KATY MCKEOUGH

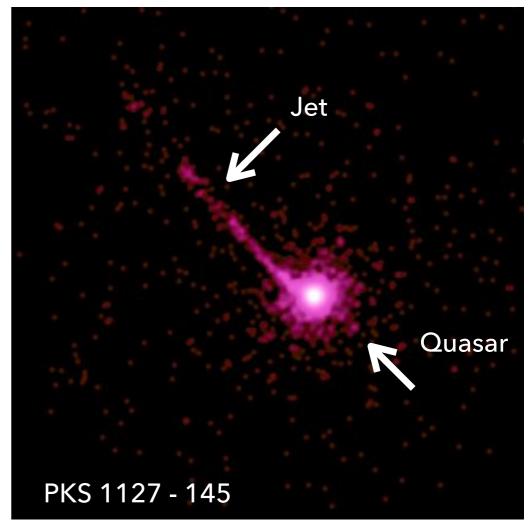
CHASC ASTRO-STATISTICS

XIAO-LI MENG, VINAY KASHYAP, ANETA SIEMIGINOWSKA, SHIHAO YANG, LUIS CAMPOS,

DEFINING REGIONS THAT CONTAIN COMPLEX ASTRONOMICAL STRUCTURES

SCIENTIFIC MOTIVATION

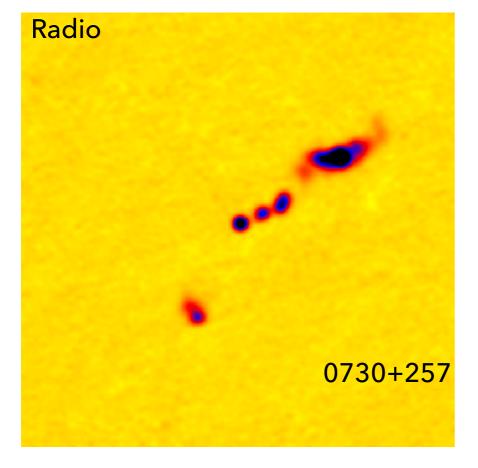
- We are interested in defining an outline around extragalactic jets coming from quasars at high redshift (z>2.1) in X-ray images
- Defining this boundary is important for accurate luminosity and flux calculations.
- Detecting jets is difficult because they are diffuse sources (no edges, or center) and dim compared to the quasar.
- Images of high redshift jets are of low resolution and few X-ray photons

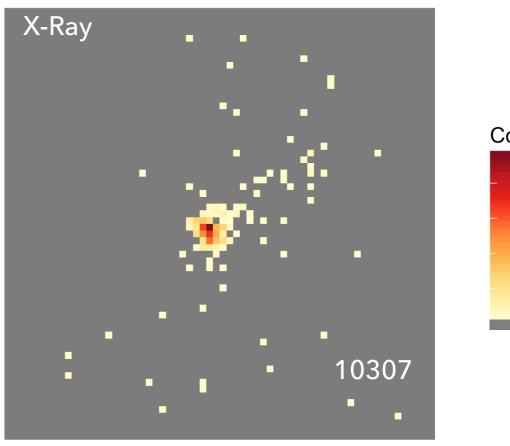


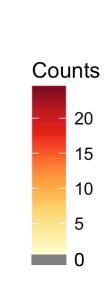
NASA/CXC/A.Siemiginowska(CfA)/ J.Bechtold(U.Arizona)

OBSERVATIONAL DATA

- Chandra X-ray Observatory ACIS
- ▶ 64 x 64 or 128 x 128 pixel image centered on quasar
- ▶ High to intermediate redshift (2.10 < z< 4.72)

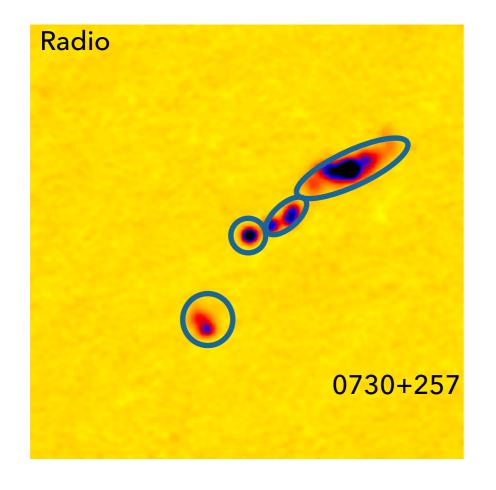


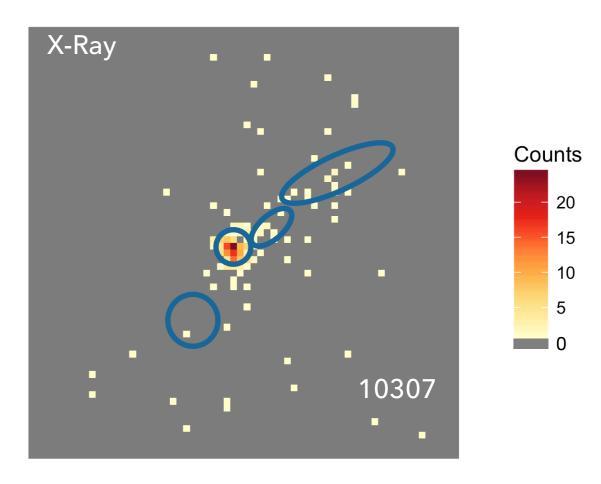




REGION OF INTEREST

- Region of Interest (ROI) region containing the jet or a partition of the jet (e.g. node or lobe)
- Previous work tests whether or not a jet exists in a predefined ROI (McKeough et al. 2016, Stein et al. 2015)





