Motivation O	Modelling the CMD	Making Inference	Results	Conclusion O

AGES OF STELLAR POPULATIONS FROM COLOR-MAGNITUDE DIAGRAMS

Paul Baines

Department of Statistics Harvard University

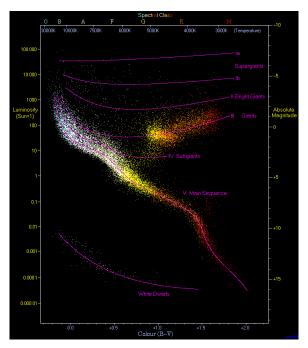
September 30, 2008

イロト イ団ト イヨト イヨト

Motivation ●	Modelling the CMD	Making Inference	Results	Conclusion O
Context & Example				

Welcome!

Today we will look at using hierarchical Bayesian modeling to make inference about the properties of stars; most notably the age and mass of groups of stars. Complete with a brief dummies (statisticians) guide to the Astronomy behind it.



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation	Modelling the CMD ○●○○○○○○○○○○○○○○○○○	Making Inference	Results	Conclusion O
Introduction & Algorithm				

ISOCHRONES FOR DUMMIES/STATISTICIANS

Given the mass, age and metallicity of a star, we 'know' what its 'ideal' observation should be i.e., where it should be on the CMD.

The tables of these 'ideal' observations are called isochrone tables.

003008

Why are they only 'ideal' colours/magnitudes?

Motivation O	Modelling the CMD ○○●○○○○○○○○○○○○○○○	Making Inference	Results	Conclusion O
Introduction & Algorith	Im			

Observational Error

Alas, as with every experiment there are observational errors and biases caused by the instruments.

Motivation	Modelling the CMD	Making Inference	Results	Conclusion	
	000000000000000000000000000000000000000				
Introduction & Algorithm					

Observational Error

Alas, as with every experiment there are observational errors and biases caused by the instruments.

1. These are relatively well understood – and can be considered to be Gaussian with *known* standard deviation.

Motivation O	Modelling the CMD ○○●○○○○○○○○○○○○○○○○	Making Inference	Results	Conclusion O
Introduction & Algo	rithm			

Observational Error

Alas, as with every experiment there are observational errors and biases caused by the instruments.

- 1. These are relatively well understood and can be considered to be Gaussian with *known* standard deviation.
- 2. Importantly, we can characterize the standard deviation as a function of the observed data. i.e. given $\mathbf{Y}_{i} = (\mathbf{Y}_{i}, \mathbf{Y}_{i}, \mathbf{Y}_{i})^{T}$ we have $\sigma_{i} = \sigma(\mathbf{Y}_{i})$

i.e., given $\mathbf{Y}_i = (Y_{iB}, Y_{iV}, Y_{iI})^T$ we have $\sigma_i = \sigma(\mathbf{Y}_i)$.

Motivation O	Modelling the CMD 000●000000000000000000000000000000000	Making Inference	Results	Conclusion O
Introduction & Algorith	m			

The Observed Data

We observe (depending on the experiment) p different colours/magnitudes for n stars.

Although it is equally straightforward to model colours U - B, B - V etc., and magnitudes B, V, etc., we will stick with magnitudes.

The (known) standard deviations in each band are also recorded for each observation.

We also observe that we observe the n stars in the dataset and that we didn't observe any others!

Motivation ○	Modelling the CMD ○○○○●○○○○○○○○○○○○○	Making Inference	Results	Conclusion O
Introduction & Algorith	Im			

The Likelihood I

$$y_{i} = \begin{pmatrix} \frac{1}{\sigma_{i}^{(B)}}B_{i} \\ \frac{1}{\sigma_{i}^{(V)}}V_{i} \\ \frac{1}{\sigma_{i}^{(I)}}I_{i} \end{pmatrix} \left| A_{i}, M_{i}, Z \sim N\left(\tilde{f}_{i}, \mathbf{R}\right) \qquad i = 1, \dots, n \quad (1) \end{cases}$$

