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Context & Example

Welcome!

Today we will look at using hierarchical Bayesian modeling to
make inference about the properties of stars; most notably the age
and mass of groups of stars. Complete with a brief dummies
(statisticians) guide to the Astronomy behind it.
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Introduction & Algorithm

Isochrones For Dummies/Statisticians

Given the mass, age and metallicity of a star, we ‘know’ what its
‘ideal’ observation should be i.e., where it should be on the CMD.

The tables of these ‘ideal’ observations are called isochrone tables.

Why are they only ‘ideal’ colours/magnitudes?
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Introduction & Algorithm

Observational Error

Alas, as with every experiment there are observational errors and
biases caused by the instruments.

1. These are relatively well understood – and can be considered
to be Gaussian with known standard deviation.

2. Importantly, we can characterize the standard deviation as a
function of the observed data.
i.e., given Yi = (YiB ,YiV ,YiI )

T we have σi = σ (Yi ).
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Introduction & Algorithm

The Observed Data

We observe (depending on the experiment) p different
colours/magnitudes for n stars.

Although it is equally straightforward to model colours
U − B,B − V etc., and magnitudes B, V , etc., we will stick with
magnitudes.

The (known) standard deviations in each band are also recorded
for each observation.

We also observe that we observe the n stars in the dataset and
that we didn’t observe any others!
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Introduction & Algorithm

The Likelihood I

yi =


1
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(V )
i
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(I )
i
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∣∣∣∣Ai ,Mi ,Z ∼ N
(
f̃i ,R

)
i = 1, . . . , n (1)

Where,

f̃i =


1
σBi
· fb(Ai ,Mi ,Z )

1
σVi
· fv (Ai ,Mi ,Z )

1
σIi
· fi (Ai ,Mi ,Z )

 , R =

 1 ρ(BV ) ρ(BI )

ρ(BV ) 1 ρ(VI )

ρ(BI ) ρ(VI ) 1
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Introduction & Algorithm

The Likelihood II

Let Si = 1 if star i is observed, Si = 0 otherwise.

Si |Yi ∼ Bernoulli (p (Yi )) (2)

where p(Yi ) is the probability of a star of a given magnitude being
unobserved (provided by Astronomers).

Note: We can also have Si = (SiB ,SiV ,SiI )
T and allow for some

stars to be observed only in a subset of the bands.
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Introduction & Algorithm

The Parameters
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Introduction & Algorithm

Mass

Before we have any data, the prior distributions of mass and age
are still not independent. We know a priori that old stars cannot
have large mass, likewise for very young stars. Hence, we specify
the prior on mass conditional on age:

p (Mi |Ai ,Mmin,Mmax (Ai ) , α) ∝ 1

Mα
i

· 1{Mi∈[Mmin,Mmax (Ai )]} (3)

i.e. Mi |Ai ,Mmin,Mmax (Ai ) , α ∼ Truncated-Pareto.

Paul Baines 093008



Motivation Modelling the CMD Making Inference Results Conclusion

Introduction & Algorithm

Age

For age we assume the following hierarchical structure:

Ai |µA, σ
2
A

iid∼ N
(
µA, σ

2
A

)
(4)

where Ai = log10 (Age), with µA and σ2
A hyperparameters. . .
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Introduction & Algorithm

Metallicity

Denoted by Zi .

Assumed to be known and common to all stars i.e., Zi = Z = 4
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Introduction & Algorithm

Hyperparameters

Next, we model the hyperparameters with the simple conjugate
form:

µA|σ2
A ∼ N

(
µ0,

σ2
A

κ0

)
, σ2

A ∼ Inv − χ2
(
ν0, σ

2
0

)
(5)

Where µ0, κ0, ν0 and σ2
0 are fixed by the user to represent prior

knowledge (or lack of).
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Introduction & Algorithm

Correlation

We assume a uniform prior over the space of positive definite
correlation matrices.

This isn’t quite uniform on each of ρ(BV ), ρ(BI ) and ρ(VI ), but it is
very close.
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Introduction & Algorithm

Incompleteness

I Unfortunately, some dimmer stars may not be fully observed.

I This censoring can bias conclusions about the stellar cluster
parameters.

I Since magnitudes are functions of photon arrivals, the
censoring is stochastic.

Paul Baines 093008



Motivation Modelling the CMD Making Inference Results Conclusion

Introduction & Algorithm

Incompleteness

I Unfortunately, some dimmer stars may not be fully observed.

I This censoring can bias conclusions about the stellar cluster
parameters.

I Since magnitudes are functions of photon arrivals, the
censoring is stochastic.