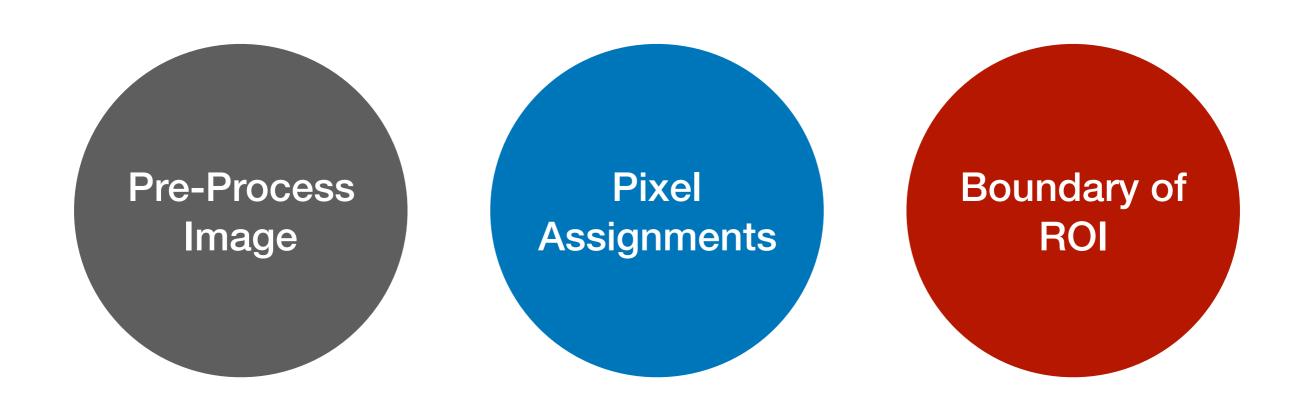
REGION OF INTEREST

- Ability to detect jet is sensitive to fit of ROI
- Issues with previous methods:
 - Region is defined using radio imaging
 - Not always available
 - Not always aligned with X-ray imaging
 - Region definition relies on human interaction
 - Inefficient and source of potential error

GOAL

Define a boundary around the ROI of an irregularly shaped, diffuse source.

Give a measure of uncertainty.

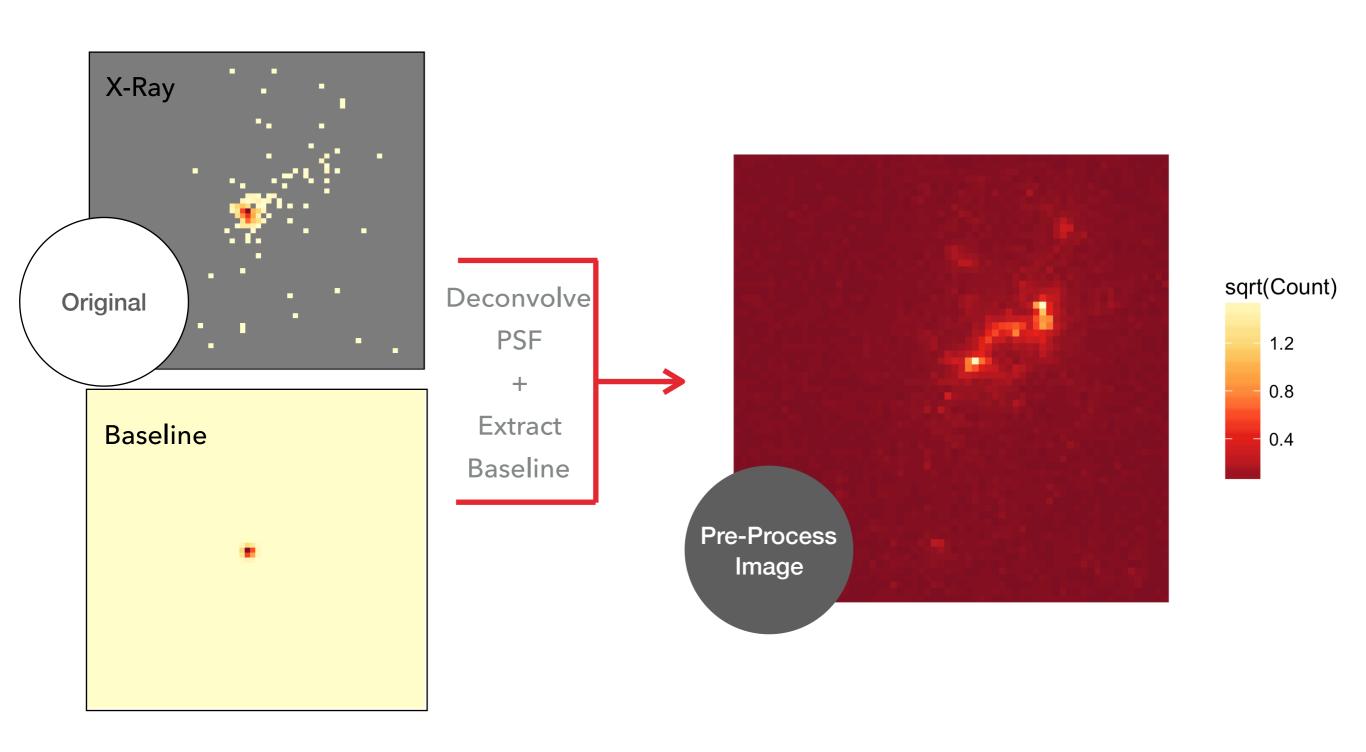


Pixel Assignments Boundary of ROI

LOW COUNT IMAGE RECONSTRUCTION AND ANALYSIS (LIRA)

- Esch et al (2004), Connors & van Dyk (2007)
- Multi-scale Bayesian method
 - Intensity in "splits" of the image rather than individual pixels
- Removes quasar & deconvolve Point Spread Function (PSF)
- Creates posterior draws for residual pixels as a series of images that capture the emission that is present in excess of the quasar (i.e. the jet)

LOW COUNT IMAGE RECONSTRUCTION AND ANALYSIS (LIRA)



Pixel Assignments

Boundary of ROI

LIKELIHOOD

$$\sqrt{\tilde{\lambda}_{ij}}|Z,\tau_{\pm},\sigma_{\pm}^2 \sim \text{Normal}(\tau_{-},\sigma_{-}^2)\mathbb{I}_{z_{ij}=-1} + \text{Normal}(\tau_{+},\sigma_{+}^2)\mathbb{I}_{z_{ij}=+1}$$

We are given observation Y from which we draw the LIRA output:

 $\tilde{\lambda}|Y$

- We want to assign each pixel to either the background (-1) or the ROI (+1):
- $z_{ij} = \{-1, +1\}$

Each pixel assignment will have its own average intensity: τ_-, au_+

We suspect the variance of the source will be greater than the background:

$$\sigma_-^2, \sigma_+^2$$

2D ISING PRIOR

$$p(z|\beta) = \frac{\exp(\beta \sum_{ij,i'j' \in |ij-i'j'|=1} z_{ij} z_{i'j'})}{\tilde{Z}(\beta)}$$

Inverse temperature:

B

- \blacktriangleright Higher β induces more correlation between pixels
- Partition function:

$$\tilde{Z}(\beta)$$

- Estimated via Beale (1996) assuming periodic structure
- Commonly used in modeling ferromagnetism.
- Induces spatial correlation; adjacent pixels will tend to have the same assignment.