Where,

$$\tilde{f}_{i} = \begin{pmatrix} \frac{1}{\sigma_{\beta i}} \cdot f_{b}(A_{i}, M_{i}, Z) \\ \frac{1}{\sigma_{\gamma i}} \cdot f_{v}(A_{i}, M_{i}, Z) \\ \frac{1}{\sigma_{l i}} \cdot f_{i}(A_{i}, M_{i}, Z) \end{pmatrix}, \qquad \mathbf{R} = \begin{pmatrix} 1 & \rho^{(BV)} & \rho^{(BI)} \\ \rho^{(BV)} & 1 & \rho^{(VI)} \\ \rho^{(BI)} & \rho^{(VI)} & 1 \end{pmatrix}$$

Motivation	Modelling the CMD	Making Inference	Results	Conclusion
	000000000000000000000000000000000000000			
Introduction & Algo	rithm			

The Likelihood II

Let $S_i = 1$ if star *i* is observed, $S_i = 0$ otherwise.

$$S_i | \mathbf{Y}_i \sim \text{Bernoulli} (p(\mathbf{Y}_i))$$
 (2)

where $p(\mathbf{Y}_i)$ is the probability of a star of a given magnitude being unobserved (provided by Astronomers).

Motivation O	Modelling the CMD	Making Inference	Results	Conclusion O
Introduction & Algorith	m			

The Likelihood II

Let $S_i = 1$ if star *i* is observed, $S_i = 0$ otherwise.

$$S_i | \mathbf{Y}_i \sim \text{Bernoulli} \left(p\left(\mathbf{Y}_i \right) \right)$$
 (2)

where $p(\mathbf{Y}_i)$ is the probability of a star of a given magnitude being unobserved (provided by Astronomers).

Note: We can also have $S_i = (S_{iB}, S_{iV}, S_{iI})^T$ and allow for some stars to be observed only in a subset of the bands.

Motivation O	Modelling the CMD	Making Inference	Results	Conclusion O
Introduction & Algorithm				

THE PARAMETERS

Paul Baines

Motivation ○	Modelling the CMD ○○○○○○●○○○○○○○○○○	Making Inference	Results	Conclusion O
Introduction & Algorith	Im			

MASS

Before we have any data, the prior distributions of mass and age are still not independent. We know *a priori* that old stars cannot have large mass, likewise for very young stars. Hence, we specify the prior on mass conditional on age:

$$p(M_i|A_i, M_{min}, M_{max}(A_i), \alpha) \propto \frac{1}{M_i^{\alpha}} \cdot \mathbf{1}_{\{M_i \in [M_{min}, M_{max}(A_i)]\}}$$
(3)

093008

i.e. $M_i | A_i, M_{min}, M_{max} (A_i), \alpha \sim \text{Truncated-Pareto.}$

Motivation O	Modelling the CMD	Making Inference	Results	Conclusion O
Introduction & Algorithm				

Age

For age we assume the following hierarchical structure:

$$A_i | \mu_A, \sigma_A^2 \stackrel{iid}{\sim} N\left(\mu_A, \sigma_A^2\right) \tag{4}$$

イロト イ団ト イヨト イヨト

093008

where $A_i = \log_{10} (Age)$, with μ_A and σ_A^2 hyperparameters...

Motivation ○	Modelling the CMD	Making Inference	Results	Conclusion O
Introduction & Algorithm				

METALLICITY

Denoted by Z_i .

Assumed to be known and common to all stars i.e., $Z_i = Z = 4$

メロト メポト メヨト メヨト

093008

Paul Baines

Motivation	Modelling the CMD	Making Inference	Results	Conclusion
Introduction & Algo	00000000000000000000000000000000000000	00	00000	

HYPERPARAMETERS

Next, we model the hyperparameters with the simple conjugate form:

$$\mu_{A}|\sigma_{A}^{2} \sim N\left(\mu_{0}, \frac{\sigma_{A}^{2}}{\kappa_{0}}\right), \qquad \sigma_{A}^{2} \sim Inv - \chi^{2}\left(\nu_{0}, \sigma_{0}^{2}\right) \qquad (5)$$

Where μ_0, κ_0, ν_0 and σ_0^2 are fixed by the user to represent prior knowledge (or lack of).

