| nf er ence — A Python Package for Astrostatistics

Tom Loredo (Dept. of Astronomy, Cornell University), Alanna Connors (Eureka Scientific),
and Travis Oliphant (Dept. of Electrical & Computer Engineering, Brigham Young Umiygrs

Project Overview

Motivation

Many advanced astrostatistics methodscareeptually simple despite
beingcomputationally complex.

Competing methods of very different levels of sophisticatoe often
similar from an end-user’s perspective.

The principle obstacle to the use and understanding of agaameth-
ods is theart of statistical computing—the computational tricks needed
to implement advanced methods.

Goal: Eliminate this obstaclel

Example—Fitting binned spectral data from data contaminated with

measured background:

e Minimize y? using background-subtracted data

e Maximize a Poisson counting process likelihood margindliaeer a bin-by-bin
Poisson background model

These are quite similar from a user’s perspective: One nMijif2éfine
a parameterized signal model; and (2) Optimize a scalatifumof the
model’'s parameters. Analysts should not be prevented frgimgt the
(more exact) likelihood approach simply because efficientgutation
of the likelihood requires unconventional computationtatks.”

Tools for Continuous Data

Methods for data from sampled functions with additive npise
d; = f(t;) + €;:

e Linear & nonlinear regression

— Interfaces to Bershady/Isobe packages (regression widsunement error and
Intrinsic scatter)

— Bayesian errors-in-variables modeling (EVM)
— Fitting with correlated errors

e Detection/measurement of periodic signals
— Standard approaches: Power spectrum, Schuster periaodogoanb-Scargle
— Fractional fast Fourier transform (fFFT)
— Bretthorst algorithm (Bayesian periodograms)
— Bayesian piecewise-constant modeling (Gregory method)
— Kepler periodogram (Kepler reflex motion modeling for biear exoplanets)
e Nonperiodic time series analysis (QPQgf noise): ARMA mod-
els, long-memory processes

e Robust estimation/outlier detection (M-estimators, Bagmsiutlier
detection)

First release Is expected around the New Year. Please sign up below Ifijeud be notified!

Library

Main Features

Thel nf er ence project is making advanced astrostatistics methpds

accessible to astronomers via the following project comptme

e Thel nf er ence package—Two software components

— Library: A deep and broad collection of self-contained functions abgcts
Implementing methods tailored to astronomers’ needs. Whessible, it in-
cludes multiple methods in each problem class, esp. fremtdEayesian

— Parametric Inference Engin& framework for analyzing parametric modefg
allowing use of multiple methodologieg?, likelihood, Bayes) with a unifiec
Interface

e Use of amodern “very high level” (VHL) computer languagethen
— Single implementation facilitates depth/breadth (vseagmg resources acrogs
Implementations in several languages)
— Python’s VHL features speed development, facilitate mesti
— Python’s simplicity allows easy access both to new userstara$tronomers
using PyRAF
e Outreach
— This project organizes and sponsors astrostatistics spgakd sessions at a§-
tronomy and astroparticle physics conferences (like HEAD!

— Selected methods described in project-sponsored talk$e&vihcluded in the
Python package

A Bit About Pytho

Language Characteristics

¢ A general purpose language with a rich standard library
e \ery simple syntax—resembles “pseudo code”
e Use Iinteractively, or via scripts/modules

e ODbject oriented, with a very simple object model—facilitates high

level interfaces, modularity

e Practical rather than “pure”—Selected capabillities of variousthgnas
(e.g., functional programming, list comprehensions, metaclasses)

e Sophisticated and fast scientific computing capability

e Easily extendible/embeddable with C/C++/Fortran

e Open source, cross-platform, active & growing user community
e Named for the British comedy show, not the snake!

Scientific Computing With Python

e Array computations
— Syntax inspired by Matlab/IDL/Fortran90
— Performance near that of C/Fortran for array calculations
—Nuneri ¢: Developed by LLNL/MIT scientists & programmers

—numar ray: Nuneri c’s successor developed by NASA/STScl; allows larger
(memory-mapped) arrays, inhomogeneous arrays (for FITS files)

e PYRAF — The IRAF command line in Python (STScl)

Components of the Package

Tools for Discrete Data

Methods for data from counting processes and point processes

e Intervals and limits for rates and ratios using counting pssadata

— Likelihood & Bayesian intervals for simple processes

— Methods with known background rate: Feldman-Cousins hkeld ordering,
Bayes, ABC (bootstrap)