REMINDER: MODEL SETUP

Likelihood:

$$\sqrt{\tilde{\lambda}_{ij}}|Z,\tau_{\pm},\sigma_{\pm}^2 \sim \text{Normal}(\tau_{-},\sigma_{-}^2)\mathbb{I}_{z_{ij}=-1} + \text{Normal}(\tau_{+},\sigma_{+}^2)\mathbb{I}_{z_{ij}=+1}$$

Prior:

$$p(z|\beta) = \frac{\exp(\beta \sum_{ij,i'j' \in |ij-i'j'|=1} z_{ij} z_{i'j'})}{\tilde{Z}(\beta)}$$

STEP 1 – LIKELIHOOD PARAMETERS

- Draw from posterior directly:
- Priors:

$$\tau_{\pm} \sim \text{Normal}(\mu_0, \sigma_{\pm}^2)$$

$$\sigma_{+}^2 \sim \text{Inv-}\chi^2(\nu_0, \omega_0^2)$$

STEP 2 – TEMPERATURE PARAMETER

- Drawn through Metropolis Hastings
- Prior:

$$\beta \sim \text{Gamma}(a_{\beta}, b_{\beta})$$

STEP 3- ASSIGNMENTS

- A well established way to draw the spin state given a specific temperature is Swendsen & Wang (1987).
- The S-W method takes a spin system z|β and induces a bigger system that contains the original N spin variables and M additional bond variables, denoted by d.
- Define joint distribution that couples spins to bonds:

$$p(z,d|\tilde{\lambda},\tau_{\pm},\sigma_{\pm}^2,\beta) \propto \prod_{m=1}^{M} g_m(z_m,d_m|\beta) \prod_{ij} f(\tilde{\lambda}_{ij}|z,\tau_{\pm},\sigma_{\pm}^2)$$

- Marginal distribution of z is equal to our posterior.
- Conditional distributions are easy to sample from.

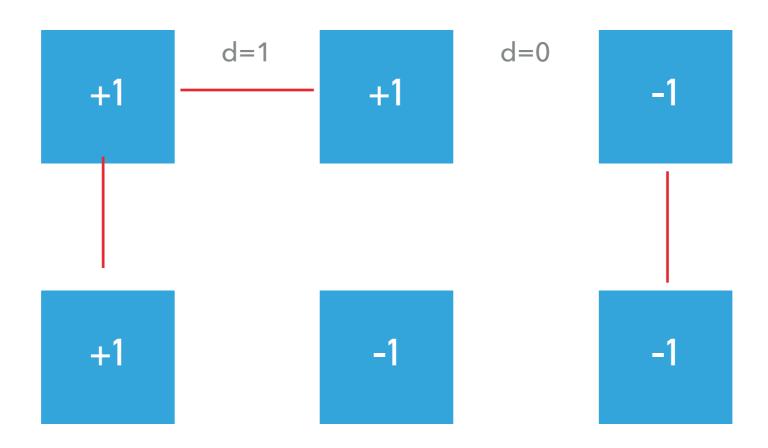
$$\sum_{d} p(z, d | \tilde{\lambda}, \tau_{\pm}, \sigma_{\pm}^{2}, \beta) = p(z | \tilde{\lambda}, \tau_{\pm}, \sigma_{\pm}^{2}, \beta)$$

$$p(z|d,\beta-)$$
 $p(d|z,\beta-)$

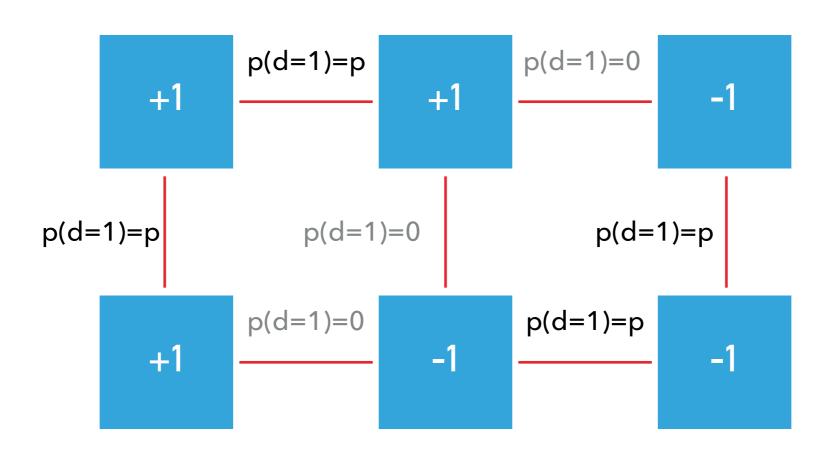
COUPLING SPINS TO BONDS

Bonds can be disconnected (0) or connected (1).