Motivation	Modelling the CMD	Making Inference	Results	Conclusion
Introduction & Algorith				

CORRELATION

We assume a uniform prior over the space of positive definite correlation matrices.

This isn't quite uniform on each of $\rho^{(BV)},\rho^{(BI)}$ and $\rho^{(VI)},$ but it is very close.

(日) (同) (三) (三)

Motivation O	Modelling the CMD	Making Inference	Results	Conclusion O
Introduction & Algorithm				

INCOMPLETENESS

- ► Unfortunately, some dimmer stars may not be fully observed.
- This censoring can bias conclusions about the stellar cluster parameters.

Motivation ○	Modelling the CMD ○○○○○○○○○○○●○○○○○○	Making Inference	Results	Conclusion O
Introduction & Algorithm				

INCOMPLETENESS

- ► Unfortunately, some dimmer stars may not be fully observed.
- This censoring can bias conclusions about the stellar cluster parameters.
- Since magnitudes are functions of photon arrivals, the censoring is stochastic.

Motivation ○	Modelling the CMD ○○○○○○○○○○○●○○○○○	Making Inference	Results	Conclusion O
Introduction & Algorithm				

PUTTING IT ALL TOGETHER

 $S_{ij}|\mathbf{Y}_i \sim \text{Bernoulli}\left(p\left(\mathbf{Y}_i\right)\right)$ $i = 1, \dots, n, n+1, \dots, n+n_{mis}$ $j \in \{B, V, I\}$

$$y_{i} = \begin{pmatrix} \frac{1}{\sigma_{i}^{(B)}}B_{i} \\ \frac{1}{\sigma_{i}^{(V)}}V_{i} \\ \frac{1}{\sigma_{i}^{(V)}}I_{i} \end{pmatrix} \left| A_{i}, M_{i}, Z \sim N\left(\tilde{f}_{i}, \mathbf{R}\right) \right| = 1, \dots, n, n+1, \dots, n+n_{mis}$$

 $M_i | A_i, M_{min}, \alpha \sim \text{Truncated-Pareto} (\alpha - 1, M_{min}, M_{max} (A_i))$

$$\begin{aligned} A_{i}|\mu_{A},\sigma_{A}^{-} \sim \mathcal{N}\left(\mu_{A},\sigma_{A}^{-}\right) \\ \mu_{A}|\sigma_{A}^{2} \sim \mathcal{N}\left(\mu_{0},\frac{\sigma_{A}^{2}}{\kappa_{0}}\right), \qquad \sigma_{A}^{2} \sim \mathit{Inv} - \chi^{2}\left(\nu_{0},\sigma_{0}^{2}\right) \\ p(\mathbf{R}) \propto \mathbf{1}_{\{\mathbf{R}p.d.\}} \end{aligned}$$

093008

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Motivation O	Modelling the CMD	Making Inference	Results	Conclusion O
Introduction & Algorithm				

Observed-Data Posterior

The product of the densities on the previous slide gives us the *complete-data posterior*. Alas, we don't observe all the stars, and n_{mis} is an unknown parameter. For now, lets just condition on n_{mis} . We have:

$$\begin{aligned} \mathbf{W}_{obs} &= \{ n, \mathbf{y}_{[1:n]} = (\mathbf{y}_1, \dots, \mathbf{y}_n), \mathbf{S} = \{ 1, \dots, 1, 0, \dots, 0) \} \} \\ \mathbf{W}_{mis} &= \{ m, \mathbf{Y}_{[(n+1):(n+m)]}, \mathbf{M}_{[(n+1):(n+m)]}, \mathbf{A}_{[(n+1):(n+m)]} \} \\ \Theta &= \{ \mathbf{M}_{[1:n]}, \mathbf{A}_{[1:n]}, \mu_A, \sigma_A^2, \mathbf{R} \} \end{aligned}$$

where $\mathbf{X}_{a:b}$ denotes the vector $(X_a, X_{a+1}, \dots, X_b)$

Motivation O	Modelling the CMD	Making Inference	Results	Conclusion O
Introduction & Algorithm				

Observed-Data Posterior

We want $p(\Theta|\mathbf{W}_{obs})$ but so far we have $p(\Theta, \mathbf{W}_{mis}|\mathbf{W}_{obs})$. So, we integrate out the missing data:

$$p(\Theta|\mathbf{W}_{obs}) = \int p(\Theta, \mathbf{W}_{mis}|\mathbf{W}_{obs}) \, d\mathbf{W}_{mis} \tag{6}$$

In practice, this integration is done by sampling from $p(\Theta, \mathbf{W}_{mis} | \mathbf{W}_{obs})$ and retaining only the samples of Θ .