Paul Baines 093008



Motivation Modelling the CMD Making Inference Results Conclusion

Introduction & Algorithm

Putting it all together

Sij |Yi ∼ Bernoulli (p (Yi )) i = 1, . . . , n, n + 1, . . . , n + nmis j ∈ {B,V , I}

yi =


1

σ
(B)
i

Bi

1

σ
(V )
i

Vi

1

σ
(I )
i

Ii

∣∣∣∣Ai ,Mi ,Z ∼ N
(
f̃i ,R

)
i = 1, . . . , n, n + 1, . . . , n + nmis

Mi |Ai ,Mmin, α ∼ Truncated-Pareto (α− 1,Mmin,Mmax (Ai ))

Ai |µA, σ
2
A

iid∼ N
(
µA, σ

2
A

)
µA|σ2

A ∼ N

(
µ0,

σ2
A

κ0

)
, σ2

A ∼ Inv − χ2
(
ν0, σ

2
0

)
p(R) ∝ 1{Rp.d.}
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Introduction & Algorithm

Observed-Data Posterior

The product of the densities on the previous slide gives us the
complete-data posterior. Alas, we don’t observe all the stars, and
nmis is an unknown parameter. For now, lets just condition on
nmis . We have:

Wobs =
{
n, y[1:n] = (y1, . . . , yn) ,S = {1, . . . , 1, 0, . . . , 0)}

}
Wmis =

{
m,Y[(n+1):(n+m)],M[(n+1):(n+m)],A[(n+1):(n+m)]

}
Θ =

{
M[1:n],A[1:n], µA, σ

2
A,R

}
where Xa:b denotes the vector (Xa,Xa+1, . . . ,Xb)
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Introduction & Algorithm

Observed-Data Posterior

We want p (Θ|Wobs) but so far we have p (Θ,Wmis |Wobs). So, we
integrate out the missing data:

p (Θ|Wobs) =

∫
p (Θ,Wmis |Wobs) dWmis (6)

In practice, this integration is done by sampling from
p (Θ,Wmis |Wobs) and retaining only the samples of Θ.
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Introduction & Algorithm

Observed-Data Posterior

We form a Gibbs sampler to sample from p (Θ,Wmis |Wobs). Given

a current state of our Markov Chain, Θ = Θ(t) and Wmis = W
(t)
mis :

1. Draw Θ(t+1) from p
(

Θ|W(t)
mis ,Wobs

)
(as before)

2. Draw W
(t+1)
mis from p

(
Wmis |Θ(t+1),Wobs

)
(new)
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Introduction & Algorithm

Sampling Wmis

At each iteration of the Gibbs sampler we need to draw the missing
data from the appropriate distribution.

In other words, given a bunch of masses, ages, and metallicities of
nmis missing stars, find a bunch of Yi ’s that are consistent with
that:

pi

(
Yi |Y[1:n],M,A, µA, σ

2
A

)
∝ [1− π (Yi )] · (7)

exp

{
−1

2

(
Yi − f̃ (Yi ; Mi ,Ai ,Z)

)T

R−1
(
Yi − f̃ (Yi ; Mi ,Ai ,Z)

)}
(8)

for i = n + 1, . . . , n + m.
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Introduction & Algorithm

Sampling Wmis

Once we have sampled a new set of Ymis , we need to sample the
standard deviation of the Gaussian error for those stars.

Here we assume this is a deterministic mapping: σ = σ (Yi ).
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The Algorithm

Sampling from the posterior

Some notes:

1. We have our model – what does our posterior look like?

2. Ugly. No chance of working with it analytically ⇒ MCMC!

3. Going to have to be a Gibbs sampler. How to break it up?

4. Mass and Age are going to be extremely highly correlated
(i.e., sample jointly)

5. No analytic simplification for terms in Mi , Ai because of f

6. High dimensional multi-modal, so we also use parallel
tempering.
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The Algorithm

Parallel Tempering

A brief overview of parallel tempering:

The parallel tempering framework involves sampling N chains, with
the i th chain of the form:

pi (θ) = p(θ|y)1/ti ∝ exp

{
−H(θ)

ti

}
(9)

As ti increases the target distributions become flatter.
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Does it work?

Simulation Results

We simulate 100 datasets from the model with n = 100:

µA = 9.2 σ2
A = 0.012

M(min) = 0.8 α = 2.5

R = I

(σBi
, σVi

, σIi ) ∈ (0.03, 0.12)
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Does it work?

Post_p 0.5 1.0 2.5 5.0 25.0 50.0
m_cover 0.6 1.2 2.8 6.0 25.0 49.1
a_cover 0.4 1.1 2.8 6.3 25.1 50.4
mu_age 3.0 3.0 5.0 6.0 30.0 55.0
ss_age 0.0 0.0 3.0 4.0 26.0 47.0

Paul Baines 093008



Motivation Modelling the CMD Making Inference Results Conclusion

Does it work?

Post_p 50.0 75.0 95.0 97.5 99.0 99.5
m_cover 49.1 74.1 94.4 96.6 98.5 99.2
a_cover 50.4 75.3 93.7 97.2 99.0 99.3
mu_age 55.0 81.0 97.0 99.0 100.0 100.0
ss_age 47.0 71.0 94.0 97.0 100.0 100.0
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Future Work & Conclusions

Future Work

Some important things still need to be built into the model before it is fit
for purpose:

I Extinction/Absorption: Shift in observed data

I Multi-Cluster Models: Allow for multiple stellar clusters
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