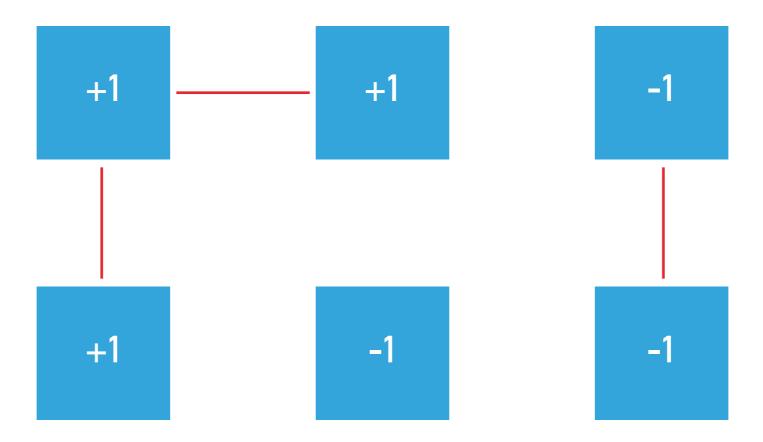
$$d = \{0, 1\}$$



- Sample from $p(d|z,\beta)$
 - If two spins connected to bond are equal, set the bond d_m equal to 1 with probability $p=1-exp(-2\beta)$, and 0 otherwise.



- Sample from $p(d|z,\beta)$
 - If two spins connected to bond are equal, set the bond d_m equal to 1 with probability $p=1-exp(-2\beta)$, and 0 otherwise.



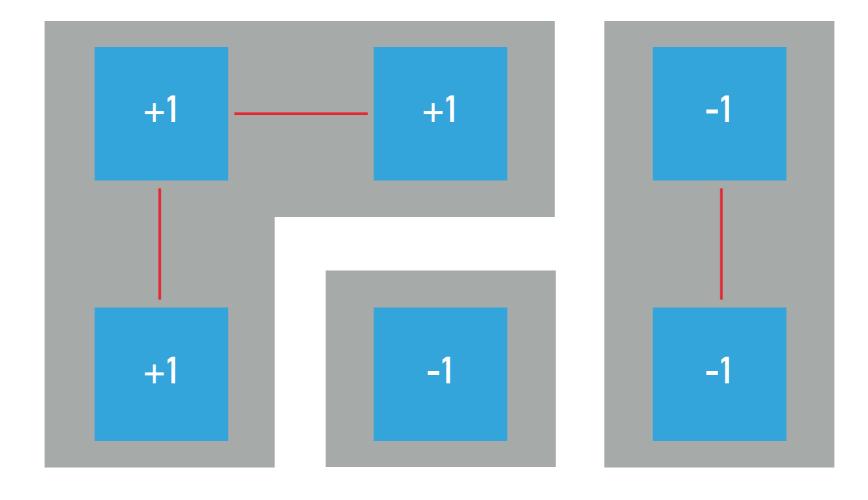
- Sample from $p(z|d,\beta)$
 - Bonds connect spins into C cluster.
 - ▶ Cluster all pixels that are connected by a bond $d_m=1$
 - ▶ Each cluster will take spin +1 with probability p+

-1 with probability p₋=1-p₊

$$p_{\pm} \propto \prod_{ij \in C} f(\tilde{\lambda}_{ij}|z_{ij} = \pm 1, \tau_{\pm}, \sigma_{\pm}^2)$$

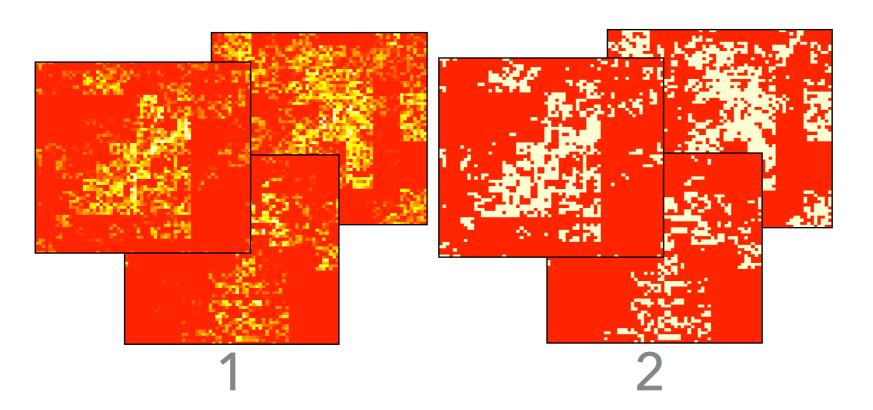
• Sample from $p(z|d,\beta)$

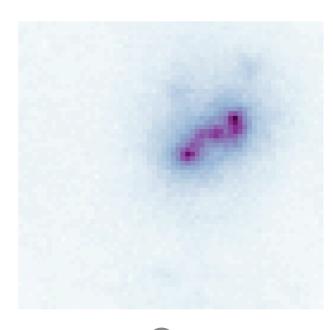
$$p(z=+1)=p_+$$



ISING-LIRA ITERATIONS

- 1. Get many posterior draws from LIRA
- 2. Apply Ising step to each LIRA draw
- 3. Average across LIRA-Ising iterations to get probability map.