— Methods with uncertain background: Profile likelihood, Bay&BC

e Periodic point processes (period searching in arrival tiate)d
— Frequentist: Rayleigh statistiZz;
— Bayesian: log-Fourier models, Gregory-Loredo method
— Accelerated P, P) searching with incoherent spectra and fractional trans$o
e Inhomogeneous point process models for local event dete@i@yes
blocks, Poisson “Haar” wavelets

e Survey analyses: Survival analysfSURYV), point process- noise

e Nonparametric methods: Adaptive splines, neural nets (atedto
Max Planck PPl methods), mixture models

Capabillities

e Three inference methodologies, each for various data types:

—x?: point samples, binned samples, “folded” (response functions)

Parametric Inference Engine (PIE)

e SCIPy (partly supported by NASA AISR vianf er ence)

— High level interfaces to large, well-established librariggecial functions, lin-
ear algebra, FFTs, DSP, quadrature, ODE solvers, optimizassc stats

— Special functions araniversal functions (ufuncs); can be “broadcast” onto a
rays at speed near compiled C; users can create ufuncs

—Inline C via weave package

e Plotting (mat pl ot | i b, Chaco partly supported by STScl)

—mat pl ot | 1 b: Cross-platform 2-d plotting a la Matlab (mature)
—Chaco: Object-oriented, modular, cross-platform plotting (betaele
— Interfaces to very many popular libraries (gnuplot, pgploGON, etc.)

Simple Example

Rayleigh statistic for period searching in arrival time data:
R(w) =+ [(ZZ sinwt;)” + (3, cos wti)ﬂ

Python source code C source code

from Numeric inport * #i ncl ude <mat h. h>

def Rayleigh (data, w): doubl e Rayleigh (int n, double *data,
wd = wdata double w) {
return (sun(sin(wd))**2 + double S, C w;
sun(cos(wd))**2) /1 en(dat a) int i;
S =0.;
C=20.;
for (1=0; i<n; i++) {
w = wdatali];
S += sin(w);
C += cos(wt);
}
return (S*S + ¢ Q) /n;

Interface

Build a parametric model by creating a class with Bee anet r i cMbdel base
class, containing parameters ansiggnal method:

—Maximum likelihood Gaussian (matching’ cases), Poisson count- ¢! ass Power Law\bdel (Par amet ri chodel) :

INg processes, Point processes (surveys w/ efficiency functions)

—Bayesian Matching ML cases
e Automate standard parameter exploration tasks

—Exploration on equispaced & logarithmic grids (adaptive refine-

ment in 1-d, e.g., for period searching)
— Optimization (unconstrained and with boundary constraints)
—Exploration of subsets of parameter space (profiling/projection)
—Hessian/information matrix calculation

e Bayesian computation

A = Real Paraneter (1., 'Anplitude’)
al pha = Real Paranmeter (0.5, 'Power |aw index’)

def signal (self,E):
return self. A*E**(sel f. al pha)

For simple inferences, create anf er ence object using the model and one qr
more data sets:

i nf = Bi nnedChi sqgr | nf erence(Power Lawibdel , datal, data2, ...)

The Inference object gives you all the methods you need to make the spetyfoed
of inference; e.qg., for projectegt:

—Marginalization and Bayes factors via adaptive quadrature & Laplacey. A 1 ogstep(0., 10., 51) # 51 | 0g-spaced steps for A

approximation
— Calculation of 1-d, 2-d, 3-d credible region boundaries
—Basic Markov chain Monte Carlo (MCMC) support

e Simulate data (calibrate confidence regions; experimental design)

Contact information for Tom Loredo: Email Heredo@astro.cornell.egMeb — http.//www.astro.cornell.edu/staff/loredo/
Thel nf er ence project is sponsored by NASA's Applied Information Resources Progk&le are very grateful for their support!

i nf.al pha.vary() # Let al pha vary
grid = inf.opt() # Returns a grid object w projected chi**2(A

For more complicated inferences, e.g., combining information frdferént types

of data, you need to use just one other set of clag3esdi ct or classes for eac

type of data. These specify how to compare a particular typeataf a signal, anc
how to simulate that type of data.

pl = Sanpl edChi sgrPred(datal); p2 = Bi nnedChi sqr Pred(dat a2)
i nf = Chi sqrl nference(Power Lawibdel , pl, p2)

Models have support for vector output, setup calculations aray dmoadcasting.
Pr edi ct or classes are “tunable” (e.g., set quadrature for integratieg a\bin).
You can easily create your own to add new data types.

