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CLaSPS: Knowledge Discovery for the exploration of complex
multi-wavelengths astronomical datasets.
Applications to CSC+, a sample of AGNSs built on the
Chandra Source Catalog and to a Blazars sample.
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Motivations

The characterization of the distribution of complex astronomical dataset in a high-
dimensionality parameter space can reveal new patterns and correlations.

Flux

Polarization

Most of the discoveries in astronomy have so far taken place in very low
dimensional (2, 3 dimensions) projections of the observable space.



The data deluge (cit.)

Knowledge Discovery (KD) techniques can tackle the challenge of the
massive and/or complex astronomical datasets.
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Not even all correlations in low-dimensionality feature spaces have been
explored yet.



An example of KD workflow

Clustering of the optical-UV feature spaces of galaxies and quasars improved the accuracy of

the zphot reconstruction (Laurino et al. 2011

)

in pub. MNRAS

Fuzzy k-means

Cluster 4

Gating Network



A new method

Clustering-Labels-Scores Patterns Spotter (CLaSPS)

e Unsupervised Clustering (UC) algorithms used to produce groupings of the sources in the feature
space associated to their observables;

e Additional observables (labels) are used to identify interesting clusterings:

» extract new patterns that could not be determined in low-D projections
of the feature space;

e expand known correlations among features and/or labels to high-D
spaces,

e spot unusual behaviors (e.g. outliers);



Statistical issues

Few points for a large space

>10 dimensional features space
populated by 10%~103 sources

Upper limits & Clustering

Inclusion of upper limits as features of
the distribution of sources

Clusters vs Outliers

Well populated, homogeneous clusters
oriented vs small clusters/singletons
(outliers).
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Statistical issues

Few points for a large space

>10 dimensional features space 3 Low specific density, a.k.a.
populated by 10%~103 sources “curse of dimensionality”

Upper limits & Clustering

Inclusion of upper limits as features of N A general theory
the distribution of sources not available

Clusters vs Outliers

Well populated, homogeneous clusters _— Ensemble
oriented vs small clusters/singletons of UC methods
(outliers).
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K-means

Iterative descent method, employs euclidean distance.
The number of clusters k is a parameter that needs to be specified.
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SOM

Constrained version of the K-means -prototypes are encouraged
to lie on a 2-d manifold, which is adjusted to the distribution of the
“training” points in the high-dimensional features space.

SOM can work as an algorithm for UC
and as a supervised classifier.



Hierarchical Clustering

Generalized K-means

HC does not require k to be fixed, as all clusterings with different values of K are produced,
once assigned a measure of dissimilarity, based on pairwise dissimilarities between members
of the clusters.

dissimilarity = (metric, linkage strategy)



Hierarchical Clustering

Generalized K-means

HC does not require k to be fixed, as all clusterings with different values of K are produced,
once assigned a measure of dissimilarity, based on pairwise dissimilarities between members
of the clusters.

dissimilarity = (metric, linkage strategy)

Metrics Linkage strategies

Euclidean, Manhattan,
Mahalanobis, maximum, ... Single linkage d(Cy,Cy) = min(d;;) {i€ C,j€ Cy}

Complete linkage d(Cy, () = max(d;;) {i€ Cy,j€ Cof
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UC and visualization

Effective visualization techniques are required in order to grok the results of UC
in high-dimensional space. Visualization techniques for multi-variate datasets
are often used as exploratory techniques in KD.

K-means

Hierarchical Clustering (HC)

Self-Organizing Maps (SOM)

complexity
of the UC method



UC and visualization

Effective visualization techniques are required in order to grok the results of UC
in high-dimensional space. Visualization techniques for multi-variate datasets
are often used as exploratory techniques in KD.

Scatterplots

Boxplots
K-means Vior.
iolin plots
Parallel Coordinates plot
“Dendrograms”
Hierarchical Clustering (HC) “Heatmaps”

Linear plots

“Heatmaps”

Self-Organizing Maps (SOM)

“Codebook” plots

complexity
of the UC method
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Number of clusters

Clustergram of the PCA-weighted Mean of the clusters k-mean clusters vs number of clusters (k)
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Number of clusters (k)

Choice of the “optimal” k can be not based on the statistical
characteristics of the features used for the clusterings.

A different approach exploits the availability of external information
(/abels) to characterize the content of the clusters for each value of k,
and evaluate a “figure of merit” based on the /abels distribution.



Labels

Some observed quantities, called labels (either continuous or categorial) are used to pick those
clusterings whose clusters are most correlated with the /label(s), i.e. the clusterings where sources
labeled with different values of the label are most separated.

L, f, colors, nn, time variability indices, morphology,
classification flags, etc.
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Binning of the label values, i.d. the determination of label classes is crucial for the
selection of the clusterings



The scores

Diagnostics that express the level of correlation between
clusterings membership and one /label class distribution.
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The “optimal” clustering is, by choice, the cluster whose scores values are the largest, since for
these clusterings the degree of correlation between cluster membership and /abels values is
maximum.