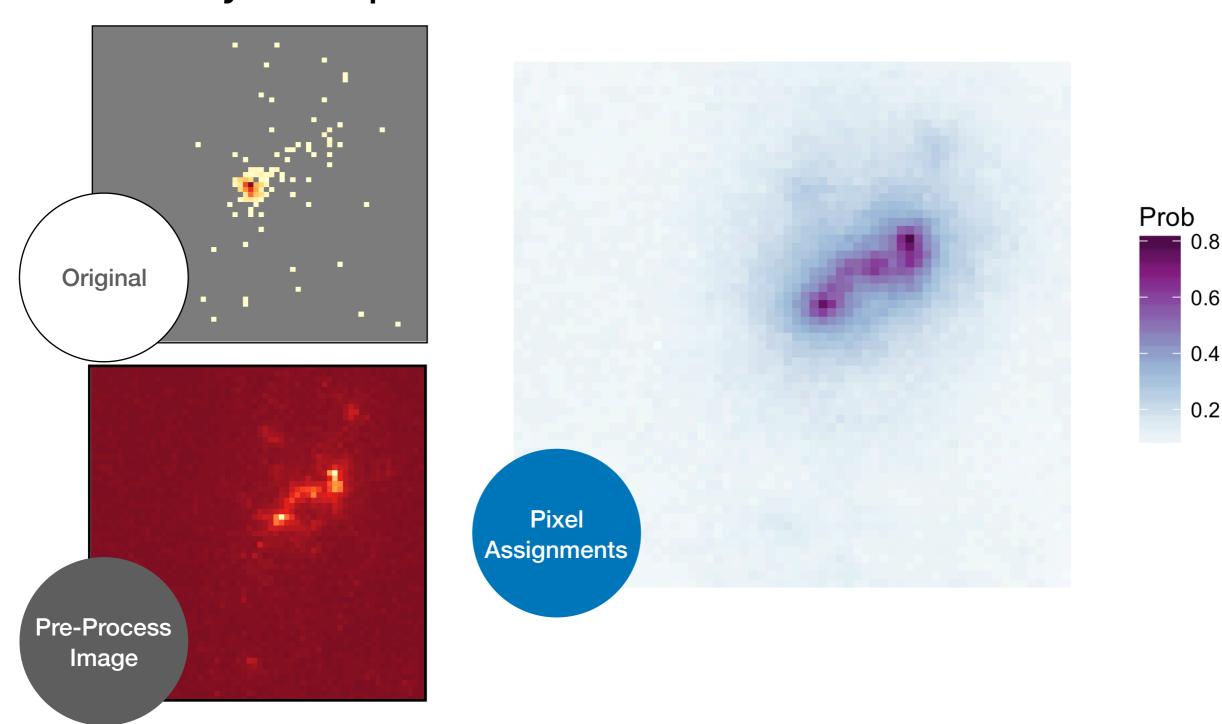




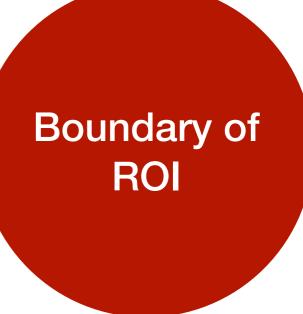
3

PROBABILITY MAP

Probability each pixel is a member of the ROI:



Pixel Assignments



OPTIMAL ROI

Maximize posterior predictive:

$$P(Z|Y) = \int P(Z,\theta,\lambda|Y)d\theta d\lambda$$

OPTIMAL ROI

Maximize posterior predictive:

$$P(Z|Y) = \int P(Z,\theta,\lambda|Y)d\theta d\lambda$$

Ideally we could approximate this as:

$$\hat{P}(Z|Y) = \frac{1}{N} \sum_{k=1}^{N} P(Z|\theta^{(k)}, \lambda^{(k)})$$

OPTIMAL ROI

Maximize posterior predictive:

$$P(Z|Y) = \int P(Z,\theta,\lambda|Y)d\theta d\lambda$$

Ideally we could approximate this as:

$$\hat{P}(Z|Y) = \frac{1}{N} \sum_{k=1}^{N} P(Z|\theta^{(k)}, \lambda^{(k)})$$

... but this is very difficult.

MAXIMIZE POSTERIOR RATIO

Compare two different Z states:

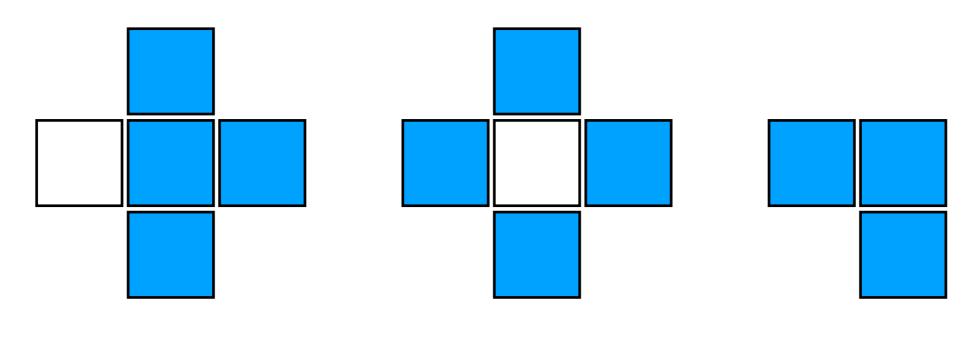
$$\frac{\hat{P}(Z_1|Y)}{\hat{P}(Z_2|Y)} = \frac{\sum_{k=1}^{N} \exp(\log P_k(Z_1))}{\sum_{k=1}^{N} \exp(\log P_k(Z_2))}$$

$$= \sum_{k=1}^{N} w_k \exp(\log \frac{P_k(Z_1)}{P_k(Z_2)})$$

OPTIMIZATION SPACE

Neighborhood statistic:

$$N_{ij} = \frac{\sum_{i'j' \in |ij-i'j'|=1} z_{ij} z_{i'j'}}{\sum_{i'j' \in |ij-i'j'|=1} |ij-i'j'|}$$



