis
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