
Detection: Overlapping Sources

David Jones Harvard University Statistics Department

April 16, 2013

Introduction

- X-ray data: coordinates of photon detections
- PSFs of close sources overlap
- Aim: inference for number of sources and their intensities, positions and spectral distributions

Contamination approach (Kashyap et al. 1994)

 Circle sources and solve a set of linear equations describing the intensities and contamination of each source circle from background and other sources

Issues

- Not clear how the circles should be drawn
- Gaussian PSFs
- Only works with small overlap
- Only works with few sources

There are also kernel approaches but these don't have the advantages of dealing with the allocation of photons exactly

Clustering Approach: Basic Model and Notation

Data = y_{ij} $n_i = \#$ photons detected from source i μ_i = centre of source ik = # sources (components)

 $\begin{aligned} y_{ij} | \boldsymbol{\mu}_i, n_i, k &\sim & \mathsf{PSF} \text{ centred at } \boldsymbol{\mu}_i \ j = 1, \dots, n_i, i = 0, \dots, k \\ (n_0, n_1, \dots, n_k) | w, k &\sim & \mathsf{Mult}(n; (w_0, w_1, \dots, w_k)) \\ (w_0, w1, \dots, w_k) | k &\sim & \mathsf{Dirichlet}(\alpha, \alpha, \dots, \alpha) \\ \boldsymbol{\mu}_i | k &\sim & \mathsf{Uniform over the image } i = 1, 2, \dots, k \\ k &\sim & \mathsf{Pois}(\theta) \end{aligned}$

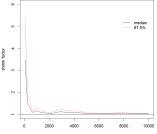
- Component with label 0 is background and its "PSF" is uniform over the image (so its "centre" is irrelevant)
- Reasonably insensitive to θ , the prior mean number of sources

3rd Dimension: Spectral Data

Can we distinguish the background and sources more accurately if we model the energy of the photons as well?

$$e_{ij}|lpha, eta \sim ext{Gamma}(lpha, eta) ext{ for } i = 1, \dots, k$$

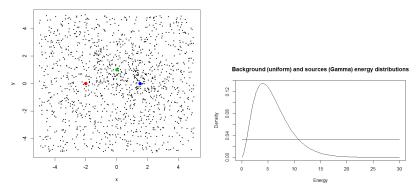
 $e_{0j} \sim ext{Uniform to some maximum}$
 $lpha \sim ext{Gamma}(a_{lpha}, b_{lpha})$
 $eta \sim ext{Gamma}(a_{eta}, b_{eta})$


Using a (correctly) "informative" prior on α and β versus a diffuse prior made very little difference to results.

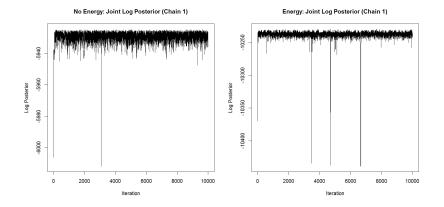
RJMCMC

- Similar to Richardson & Green 1997
- Knowledge of the PSF makes things easier
- Insensitive to θ e.g. posterior for ten sources with $\theta = 3$:

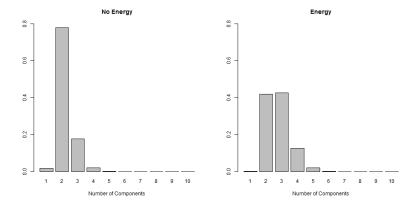
	Number of Components											
	7	7 8 9 10 11 12 13										
Mean	0.029	0.058	0.141	0.222	0.220	0.157	0.082					
SD	0.018	0.019	0.022	0.029	0.027	0.021	0.014					