 $N_{ij} = 0.75$

 $N_{ij} = 0$

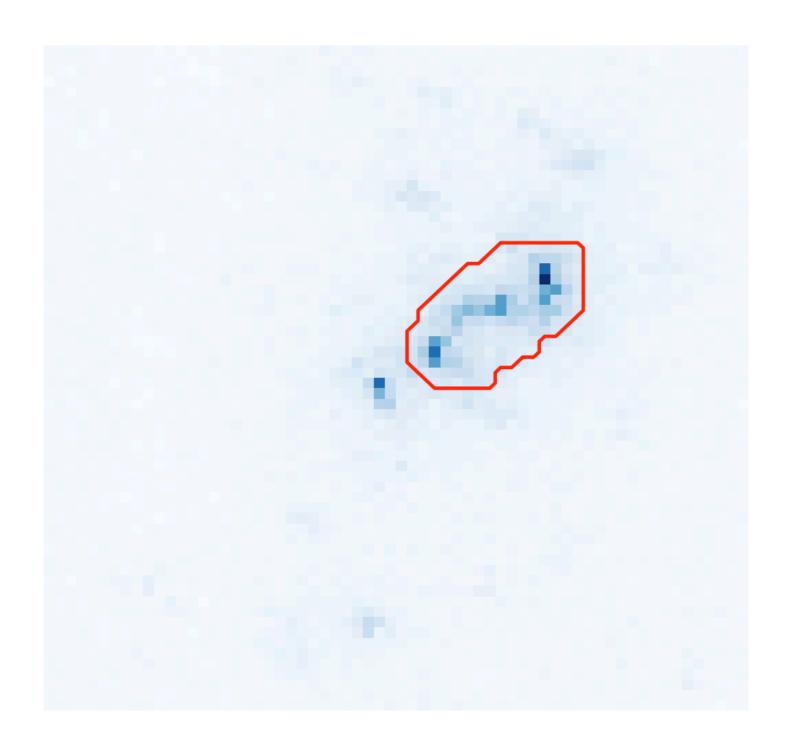
 $N_{ij} = 1$

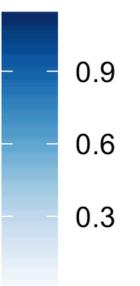
OPTIMIZATION SPACE

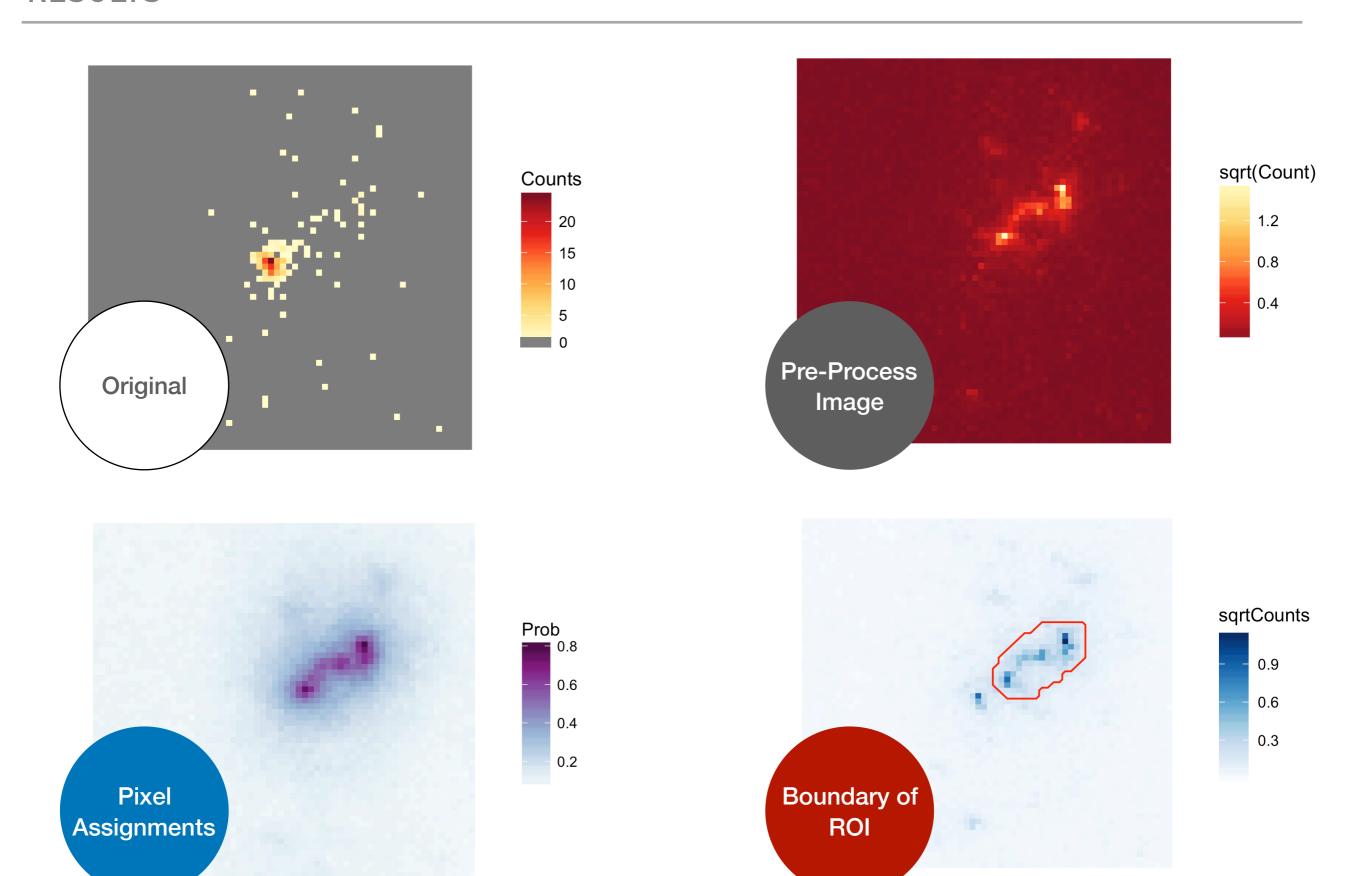
- Average N_{ij} across all posterior draws
- Rank N_{ij} from highest to lowest
- Build space to optimize over:
 - For the zip with the highest corresponding N_{ij}, set to 1 and the remainder to -1
 - Repeat including the next highest N_{ij} until all pixels are 1

NOTES

- Maximize across all Z created using the neighborhood statistic and all Z drawn from the posterior
- We will always compare the new Z with the Z at the current maximum
- To build a confidence interval take more posterior iterations and repeat the process (TBD)







Future Work

ADJACENT PIXEL DEFINITION

- Could be modified to the 8 nearest pixels instead of 4.
- Modified to include pixels beyond just the adjacent pixels
- Correlation as a function of distance

POTTS MODEL

- Want to identify multiple partitions of the jet (e.g. nodes)
- Potts is a more generalized version of the Ising model allows for more than two spin assignments:

$$z_{ij} = \{0, 1, 2, 3, \dots\}$$

DIFFERENT LIKELIHOODS

Hurdle model - Account for many of the background pixels in the LIRA output being zero.

CONCLUSION

- LIRA has been successful in analyzing low count images and extracting noisy structure.
 - No way to define a ROI
 - No correlation structure between pixels
- Utilized an Ising distribution and corresponding techniques to create a probabilistic ROI.

