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Aperiodic and Quasi-Periodic Lightcurves (Time 
Series of Brightness)
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Current and Future Data Sets

• SDSS Stripe 82 (~1998-2008)

• ugriz (5-d lightcurves), down to r ~ 20, ~60 epochs, ~10,000 quasars

• Pan-STARRS Medium-Deep Survey (2010-2013)

• griz, r ~ 23, 300-400 epochs, ~ 7,000 quasars

• DES Supernovae Survey (2012-2017)

• griz, r ~ 25, ~ 100 epochs, ~ 15,000 quasars

• Overlaps with Stripe 82 and 2 MDS fields

• Large Synoptic Survey Telescope (LSST) (2021-2031?)

• ugrizy, r ~ 24.5, ~ 50-200 epochs (more in ‘deep drilling fields’), millions of 
quasars
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The Data Analysis Challenge: Aperiodic Lightcurves
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The Data Analysis Challenge: Aperiodic Lightcurves

What variability ‘features’ can we 
measure for quasar lightcurves?

Mrk 766 Vaughan & Fabian (2003)
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Quantifying Variability with the Power Spectral 
Density (PSD)
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Disadvantages of Traditional Non-parameteric 
Tools for Quantifying Aperiodic Variability

Mock Data

Measurements

True
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Structure 
Function
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Tools for Characterizing Aperiodic (Quasar) 
Variability: What should they do?

• Handle irregular/arbitrary sampling patterns and measurement errors

• Produce interpretable results:

• Connection to physical models

• Connection to features in the power spectrum

• Fast & scalable to massive time domain surveys

• By the end of LSST we will have billions of multiwavelength lightcurves with ~ 50-1000+ 
epochs

• Handle multiwavelength/multivariate time series

• Account for correlations/time lags among lightcurves in different bands
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Two approaches to (stochastic) modeling of real 
lightcurves: Frequency Domain and Time Domain
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Monte-Carlo Methods (Done+1992,Uttley
+2002,Emmanaloupolous 2010,2013)

• Extremely flexible, limited only by ability to do simulation

• Can be computationally expensive

• Reliance on χ2 may not provide optimal use of information in lightcurve
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Gaussian Processes (Rybicki & Press 1992, Kelly+ 
2009,2011, Miller+2010)

• Likelihood-based approach, enables Bayesian inference

• Statistically powerful, but limited by Gaussian assumption

• In general, computationally expensive (O(n3))

loglik = � log |⌃|� 1

2

(y � µ)T⌃�1
(y � µ)
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Simple and fast tool: First order continuous 
autoregressive process (CAR(1), Kelly+2009)

dL(t) = �dt

⌧
(L(t)� µ) + �dW (t)

Power Spectrum

Frequency

1/τ

Lightcurve White Noise

LC MeanCharacteristic
Time Scale

• Solution provides likelihood function, enables 
maximum-likelihood or Bayesian inference

• Fitting is fast! Only O(n) operations to evaluate 
likelihood function (e.g., Kelly+2009, Kozlowski
+2010) or do interpolation

σ2
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Fitting the CAR(1) model: Illustration

τ=1 day
σ=1

τ=5 days
σ=1
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CAR(1) does well on optical lightcurves with typical 
sampling of current surveys

MacLeod+(2010), ~10,000 quasars from
stripe 82

Kelly+(2009), AGN Watch

Kozlowski+(2010),
Ogle-III
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Trends involving the CAR(1) process parameters

Kelly+(in prep)
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Using the CAR(1) model to find quasars

Works because quasars have more
correlated variability on longer time 

scales compared to stars

Based on Stripe82 variable
point sourcesQuasars

Stars Quasars

Stars

MacLeod+(2011)

Butler & Bloom (2011)
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Current Work: More Flexible Stochastic Models

• Continuous-time autoregressive moving average models (CARMA(p,q)) 
provide flexible modeling of variability

• Power spectrum is a rational function

dLp(t)

dt
+ ↵p

dLp�1(t)

dtp�1
+ . . .+ ↵1L(t) = �q

dq✏(t)

dtq
+ �q�1

dq�1✏(t)

dtq�1
+ . . .+ ✏(t)

P (!) = �2
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k
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Example: Quasar vs Variable Stars
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Example: Quasar vs Variable Stars

Quasar

LPV, AGB

LPV, RGB

68% Probability
Intervals

Kelly+(in prep)
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Calculation of the Likelihood function

• CARMA models have a state space representation:

• Likelihood calculated from Kalman Recursions in O(n) operations:

yi = bTXi + ✏i, ✏i ⇠ N(0, Vi)

Xi = AiXi�1 + ui, ui ⇠ N(0,⌃i)

p(y1, . . . , yn|�,↵,�2) = p(y1|�,↵,�2)
nY

i=2

p(yi|yi�1, . . . , y1, �,↵,�
2)

Measurement ErrorMeasured
Lightcurve

‘Innovation’ (source of stochasticity)

Moving Average
Coefficients

Depends autoregressive
coefficients

Vector of lightcurve
derivatives
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Computational Techniques

• Use Robust Adaptive Metropolis Algorithm (Vihola 
2012)

• Likelihood space often multimodal, so also do 
parallel tempering

• Can be slow (~minutes for ~ 100,000 iterations for 
~ 100 epochs) due to complicated posterior space

• Exploring alternative parameterizations for 
improving efficiency

• Sampling methods/global optimization algorithms 
can be efficiently parallelized, exploit high-
performance computing, GPUs?
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Main Takeaway Point:

Stochastic modeling provides a useful and powerful framework to quantify 
quasar variability that can be applied to lightcurves of arbitrary sampling and 
with measurement error.

Credit: ESO/Kornmesser

Tuesday, July 9, 13



Time Domain Stochastic Modeling: Outstanding 
issues and directions for future work
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• Vector-valued CARMA(p,q) processes may provide general framework
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• Moving beyond a single stationary Gaussian process:

• Direct modeling of stochastic process + flares, other ‘state’ changes (Sobolewska+, in prep)

• Using alternatives to Gaussian noise (Emmanaloupolous+2013)

• Non-stationary and non-linear models

• Building astrophysically-motivated stochastic models

• Stochastic partial differential calculations + accretion flow models?

Time Domain Stochastic Modeling: Outstanding 
issues and directions for future work
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