Ten sources Gelman statistic plot

last iteration in chair

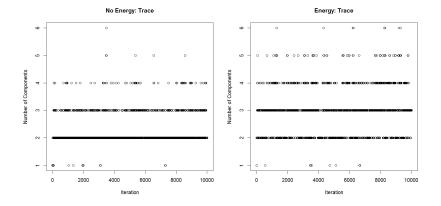

Simulated Data

3 Weak Sources

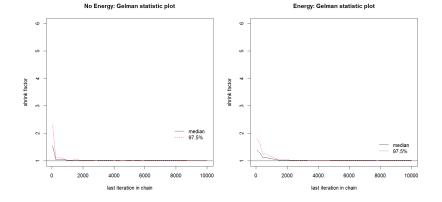


- Source region (2 SD) is about 28% of the area and contains about 41% of the observations
- Positions (-2,0), (0,1), (1.5,0) with intensities 50, 100, 150 respectively

Joint Log Posterior



Posterior of k



- Aggregation over 10 chains of the posterior probabilities (for each k the SD over the 10 chains is small)
- When not using the energy information we usually can't find the faintest source

Chain 1: Posterior of k Trace

Gelman-Rubin: Posterior of k

 Gelman-Rubin statistics were 1.00 (C.I. 1.01) and 1.01 (C.I. 1.01) respectively

Allocation of Photons

Table: Allocation breakdown: (a) ignoring energy information

Source (intensity)	Average No. Dhotone	Average Allocation Breakdown					
Source (intensity)	Average No. Photons	Background	Left	Middle	Right		
Background (10/sq)	1015	0.876	0.035	0.040	0.049		
Left (50)	38		0.121	0.067	0.014		
Middle (100)	97	0.502	0.168	0.189	0.141		
Right (150)	152	0.481	0.043	0.159	0.317		

Table: Allocation breakdown: (b) using energy information

Source (intensity)	Average No. Photons	Average Allocation Breakdown					
Source (intensity)	Average No. Photons	Background	Left	Middle	Right		
Background (10/sq)	1015	0.894	0.024	0.038	0.045		
Left (50)	38	0.531	0.278	0.165	0.026		
Middle (100)	97	0.293	0.122	0.346	0.239		
Right (150)	152	0.305	0.028	0.141	0.526		

 Background is more easily distinguished from the sources when we include the energy information

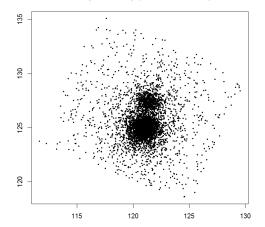

Parameter Inference

Table: Parameter estimation (a) no energy information (b) with energy information

	μ_{11}	μ_{12}	μ_{21}	μ_{22}	μ_{31}	μ_{32}	w ₁	W2	W3	w _b	α	β
Mean	-1.266	0.839	0.401	0.549	1.798	-0.054	0.049	0.067	0.086	0.798	NA	NA
SD	0.069	0.125	0.067	0.068	0.030	0.046	0.002	0.002	0.003	0.001	NA	NA
MSE	0.543	0.718	0.165	0.207	0.090	0.005					NA	NA
SD/Mean							0.050	0.027	0.032	0.001	NA	NA
Mean	-1.790	-0.101	-0.234	1.042	1.584	-0.044	0.040	0.077	0.115	0.768	2.827	0.459
SD	0.037	0.064	0.033	0.026	0.019	0.022	0.001	0.001	0.002	0.000	0.013	0.003
MSE	0.045	0.014	0.056	0.002	0.007	0.002					0.030	0.002
SD/Mean							0.036	0.018	0.014	0.000	0.004	0.006

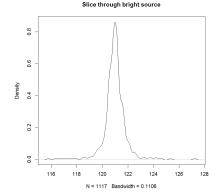
The effects are obviously less pronounced when the sources are more easily distinguished from the background

Real Data

FK Aqr and FL Aqr (5480 observations)

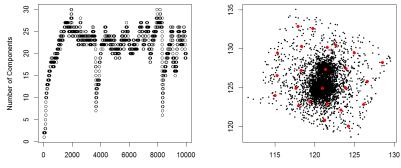
Additional question: can we distinguish the spectral distributions of the sources?

