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Introduction

Project Goals
Develop a comprehensive method to infer (properties of) the
distribution of source fluxes for a wide variety source populations.

More generally, to also infer luminosity functions for source
populations.

Collaborators: Irina Udaltsova (UCD), Andreas Zezas (University
of Crete & CfA), Vinay Kashyap (CfA).



The Rationale for logN − log S Fitting

Let N(> S) denote the number of sources detectable to a
sensitivity S i.e., N(> S) is the empirical survival function of the
flux distribution. In simple settings we expect:

log10 (N(> S)) = β0 + β1 log10(S),

Cosmology complicates the anticipated linearity somewhat, but in
many cases the relationship is approximately linear.

Primary Goal: Estimate β1, the power law slope, while properly
accounting for detector uncertainties and biases.

Note: There is uncertainty on both x− and y−axes (i.e., N and s).



Inferential Process

To infer the log N − log S relationship there are a few steps:

1. Collect raw data images

2. Run a detection algorithm to extract ‘sources’ from the image

3. Produce a dataset describing the photon counts of all
‘sources’ (and uncertainty about them, background etc.)

4. Infer physical properties about the source population (e.g., the
log N − log S distribution) from this dataset

Our analysis is focused on the final step – accounting for some
(but not all) of the detector-induced uncertainties. . .

Adding further layers to the analysis to start with raw images is
possible but that is for a later time. . .



Probabilistic Connection

Standard log(N)− log(S) approaches make it difficult to
coherently incorporate detector effects and uncertainties.

Probabilistic Connection: Under independent sampling, linearity on
the log N − log S scale is equivalent to the flux distribution being a
Pareto distribution.

(Follows from log-linearity of the survival function)

The probabilistic representation for the flux distribution now allows
for more rigorous analysis by embedding within a hierarchical
model.



Beyond the Pareto

With Pareto flux distribution we obtain a linear relationship on the
logN − log (N > S) scale. In general, with complete-data flux
distribution G , we have:

Si
iid∼ G ⇒ log10 (1− FG (s)) := H (log10(s)) . (1)

The function H is linear if and only if G is the Pareto distribution.
Our framework will allow for flexible specification of the
(parametrized) flux distribution.

Since linearity has both theoretical and empirical support, a
commonly used generalization is a broken power-law:

log10 (1− FG (s)) =

{
α0 − θ0 log10(s) s ≤ K
α1 − θ1 log10(s) s > K

, (2)

subject to a continuity constraint.



Broken Power-Law Modeling

The broken power-law in (2) can be represented as:

Y ∼

[
1−

(
K

Smin

)−θ0
]

X0 +

(
K

Smin

)−θ0

X1,

where:

X0 ∼ Truncated-Pareto (Smin, θ0,K ) , X1 ∼ Pareto (K , θ1) .

The result is also an ‘if and only if’ result i.e., any distribution
whose log N − log S relationship is a broken power law, with M
breakpoints, can be represented as a mixture of M truncated
Pareto distributions and another (untruncated) Pareto distribution.



Physically Motivated Fitting

The insight from the probabilistic setting reveals that the broken
power-law model has a number of unphysical properties (to be
expected).

Notably, it requires an ‘initial source population’ to have a sharp
cut-off, before yielding to a secondary source population present
only above the threshold.

More physically realistic descriptions are also more natural
statistically e.g.,

Y ∼
m∑
j=1

pjXj , where: Xj ∼ Pareto (Smin, θj) .

Note: the resulting log N − log S plot will be curved!



Observational Challenges

The previous discussion centered around the flux distribution.

I We only observe photon counts from the source with intensity
proportional to the flux

I There is background contamination for all sources

I Different sensitivities across the detector

I Some sources will not be observed to detector limitations

I We do not know how many sources there actually are

I Some ‘sources’ extracted from the image may not actually be
sources

In this context, whether a source is observed is a function of its
source count (intensity) – which is unobserved for unobserved
sources. This missing data mechanism is non-ignorable, and needs
to be carefully accounted for in the analysis.



The Model

Broken power-law flux distribution (known break-points ~C ):

Si |Smin, θ
iid∼ Pareto (θ,Smin) , i = 1, . . . ,N.

Source and background photon counts:

Y tot
i |Si , Li ,Ei

⊥⊥∼ Pois (λ(Si , Li ,Ei ) + k(Bi , Li ,Ei )) , i = 1, . . . ,N,

Incompleteness, missing data indicators:

Ii ∼ Bernoulli (g (Si ,Bi , Li ,Ei )) .

Prior distributions:

N ∼ NegBinom (α, β) , p(Bi , Li ,Ei )

Smin ∼ Gamma(as , bs), θ ∼ Gamma(aθ, bθ).

Observed data: Yobs = {(Y tot
i ,Bi , Li ,Ei ) : i ∈ I, |I| = n},

LVs/Missing Data: Ymis = {(Y tot
i ,Si ,Bi , Li ,Ei ) : i /∈ I} , {Si : i ∈ I},

Parameters: Θ = {N, θ, Smin}.



The Model

Standard power-law flux distribution:

Si |Smin, θ
iid∼ Broken-Pareto

(
~θ,Smin; ~C

)
, i = 1, . . . ,N.

Source and background photon counts:

Y tot
i |Si , Li ,Ei

⊥⊥∼ Pois (λ(Si , Li ,Ei ) + k(Bi , Li ,Ei )) , i = 1, . . . ,N,

Incompleteness, missing data indicators:

Ii ∼ Bernoulli (g (Si ,Bi , Li ,Ei )) .

Prior distributions:

N ∼ NegBinom (α, β) , p(Bi , Li ,Ei )

h(~C ) ∼ N(m,V ), θj
⊥⊥∼ Gamma(aj , bj), j = 1, . . . ,M.

