
Contact information for Tom Loredo: Email —loredo@astro.cornell.edu; Web —http://www.astro.cornell.edu/staff/loredo/
TheInference project is sponsored by NASA’s Applied Information Resources Program. We are very grateful for their support!

First release is expected around the New Year. Please sign up below if you’dlike to be notified!

Interface
Build a parametric model by creating a class with theParametricModel base
class, containing parameters and asignal method:

class PowerLawModel(ParametricModel):
A = RealParameter(1., ’Amplitude’)
alpha = RealParameter(0.5, ’Power law index’)

def signal(self,E):
return self.A*E**(self.alpha)

For simple inferences, create anInference object using the model and one or
more data sets:

inf = BinnedChisqrInference(PowerLawModel, data1, data2, ...)

The Inference object gives you all the methods you need to make the specifiedtype
of inference; e.g., for projectedχ2:

inf.A.logStep(0., 10., 51) # 51 log-spaced steps for A
inf.alpha.vary() # Let alpha vary
grid = inf.opt() # Returns a grid object w/ projected chi**2(A)

For more complicated inferences, e.g., combining information from different types
of data, you need to use just one other set of classes:Predictor classes for each
type of data. These specify how to compare a particular type of data to a signal, and
how to simulate that type of data.

p1 = SampledChisqrPred(data1); p2 = BinnedChisqrPred(data2)
inf = ChisqrInference(PowerLawModel, p1, p2)

Models have support for vector output, setup calculations and array broadcasting.
Predictor classes are “tunable” (e.g., set quadrature for integrating over a bin).
You can easily create your own to add new data types.

Capabilities
• Three inference methodologies, each for various data types:

–χ2: point samples, binned samples, “folded” (response functions)
– Maximum likelihood: Gaussian (matchingχ2 cases), Poisson count-

ing processes, Point processes (surveys w/ efficiency functions)
– Bayesian: Matching ML cases

• Automate standard parameter exploration tasks
– Exploration on equispaced & logarithmic grids (adaptive refine-

ment in 1-d, e.g., for period searching)
– Optimization (unconstrained and with boundary constraints)
– Exploration of subsets of parameter space (profiling/projection)
– Hessian/information matrix calculation

• Bayesian computation
– Marginalization and Bayes factors via adaptive quadrature & Laplace

approximation
– Calculation of 1-d, 2-d, 3-d credible region boundaries
– Basic Markov chain Monte Carlo (MCMC) support

• Simulate data (calibrate confidence regions; experimental design)

Parametric Inference Engine (PIE)

Tools for Discrete Data
Methods for data from counting processes and point processes:

• Intervals and limits for rates and ratios using counting process data
– Likelihood & Bayesian intervals for simple processes
– Methods with known background rate: Feldman-Cousins likelihood ordering,

Bayes, ABC (bootstrap)
– Methods with uncertain background: Profile likelihood, Bayes, ABC

• Periodic point processes (period searching in arrival time data):
– Frequentist: Rayleigh statistic,Z2

N

– Bayesian: log-Fourier models, Gregory-Loredo method
– Accelerated (P ,Ṗ) searching with incoherent spectra and fractional transforms

• Inhomogeneous point process models for local event detection: Bayes
blocks, Poisson “Haar” wavelets

• Survey analyses: Survival analysis (ASURV), point process+ noise
• Nonparametric methods: Adaptive splines, neural nets (interfaces to

Max Planck PPI methods), mixture models

Tools for Continuous Data
Methods for data from sampled functions with additive noise,
di = f (ti) + ei:

• Linear & nonlinear regression
– Interfaces to Bershady/Isobe packages (regression with measurement error and

intrinsic scatter)
– Bayesian errors-in-variables modeling (EVM)
– Fitting with correlated errors

• Detection/measurement of periodic signals
– Standard approaches: Power spectrum, Schuster periodogram, Lomb-Scargle
– Fractional fast Fourier transform (fFFT)
– Bretthorst algorithm (Bayesian periodograms)
– Bayesian piecewise-constant modeling (Gregory method)
– Kepler periodogram (Kepler reflex motion modeling for binaries, exoplanets)

• Nonperiodic time series analysis (QPOs,1/f noise): ARMA mod-
els, long-memory processes

• Robust estimation/outlier detection (M-estimators, Bayesian outlier
detection)

Library

• SciPy (partly supported by NASA AISR viaInference)
– High level interfaces to large, well-established libraries: special functions, lin-

ear algebra, FFTs, DSP, quadrature, ODE solvers, optimizers, basic stats
– Special functions areuniversal functions (ufuncs); can be “broadcast” onto ar-

rays at speed near compiled C; users can create ufuncs
– Inline C via weave package

• Plotting (matplotlib, Chaco partly supported by STScI)
– matplotlib: Cross-platform 2-d plotting a la Matlab (mature)
– Chaco: Object-oriented, modular, cross-platform plotting (beta-level)
– Interfaces to very many popular libraries (gnuplot, pgplot, DISLIN, etc.)