What is the PSF?


- Ideally a fairly accurate PSF can be obtained by training on non-overlapping sources
- In the absence of an accurate PSF:
 - 1. Approximate the number of sources (2 in this case)
 - 2. Obtain an EM estimate of the covariance of the PSF
- The presence of some clearly separated sources will obviously improve the accuracy of step 2 and generally reduce sensitivity to step 1

EM Estimate of the Covariance

We obtained


$$\hat{\Sigma}_{\textit{EM}} = \begin{pmatrix} 0.562 & -0.020 \\ -0.020 & 0.479 \end{pmatrix}$$

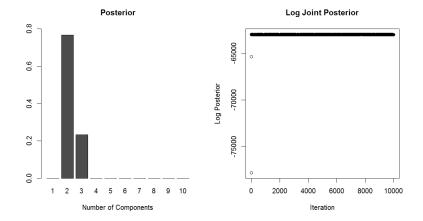
 A slice through the middle of the brighter source suggests the diagonal terms are not unreasonable

Problem!

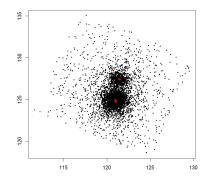
Behaves badly possibly because the background is not uniform

Iteration

Solutions?


- The covariance matrix doesn't seem to be the issue. Scaling the EM estimate by a range of values made very little difference
- Ignoring the energy information also doesn't help
- Current solution:

$$(w_0, w_1, \ldots, w_k) | k \sim \mathsf{Dirichlet}(\alpha, \alpha, \ldots, \alpha)$$


previously $\alpha=1$ but now we set $\alpha=50$ to eliminate very weak sources

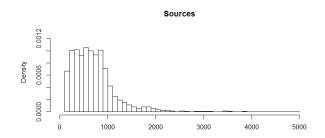
Other ideas?

Posterior of k

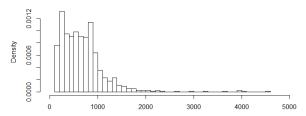
Three? Potential Binaries?

- Probably just an artifact of making the sources more similar in brightness through α (but could be useful with prior knowledge) - moderate choice of α needed
- More careful treatment of label switching is needed for inference for the parameters of potential binaries

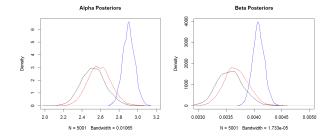
Parameter Inference


Table: Parameter estimation for FK Aqr and FL Aqr

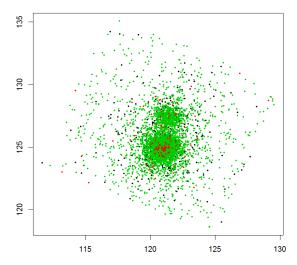
	μ_{11}	μ_{12}	μ_{21}	μ_{22}	w_1	<i>w</i> ₂	w _b	α	β
Mean	120.980	124.846	121.415	127.400	0.673	0.181	0.146	3.112	0.005
SD	0.017	0.017	0.036	0.036	0.007	0.005	0.005	0.062	0.000
MSE	0.000	0.000	0.001	0.001				0.004	0.000
SD/Mean					0.010	0.030	0.034	0.020	0.023


Extensions to Spectral Modeling

- The background spectral distribution doesn't appear to be uniform at all
- Model the spectral distributions of background and sources to all be different Gammas
- Will allow us to look at the question of whether the two sources have different spectral distributions


Background is Not Uniform

Background



Comparing Spectral Distribution Parameters

▶ 95% posterior intervals for α_1 and α_2 are nearly disjoint

Should the dim source be similar to background?

Energy of Photons

Summary

- Works very well for simulated data
- Spectral model and possibly the background spatial model need some revisions to be realistic
- Need to investigate exactly why saturation occurs for the real data but not the simulated data
- Potential to separate spectral distributions of different sources