Model Compatibility

"IDEAL" MODIFICATION TO LIRA

Curent LIRA output:

$$P(\tilde{\lambda}|Y)$$

The missing piece of LIRA is the pixel membership indicator:

$$z_{ij} = \{-1, +1\}$$

• An ideal joint model (denote using subscript \mathcal{J}) would infer λ_{ij} and z_{ij} simultaneously

$$P_{\mathcal{J}}(\tilde{\lambda}, z|Y) \propto f(Y|\tilde{\lambda}, z)\pi_{\mathcal{J}}(\tilde{\lambda}, z)$$

OUR APPROACH

- Two-step approach:
 - LIRA "as is" (model S_1)

$$P_{\mathcal{S}_1}(\tilde{\lambda}|Y) \propto f(Y|\tilde{\lambda})\pi_{\mathcal{S}_1}(\tilde{\lambda})$$

▶ Ising (model S_2) conditional on ONE draw of from S_1

$$P_{\mathcal{S}_2}(z|\tilde{\lambda}) \propto P_{\mathcal{S}_2}(\tilde{\lambda}|z)\pi_{\mathcal{S}_2}(z)$$

Combine to get desired model:

$$P_{\mathcal{S}}(\tilde{\lambda}, z|Y) = P_{\mathcal{S}_1}(\tilde{\lambda}|Y)P_{\mathcal{S}_2}(z|\tilde{\lambda})$$

$$\propto f(Y|\tilde{\lambda})\pi_{\mathcal{S}_1}(\tilde{\lambda})\frac{P_{\mathcal{S}_2}(\tilde{\lambda}|z)\pi_{\mathcal{S}_2}(z)}{P_{\mathcal{S}_2}(\tilde{\lambda})}$$

SUFFICIENT CONDITIONS

$$P_{\mathcal{J}}(\tilde{\lambda}, z|Y) \propto f(Y|\tilde{\lambda}, z) \pi_{\mathcal{J}}(\tilde{\lambda}, z) \iff P_{\mathcal{S}}(\tilde{\lambda}, z|Y) = P_{\mathcal{S}_1}(\tilde{\lambda}|Y) P_{\mathcal{S}_2}(z|\tilde{\lambda})$$

$$\propto f(Y|\tilde{\lambda}) \pi_{\mathcal{S}_1}(\tilde{\lambda}) \frac{P_{\mathcal{S}_2}(\tilde{\lambda}|z) \pi_{\mathcal{S}_2}(z)}{P_{\mathcal{S}_2}(\tilde{\lambda})}$$

Assignment information does not effect distribution of photon counts:

$$f(Y|\tilde{\lambda}) = f(Y|\tilde{\lambda}, z)$$

SUFFICIENT CONDITIONS

$$P_{\mathcal{J}}(\tilde{\lambda}, z|Y) \propto f(Y|\tilde{\lambda}, z)\pi_{\mathcal{J}}(\tilde{\lambda}, z) \iff P_{\mathcal{S}}(\tilde{\lambda}, z|Y) = P_{\mathcal{S}_1}(\tilde{\lambda}|Y)P_{\mathcal{S}_2}(z|\tilde{\lambda})$$

$$\propto f(Y|\tilde{\lambda})\pi_{\mathcal{S}_1}(\tilde{\lambda})\frac{P_{\mathcal{S}_2}(\tilde{\lambda}|z)\pi_{\mathcal{S}_2}(z)}{P_{\mathcal{S}_2}(\tilde{\lambda})}$$

Assignment information does not effect distribution of photon counts:

$$f(Y|\tilde{\lambda}) = f(Y|\tilde{\lambda}, z)$$

LIRA prior on photon counts is compatible with Ising model prior on assignments:

$$\pi_{\mathcal{S}_1}(\tilde{\lambda}) = \int \pi_{\mathcal{J}}(\tilde{\lambda}, z) dz = \int P_{\mathcal{S}_2}(\tilde{\lambda}|z) \pi_{\mathcal{S}_2}(z) dz$$

HOW FAR OFF ARE WE?

$$P_{\mathcal{J}}(\tilde{\lambda}, z|Y) \propto f(Y|\tilde{\lambda}, z) \pi_{\mathcal{J}}(\tilde{\lambda}, z) \qquad P_{\mathcal{S}}(\tilde{\lambda}, z|Y) = P_{\mathcal{S}_{1}}(\tilde{\lambda}|Y) P_{\mathcal{S}_{2}}(z|\tilde{\lambda}) \\ \propto f(Y|\tilde{\lambda}) \pi_{\mathcal{S}_{1}}(\tilde{\lambda}) \frac{P_{\mathcal{S}_{2}}(\tilde{\lambda}|z) \pi_{\mathcal{S}_{2}}(z)}{P_{\mathcal{S}_{2}}(\tilde{\lambda})}$$

 \blacktriangleright Inference for λ is equivalent:

$$P_{\mathcal{J}}(\lambda|Y) \propto f(Y|\lambda) \int \pi_{\mathcal{J}}(\lambda,z) dz = f(Y|\lambda)\pi_{S_1}(\lambda) \propto P_S(\lambda|Y) dz$$

HOW FAR OFF ARE WE?

$$P_{\mathcal{J}}(\tilde{\lambda}, z|Y) \propto f(Y|\tilde{\lambda}, z)\pi_{\mathcal{J}}(\tilde{\lambda}, z) \qquad P_{\mathcal{S}}(\tilde{\lambda}, z|Y) = P_{\mathcal{S}_1}(\tilde{\lambda}|Y)P_{\mathcal{S}_2}(z|\tilde{\lambda}) \\ \propto f(Y|\tilde{\lambda})\pi_{\mathcal{S}_1}(\tilde{\lambda}) \frac{P_{\mathcal{S}_2}(\tilde{\lambda}|z)\pi_{\mathcal{S}_2}(z)}{P_{\mathcal{S}_2}(\tilde{\lambda})}$$

 \blacktriangleright Inference for λ is equivalent:

$$P_{\mathcal{J}}(\lambda|Y) \propto f(Y|\lambda) \int \pi_{\mathcal{J}}(\lambda,z) dz = f(Y|\lambda)\pi_{S_1}(\lambda) \propto P_S(\lambda|Y) dz$$