Observed data: Yobs = {(Y tot
i ,Bi , Li ,Ei ) : i ∈ I, |I| = n},

LVs/Missing Data: Ymis = {(Y tot
i ,Si ,Bi , Li ,Ei ) : i /∈ I} , {Si : i ∈ I},

Parameters: Θ =
{

N, ~θ, ~C
}

.



Posterior Inference

Inference about θ, N and S is based on the observed data posterior
distribution. Care must be taken with the variable dimension
marginalization over the unobserved fluxes.

Computation is performed by Gibbs sampling.

Makes heavy use of the marginal probability of observing a source:

π(θ,Smin) =

∫
g(S ,B, L,E )·p(S |Smin, θ)·p(B, L,E )dB dL dE dS

For broken power-law this is 2m dimensional where m is the
number of ‘pieces’. It can be pre-computed but requires a
sufficiently dense grid and careful interpolation in higher
dimensions.



Model/Computational Notes

Things to note:

I The dimension of the missing data is unknown (care must be taken
with conditioning)

I Incompleteness function g can take any form and is problem-specific

I p(Bi , Li ,Ei ) needs some care and can be tabulated or parametrized

I Prior parameters can be science-based or ‘weakly informative’

I For single power-law models computation is fast, and insensitive to
the number of missing sources

I Computation for the broken-power law model is slower

I Generalized mixtures of Pareto’s (or other forms) require only minor
modifications of general scheme



Paper Organization

Paper 1 (Single Pareto modeling only):

I Handling of incompleteness

I Handling of other detector effects (background, exposure
maps, source location etc.)

I Incorporation of prior information

I Probabilistic/Bayesian modeling

I Model checking via posterior predictive checks

Paper 2 (Broken- and Mixture-Pareto extensions):

I Broken-Pareto modeling for log(N)− log(S)

I Mixture-Pareto modeling for log(N)− log(S)

I Model selection and model checking



Validation Details

Parameter specifications as follows:

I N ∼ NegBinom(α, β), where α = 200 = shape, β = 2 = scale

I θ ∼ Gamma(a, b), where a = 20 = shape, b = 1/20 = scale

I Si |θ ∼ Pareto(θ,Smin), where Smin = 10−13

I Y src
i |Si , Li ,Ei ∼ Pois(λ(Si , Li ,Ei ))

I Y bkg
i |Si , Li ,Ei ∼ Pois(k(Li ,Ei ))

I λ = Si ·Ei
γ , where effective area Ei ∈ (1000, 100000), and the

energy per photon γ = 1.6× 10−9

I ki = z · Ei , where the rate of background photon count
intensity per million seconds z = 0.0005

I niter = 250000, Burnin = 50000
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Sensitivity Studies

There are a lot of cogs in the full model, so we have performed
various sensitivity studies to investigate the impact of different
priors, misspecification of the incompleteness function etc.



Sensitivity: θ prior

Figure:
(L) Weak prior and corresponding posterior for θ,
(C) a moderately informative prior for θ, and,
(R) a strongly informative but incorrect prior for θ.



Sensitivity: N Prior

Figure: Prior and posterior distributions for N and θ. Clockwise from
upper-left (top row) these represent a weak prior for N, a moderately
informative prior for N and a strongly informative but incorrect prior for N.
The bottom row shows the corresponding prior and posterior distributions for θ.



Fixed vs. Estimated Smin

Figure: The grey regions provide the posterior 95% credible intervals for θ at
the fixed Smin case, with the θ estimate in the center line. The cross intervals
show posterior dispersion in both θ and Smin for varying priors on Smin.



Fixed Smin Results

Figure: Sensitivity of Smin on estimate of θ. Under the fixed Smin scenarios,
the plots show: (top-left) bias of θ, (top-right) standard deviation of θ,
(mid-left) posterior regions and 95% credible intervals of θ, (mid-right)
U-shape nature of MSE of θ.



Sensitivity to Misspecification of g

Figure: Top row: Four different incompleteness functions,
Rows 2-3: Corresponding prior and posterior distributions of N and θ. The
second column corresponds to the correct incompleteness function.



Posterior Predictive Diagnostics

Figure: Bivariate posterior predictive scatterplot for the conditional
model: (left) fitted Smin equal to truth, (right) fitted Smin larger to truth.



Application: CDF-N

I Chandra Deep Field North X-ray sources

I Subset of 225 sources < 8 arcmins

I Incompleteness function and priors in tabulated form

I Priors used are weakly informative

I Smin estimated from the data



Figure: The log(N) − log(S) plot for the CDFN data. Each line in the plot
corresponds to a sample of fluxes for the complete source population from a
single iteration of MCMC scheme with observed sources shown in grey and
missing sources in red.



Figure: Posterior predictive plots for the single Pareto model fit to the
CDF-N dataset.



CDF-N Results

The posterior predictive checks are passable but show a few issues
(p−values from 0.03 to 0.41 for various features of the model fit).

Indications of possible breakpoint
(Broken-Pareto model gives better fit).

Estimates:

I θ̂ = 0.68, (0.59, 0.78) consistent with other analyses,

I N̂ = 274, (256, 299) suggest completeness of 75%− 87.5%.



Status & Future Work

Paper One:

I Draft available, almost complete
(Switching data analysis to CDF-S from CDF-N)

Paper Two:

I Various simulations completed, more to do. . .

I Selection of number of ‘pieces’ for multiple power-law setting
not investigated yet (can use Wong et. al (2013) as guide)

I Estimation of normalizing constants is tricky, other ideas?

I Real data: CDF-N, SMC

Future stuff:

I False sources (allowing that ‘observed’ sources might actually be
background/artificial)

I Field contamination (allowing a mixture of a source population with
known parameters)

I Extension to non-Poisson regimes
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