Motivation O	Modelling the CMD ○○○○○○○○○○○○○○○	Making Inference	Results	Conclusion O
Introduction & Algorithm				

Observed-Data Posterior

We form a Gibbs sampler to sample from $p(\Theta, \mathbf{W}_{mis} | \mathbf{W}_{obs})$. Given a current state of our Markov Chain, $\Theta = \Theta^{(t)}$ and $\mathbf{W}_{mis} = \mathbf{W}_{mis}^{(t)}$.

- 1. Draw $\Theta^{(t+1)}$ from $p\left(\Theta|\mathbf{W}_{mis}^{(t)},\mathbf{W}_{obs}\right)$ (as before)
- 2. Draw $\mathbf{W}_{mis}^{(t+1)}$ from $p\left(\mathbf{W}_{mis}|\Theta^{(t+1)},\mathbf{W}_{obs}\right)$ (new)

Motivation	Modelling the CMD ○○○○○○○○○○○○○○○○●○	Making Inference	Results	Conclusion O
Introduction & Algorithm				

SAMPLING W_{mis}

At each iteration of the Gibbs sampler we need to draw the missing data from the appropriate distribution.

In other words, given a bunch of masses, ages, and metallicities of n_{mis} missing stars, find a bunch of \mathbf{Y}_i 's that are consistent with that:

$$p_i\left(Y_i|\mathbf{Y}_{[1:n]}, \mathbf{M}, \mathbf{A}, \mu_A, \sigma_A^2\right) \propto \left[1 - \pi\left(\mathbf{Y}_i\right)\right].$$
(7)

$$\exp\left\{-\frac{1}{2}\left(\mathbf{Y}_{i}-\tilde{f}(\mathbf{Y}_{i};M_{i},A_{i},Z)\right)^{T}R^{-1}\left(\mathbf{Y}_{i}-\tilde{f}(\mathbf{Y}_{i};M_{i},A_{i},Z)\right)\right\}$$
(8)

for i = n + 1, ..., n + m.

Motivation	Modelling the CMD ○○○○○○○○○○○○○○○○	Making Inference	Results	Conclusion O
Introduction & Algorithm				

SAMPLING W_{mis}

Once we have sampled a new set of \mathbf{Y}_{mis} , we need to sample the standard deviation of the Gaussian error for those stars.

093008

Here we assume this is a deterministic mapping: $\sigma = \sigma (\mathbf{Y}_i)$.

Motivation O	Modelling the CMD	Making Inference ●○	Results	Conclusion O
The Algorithm				

Some notes:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣ぬ()

Motivation ○	Modelling the CMD	Making Inference ●○	Results	Conclusion O
The Algorithm				

Some notes:

1. We have our model – what does our posterior look like?

Image: A matrix of the second seco

Motivation O	Modelling the CMD	Making Inference ●○	Results	Conclusion O
The Algorithm				

Some notes:

- 1. We have our model what does our posterior look like?
- 2. Ugly. No chance of working with it analytically \Rightarrow MCMC!

Motivation O	Modelling the CMD	Making Inference ●○	Results	Conclusion O
The Algorithm				

- 1. We have our model what does our posterior look like?
- 2. Ugly. No chance of working with it analytically \Rightarrow MCMC!
- 3. Going to have to be a Gibbs sampler. How to break it up?

