Astronomy in the Age of Space: Overview

Aneta Siemiginowska Chandra X- ray Center For Astrostatistic Working Group

OUTLINE

 What is astronomy? different type of astronomical sources Astronomers Tools how do we get basic information about the astrophysical source? • radio, IR, optical, X-ray and gamma-ray High Energy Sky Chandra X–ray Observatory examples of typical X-ray data, an example of a data analysis process statistical challenges what do we learn from the data?

What is Astronomy?

• <u>Astronomy => "Law of the stars"</u>

"Scientific studies of the Universe beyond the Earth involving observation, calculation and interpretation of the positions, dimensions, distribution, composition and evolution of celestial bodies and phemonena."

> Webster's New College Dictionary

What type of celestial bodies and phenomena do we study and how?

• Solar System:

• Sun and sollar wind, planets, moons, asteroids, comets

• Our Galaxy – Milky Way:

• center, stars, binary systems, nebulae, supernovae

• Extragalactic Objects:

• galaxies, active galaxies and quasars, clusters of galaxies, large scale structures

• the Universe:

• intergalactic medium, background radiation

Solar System

Learn about our neighborhood!

Uranus

Images of Planets from the Hubble Space Telescope
Characteristics of planets, colors, composition,structure, environment, dynamics

The SUN - the nearest star!

Mauna Loa Observatory – optical photometry

MLSO/PSPT 20040910.1751.HW.R.P

Very active object when observed in different wavelenghts!

SUN is very active!

Coronal Mass Ejections

Rotating Sun shows active regions

Images from SOHO (Solar & Heliospheric Observatory)

Spiral Galaxy – similar to Milky Way

Stars and Star Clusters

M80- the densest star cluster in Milky Way

The Galaxy – Milky Way

Nebulae

Cat's Eye Nebula

Cluster of Galaxies

Extragalactic Objects

Optical Images from Hubble Space Telescope

Active Galaxies and Quasars

Interacting galaxies

Universe

WMAP image of temperature fluctuations in the Cosmic Microwave Background radiation.

Galaxies in Hubble Deep Field -Optical Image

Rainbow of Light!

We can see the rainbow in Visible Light, but electromagnetic waves have much broader range.

The Earth atmosphere blocks a lot of radiation. We need satellites to observe objects in high energy.

GREAT OBSERVATORIES ON ORBIT

X-rays/ Chandra

Information from Optical and X-rays

Optical/X-ray Overlayed Credit: NASA/CXC/ESO-VLT/HST Rosati et al 2004

Perseus A

X-ray/Radio

Fabian et al (2000)

Optical

PKS1127-145 Quasar at z=1.18

CHANDRA X-RAY Image Revealed a Large Scale Jet

X-ray Images

- Intensity Maps
 - color represents variations in the intensity
- Raw vs. Smoothed images
 - true counts per pixel
 - average counts/pixel
- True/False color images
 - color represents energy
- Temperature maps
 - Color represents temperature
- Images from different bands: X-rays/radio/optical

Raw

Perseus A CHANDRA ACIS-S

Fabian et al (2000)

<u>Angular Resolution =></u> <u>Sharp Image</u>

FWHM ~ 6 arcsec

First X-ray Imaging Telescope The Einstein Observatory (HEAO-2)

Credit: HEASARC

Nov. 1978–April 1981 High Resolution Imager Energy: **0.15–3 keV** Effective **5–20 cm²** Area

FOV ~25 arcmin

Angular resolution ~6 arcsec!

Tycho Supernova Remnant (1572)

XMM Newton Launched in Dec.1999

Tycho Supernova Remnant

Aschenbach et al (2000

CHANDRA X-ray Observatory

- Launched in July 1999
- Energy Range:0.1-10 keV
- Effective Area:
- ACIS–I ~ **500 cm2**
- HRC–I ~ 225 cm2
- FOV: ACIS-I 16'x16' HRC-I: 30'x30'
- Energy Resolution: E/DE ~ 20-50 @1keV
- Angular Resolution < 1 arcsec

Color-coded image Credit: CXC

The Chandra X-ray Observatory

Launched 5 years ago on July 23,1999 Has revolution zed X-ray astronomy What are X-rays? Example 1: Quasars Wind Example 2: Clusters of Galaxies

What is X-ray Astronomy?

When we look up at the night sky we see it filled with stars

Outside the narrow range of colors our eyes are sensitive to, something quite different dominates the night sky...

But,

Powerful sources of X-rays

X-ray map of the whole sky: 100,000 `sources'

Rosat All Sky Survey (MPE)

A power source entirely different from the nuclear fusion that drives the Sun and stars and much more efficient

X-ray Astronomy tries to find out what could cause such extraordinary power

Compare Visible light and X-rays: "1000 times"

- X-rays have:
- Wavelengths: 1/1000 visible light
 - 0.1–6 nm (1–60A) vs. 500 nm (5000A)
- Energies: 1000 x visible light
 - "keV" instead of "eV" (electron volts)
 - About 0.02 Joules/photon
- Temperatures: 1000 times hotter
 - 10 million degrees vs. 10 thousand degrees for stars
 - E=kT (k= Boltzman's constant, 1.398e-9 J/K)

SNR G292.0+1.8 (Hughes et al.)

Credit: Elvis 2004

What gets so hot?

- Surely not much can get so hot as a million degrees?
- Oh yes it can...

Explosions: Supernovae and their remnants

Particles moving near the **speed of light in magnetic fields**

Matter falling into deep gravitational wells

Hubble Space TelescopeOptical ImageChandra X-ray Image

Plenty of galaxies!

Earth observing satellite equivalents of ...

Best X- ray image of whole sky (ROSAT)

Any sign of life?

Best X- ray images before Chandra (ROSAT)

What's this odd thing?

Chandra images

I get it!

Credit: Elvis 2003

X-ray Studies with Chandra

High Resolution Imaging

High Resolution X-ray Spectra

Absorption Lines in Quasars Spectra

What do we learn?

- The width of the lines
 > Velocity
- Line location
 => Composition
- Energy of the line
 => Temperature
- Line variability => Distance from the Quasar

Quasars Wind

Hot outflowing wind, large distance from the center!

Example 2: Cluster of Galaxies

CHANDRA X-RAY

DSS OPTICAL

Optical => X-ray Image of Perseus Cluster of Galaxies

NASA/CXC Fabian et al 2003

Questions:

- What is the temperature of the emitting gas?
- What prevents the cooling process?
- Is there a cold gas? Where?
- What process heats this gas?
- What process creates the cavities?
- Can we determine the age of the structures?

Perseus Cluster

Fabian et al 2003

Image Processing

NASA/CXC/Fabian et al 2003

Illustration of Ripples in Perseus

Perseus cluster

Contours -Radio wavelength

Animation of the Perseus cluster

Copyright: NASA/CXC/Fabian et al. 2003

Scientific Analysis

- How significant are the features in the image?
- How real is the image?
- What is the distance between the ripples?
- Is this the best model?
- How to discriminate between different models?

What are the goals of Data Analysis in Astronomy?

- Create a nice picture :-)
- Understand the **nature** of the source:
 - Understand the shape and size of the emitting regions
 - Understand temperature distribution, velocity density distribution, composition and metallicity etc.
 - Differentiate between emission processes.
 - Understand energy and power involved in the observed emission
- Evolution of the source and how it relates to other sources.