 Posterior inference is bounded by the prior divergence (which can be calculated)

$$D_{KL}(P_{\mathcal{J}}(\lambda, z|Y), P_{S}(\lambda, z|Y)) = \int P_{\mathcal{J}}(\lambda|Y) D_{KL}(P_{\mathcal{J}}(z|\lambda), P_{S}(z|\lambda)) d\lambda$$

REFERENCES

- McKeough et al., Detecting Relativistic X-ray Jets in High-Redshift Quasars, The Astrophysical Journal (2016)
- Stein et al., Detecting Unspecified Structure in Low-Count Images, The Astrophysical Journal (2017)
- Connors & van Dyk, How To Win With Non-Gaussian Data: Poisson Goodness-of-Fit, SCMA IV (2007)
- Esch et al., An Image Restoration Technique with Error Estimates, The Astrophysical Journal (2004)
- Beale, Exact Distribution of Energy in the Two-Dimensional Ising Model, Physical Review Letters (1996)
- Swendsen & Wang, Nonuniversal Critical Dynamics in Monte Carlo Simulations, Physical Review Letters (1987)
- MacKay, D. (2004). Information theory, inference, and learning algorithms (Reprinted with corrections. ed.). Cambridge, UK; New York: Cambridge University Press.

RA

MULTI-SCALE IMAGE REPRESENTATION

Stores total intensities and series of four way split proportions such that the product recovers original pixel intensities

Pixel Intensity

$$\Lambda = \{\Lambda_i, I = 1 \dots N\}$$

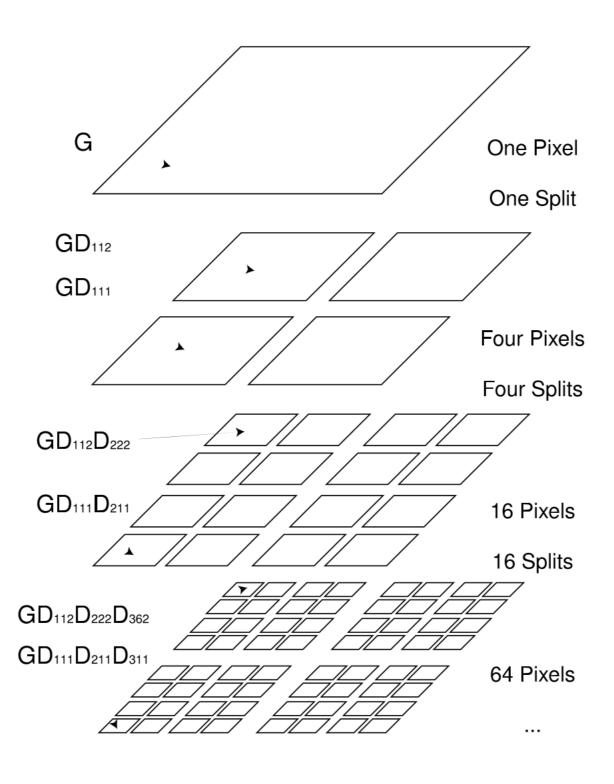
Splits

$$D_{k,l_{k(i)},m_{k(i)}}$$

Split proportion at scale k corresponding to group i

$$\Lambda_i = G \prod_{k=1}^K D_{k,l_{k(i)},m_{k(i)}}$$

MULTI-SCALE IMAGE REPRESENTATION



LIKELIHOOD

Probability photon originating in pixel i, is observed in pixel j (PSF):

$$P_i = \{P_{ij}, j = 1, \dots N\}$$

Observed pixel counts:

$$Y = \{Y_i, i = 1, ...N\}$$

Distribution of Y:

$$Y_j | \Lambda, \Lambda^{Bd}_{\sim} ext{Poisson} \left[\left(\sum_{i \in \mathcal{I}} P_{ij} \Lambda_i \right) + \Lambda^B_j \right]$$

Suppress background to obtain likelihood:

$$L(\Lambda, \Lambda^B | \mathbf{Y}) \equiv L(\Lambda | \mathbf{Y}) \propto \prod_{j \in \mathcal{I}} p(Y_j | \Lambda)$$

PRIOR

Prior on total intensity:

$$G \sim \text{Gamma}(\gamma_0, \gamma_1)$$

Prior on splits:

$$\boldsymbol{D}_{kl} \equiv \{D_{klm}, \ m = 1, \dots, 4\} \stackrel{\text{d}}{\sim} \text{Dirichlet}(\alpha_k, \ \alpha_k, \ \alpha_k, \ \alpha_k)$$
$$k = 1, \dots, K, \quad l = 1, \dots, 4^{k-1}$$

Hyperprior favors smoother image:

$$p(\alpha_k) \propto \exp(-\delta \alpha^3/3)$$

CYCLE SPINNING

- Multiscale format produces checkerboard-like patterns
- Solution:
 - Shift center of image randomly before making splits
 - Splits wrap around edges of image to induce translation invariance

SWENDSEN-WANG

COUPLING SPINS TO BONDS

Factor coupling bonds and spins is:

$$g_m(z_m, d_m) = \begin{cases} d_m = 0 & d_m = 1 \\ z_{i'j'} = -1 & z_{i'j'} = +1 & z_{i'j'} = -1 & z_{i'j'} = +1 \\ z_{ij} = -1 & e^{-\beta} & e^{-\beta} & e^{\beta} - e^{-\beta} & 0 \\ z_{ij} = +1 & e^{-\beta} & e^{-\beta} & 0 & e^{\beta} - e^{-\beta} \end{cases}$$

▶ Rescale by constant factor: $p = 1 - e^{-2\beta}$

$$\tilde{g}_m(z_m, d_m) = \begin{cases} d_m = 0 & d_m = 1 \\ z_{i'j'} = -1 & z_{i'j'} = +1 & z_{i'j'} = -1 & z_{i'j'} = +1 \\ z_{ij} = -1 & 1-p & 1-p & p & 0 \\ z_{ij} = +1 & 1-p & 1-p & 0 & p \end{cases}$$