Motivation O	Modelling the CMD	Making Inference ●○	Results	Conclusion O
The Algorithm				

- 1. We have our model what does our posterior look like?
- 2. Ugly. No chance of working with it analytically \Rightarrow MCMC!
- 3. Going to have to be a Gibbs sampler. How to break it up?
- 4. Mass and Age are going to be extremely highly correlated (i.e., sample jointly)

Motivation O	Modelling the CMD	Making Inference ●○	Results	Conclusion O
The Algorithm				

- 1. We have our model what does our posterior look like?
- 2. Ugly. No chance of working with it analytically \Rightarrow MCMC!
- 3. Going to have to be a Gibbs sampler. How to break it up?
- 4. Mass and Age are going to be extremely highly correlated (i.e., sample jointly)
- 5. No analytic simplification for terms in M_i , A_i because of f

Motivation O	Modelling the CMD	Making Inference ●○	Results	Conclusion O
The Algorithm				

- 1. We have our model what does our posterior look like?
- 2. Ugly. No chance of working with it analytically \Rightarrow MCMC!
- 3. Going to have to be a Gibbs sampler. How to break it up?
- 4. Mass and Age are going to be extremely highly correlated (i.e., sample jointly)
- 5. No analytic simplification for terms in M_i , A_i because of f
- 6. High dimensional multi-modal, so we also use parallel tempering.

Motivation O	Modelling the CMD	Making Inference ○●	Results	Conclusion O
The Algorithm				

PARALLEL TEMPERING

A brief overview of parallel tempering:

The parallel tempering framework involves sampling N chains, with the i^{th} chain of the form:

$$p_i(\theta) = p(\theta|\mathbf{y})^{1/t_i} \propto \exp\left\{-\frac{H(\theta)}{t_i}\right\}$$
(9)

As t_i increases the target distributions become flatter.

Motivation ○	Modelling the CMD	Making Inference	Results ●0000	Conclusion O
Does it work?				

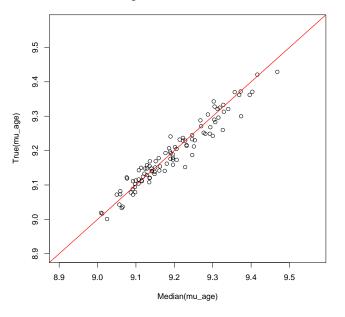
SIMULATION RESULTS

We simulate 100 datasets from the model with n = 100:

$$\mu_{A} = 9.2 \ \sigma_{A}^{2} = 0.01^{2}$$
$$M_{(min)} = 0.8 \ \alpha = 2.5$$
$$\mathbf{R} = \mathbf{I}$$
$$(\sigma_{B_{i}}, \sigma_{V_{i}}, \sigma_{I_{i}}) \in (0.03, 0.12)$$

(日) (同) (三) (三)

mu_age: Posterior medians vs. Truth



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Motivation O	Modelling the CMD	Making Inference	Results ○○●○○	Conclusion O
Does it work?				

Post_p	0.5	1.0	2.5	5.0	25.0	50.0
m_cover	0.6	1.2	2.8	6.0	25.0	49.1
a_cover	0.4	1.1	2.8	6.3	25.1	50.4
mu_age	3.0	3.0	5.0	6.0	30.0	55.0
ss_age	0.0	0.0	3.0	4.0	26.0	47.0

æ

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

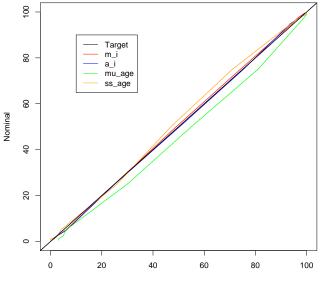
Motivation O	Modelling the CMD	Making Inference	Results ○○○●○	Conclusion O
Does it work?				

Post_p	50.0	75.0	95.0	97.5	99.0	99.5
m_cover	49.1	74.1	94.4	96.6	98.5	99.2
a_cover	50.4	75.3	93.7	97.2	99.0	99.3
mu_age	55.0	81.0	97.0	99.0	100.0	100.0
ss_age	47.0	71.0	94.0	97.0	100.0	100.0

æ

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Nominal vs. Actual Coverage



Actual

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation	Modelling the CMD	Making Inference	Results	Conclusion			
				•			
Future Work & Conclusions							

FUTURE WORK

Some important things still need to be built into the model before it is fit for purpose:

- Extinction/Absorption: Shift in observed data
- Multi-Cluster Models: Allow for multiple stellar clusters

• • • • • • • • • • • •