Simple Example
Rayleigh statistic for period searching in arrival time data:

R(ω) = 1

N

[

(
∑

i sin ωti)
2 + (

∑

i cos ωti)
2

]

Python source code C source code

from Numeric import *

def Rayleigh (data, w):
wd = w*data
return (sum(sin(wd))**2 +

sum(cos(wd))**2)/len(data)

#include <math.h>

double Rayleigh (int n, double *data,
double w) {

double S, C, wt;
int i;
S = 0.;
C = 0.;
for (i=0; i<n; i++) {

wt = w*data[i];
S += sin(wt);
C += cos(wt);

}
return (S*S + C*C)/n;

}

Language Characteristics
• A general purpose language with a rich standard library
• Very simple syntax—resembles “pseudo code”
• Use interactively, or via scripts/modules
• Object oriented, with a very simple object model—facilitates high

level interfaces, modularity
• Practical rather than “pure”—Selected capabilities of various paradigms

(e.g., functional programming, list comprehensions, metaclasses)
• Sophisticated and fast scientific computing capability
• Easily extendible/embeddable with C/C++/Fortran
• Open source, cross-platform, active & growing user community
• Named for the British comedy show, not the snake!

Scientific Computing With Python
• Array computations

– Syntax inspired by Matlab/IDL/Fortran90
– Performance near that of C/Fortran for array calculations
– Numeric: Developed by LLNL/MIT scientists & programmers
– numarray: Numeric’s successor developed by NASA/STScI; allows larger

(memory-mapped) arrays, inhomogeneous arrays (for FITS files)

• PyRAF — The IRAF command line in Python (STScI)

Main Features
TheInference project is making advanced astrostatistics methods
accessible to astronomers via the following project components:

• TheInference package—Two software components
– Library: A deep and broad collection of self-contained functions andobjects

implementing methods tailored to astronomers’ needs. Where possible, it in-
cludes multiple methods in each problem class, esp. frequentist/Bayesian

– Parametric Inference Engine:A framework for analyzing parametric models
allowing use of multiple methodologies (χ2, likelihood, Bayes) with a unified
interface

• Use of a modern “very high level” (VHL) computer language: Python
– Single implementation facilitates depth/breadth (vs. spreading resources across

implementations in several languages)
– Python’s VHL features speed development, facilitate testing
– Python’s simplicity allows easy access both to new users andto astronomers

using PyRAF

• Outreach
– This project organizes and sponsors astrostatistics speakers and sessions at as-

tronomy and astroparticle physics conferences (like HEAD!)
– Selected methods described in project-sponsored talks will be included in the

Python package

Motivation
Many advanced astrostatistics methods areconceptually simple despite
beingcomputationally complex.

Competing methods of very different levels of sophistication are often
similar from an end-user’s perspective.

The principle obstacle to the use and understanding of advanced meth-
ods is theart of statistical computing—the computational tricks needed
to implement advanced methods.

Goal: Eliminate this obstacle!

Example—Fitting binned spectral data from data contaminated with
measured background:

• Minimize χ2 using background-subtracted data

• Maximize a Poisson counting process likelihood marginalized over a bin-by-bin
Poisson background model

These are quite similar from a user’s perspective: One must (1) Define
a parameterized signal model; and (2) Optimize a scalar function of the
model’s parameters. Analysts should not be prevented from trying the
(more exact) likelihood approach simply because efficient computation
of the likelihood requires unconventional computational “tricks.”

Tom Loredo (Dept. of Astronomy, Cornell University), Alanna Connors (Eureka Scientific),
and Travis Oliphant (Dept. of Electrical & Computer Engineering, Brigham Young University)

Inference — A Python Package for Astrostatistics

Project Overview A Bit About Python

Components of the Package