The score can be evaluated for both

continuous and categorial values.
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Validation of the score

The score has been validated through simulated clusterings with varying degree of correlation

with labels, number label classes, number of clusters and total number of observations
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Validation of the score

The score has been validated through simulated clusterings with varying degree of correlation
with labels, number label classes, number of clusters and total number of observations
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One project

Characterization of the distribution of optically selected AGNs in the
multi-wavelength photometric features space, using their X-ray
properties as labels.

Ben

Flux density (Jy)

1.0e-3 §_ O

1.0e-6 O =

N o
II 1 1 L1l 1 1 1 Illllll 1 1 L1t 1 1 1 1 IlIlII 1 1 L1111l 1 1 %l 11
1.0e-10 1.0e-6 1.0e-2

Energy (keV)

The primary purpose is to obtain a possible census of AGN behavior in the 13-dimensional features
space of X-UV-optical-IR-Radio photometry and to constrain their X-ray properties with their other
photometric observables, and select outliers (if any).
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Characterization of the distribution of optically selected AGNs in the
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space of X-UV-optical-IR-Radio photometry and to constrain their X-ray properties with their other
photometric observables, and select outliers (if any).



CSC+

SDSS quasars (9262)

Spectroscopically confirmed
SDSS N UKIDSS quasars from SDSS, with
clean photometry in NIR, UV

and observed in the Chandra
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SDSS quasars (9262)

CSC+

‘snss\ A ‘UKIDSS\

Spectroscopically confirmed
quasars from SDSS, with
clean photometry in NIR, UV
and observed in the Chandra
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(7405h ‘ GALEX \ Source Catalog.

(112)
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Archival data from databases of the
surveys, crossmatched catalogs by
VO interfaces/standards.
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(detections) (upper limits)



Features and labels for CSC+
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Features Labels

{fuv-nuv, nuv-u, u-g, g-r, {Ls, HRus, HRus, z}
r-i, i-i, i-Y, Y-J, J-H, H-K, radio}



Spectral coverage CSC+
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Features Labels
{fuv-nuv, nuv-u, u-g, g-r, {Ls, HRys, HRus, z}
r-i, i-i, i-Y, Y-J, J-H, H-K}

No radio data in VLA-First/NVSS. More labels to come:

No IR in Spitzer, SWIRE. LH, T, cox, X-ray variability,...



CSC+ small sample

SDSS quasars (9262)

N Spectroscopically confirmed

| SDSS \ UKIDSS | quasars from SDSS, with

clean photometry in NIR, UV

(7405h and observed in the Chandra
GALEX Source Catalog.

N cSC |----- CSC
(112) (195)

(detections) (upper limits)

WISE

Other observations can be used to

XMM Fermi Improve the spectral coverage and

obtain a larger dataset.
CSC yst

Number of sources

Spectral coverage
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Labels
HR(ms)

HR(hs)

L(b)

Selecting clusterings
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Examining the cluster(s)
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Blazars

Blazars are AGNs observed down their relativistic jet!

e Useful for the understanding of the emission mechanism at the very centers of AGNs

e Rarest class of AGNs but several sub-classes in terms of spectral characteristics have been
observed

e Y-ray emission dominates their energy output
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An interesting by-product

CLaSPS has been applied to a sample of AGNs selected with different techniques within the largest
multi-wavelength feature space available from large area astronomical surveys, spanning from MIR to
Uv

Blazar population

o [ T
(Q\|
0 L
e L
Dataset — WISE sources; g
Features — UV (Galex)+Optical(SDSS)+ T 2k
NIR(UKIDSS)+IR(WISE) &
Label — Blazars spectral classification o |
(ROMA-BZCat), y-ray emission c [
0
o L
|
o
7L | | L | |
0 1 2 3 4 5
[4.6]-[12]

A clear peak in the score values for few clusters has triggered more extensive investigation
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Method: what’s next?

Inclusion of upper limits in the clustering can follow two different approaches:

e upper limits are replaced by multiple realizations of their value according to a model of the
observable, then distinct clusterings are performed and statistically combined

(conservative, but need a model!)
e the upper limits are replaced by values obtained by interpolation (or extrapolation) of the

detected values in the same dataset (risky!).

The clusterings can be used to “train” a classification tool and extract sources
based on the distribution of the labels

Data-driven consistent binning for continuous /labels (co-clustering)

A slightly different approach that does not employs labels:

different clusterings of the same dataset obtained using all the observables as features
or previous labels are compared, and single sources are used as “tracers” of interesting

properties.



Conclusions

A serendipitous finding obtained using CLaSPS on the Blazars population, reliably
connecting for the first time, non-thermal emission and IR observations.

CSC+ sample is a typical example of the datasets that will become
widespread with large area surveys and VO technology. In the working:

comparison with similar results from similar dataset
do “not X-ray” observables trace the X-ray properties of AGNs?
can classification of AGNs be achieved using the available features?

Homogeneous datasets?

C-COSMOS: unmatched wavelength coverage, tailored for the investigation
of AGNs-galaxy connection as a function of the environment;

SWIRE: mostly optical and IR coverage, focused on the relation of the
SFR with nuclear activity;



