Inferring the ACIS sub-pixel grade distribution

Hans Moritz Günther MIT hgunther@mit.edu

Outline

- How CCDs work
- What is a "grade"
- Why do I want to know the sub-pixel grade distribution?
- Three ways to determine the grade distribution
- Other potential applications
- Fitting the grade distribution
 - This is the part where I would like advice.

How CCDs work

• For mathematicians:

- We need approximations in the process we model.
- I want to convince you that we need to determine things from observed data, because we can't from the CCD specs.
- For X-ray astronomers: I hope you know all that.

What is an event "grade"?

32	64	128	
8	0	16	
1	2	4	

0	1	4	2	3	6	5	7	8	16	9
20	10	18	11	22	12	17	13	21	14	19
15	23	24	25	28	26	27	30	29	31	32
128	33	132	34	130	35	134	36	129	37	133
38	131	39	135	40	144	41	148	42	146	43
150	44	145	45	149	46	147	47	151	48	136
49	140	50	138	51	142	52	137	53	141	54
139	55	143	56	152	57	156	58	154	59	158

Why do I care about the grade distribution?

 Energy depend subpixel event repositioning

0 3 9 21 44 92 186 374 753 1303 2996

525 eV Grade 6

Need the distribution as simulation input

Ways to find the sub-pixel distribution

- From calibration data with pin-hole illumination
- From size distribution of electron clouds
- Reconstruct sub-pixel distribution from observed (integrated) distribution

525 eV Grade 34

525 eV Grade 6

Other potential applications

- Better pile-up model
- Calculate fraction of background photons in region from grade distribution (particularly for faint, extended sources)
- Assign each photon a source/background probability and use that in fit

For each detected photon we know:

- energy E
- grade g

• position of pixel on the chip, with chip center coordinates x, y. Looking for function $f(E, \hat{x}, \hat{y}) \rightarrow < p_1, p_2, p_3, ..., p_n >$ where \hat{x}, \hat{y} are sub-pixel position relative to pixel center -0.5..+0.5 Probability to observe an event of grade g then is:

$$p(g|E, x, y) = \int_{-0.5}^{+0.5} \int_{-0.5}^{+0.5} PSF(x_0 - (x + \hat{x}), y_0 - (y + \hat{y})) f_g(E, \hat{x}, \hat{y}) d\hat{x} d\hat{y}$$

We know that we get exactly one grade per event:

$$\sum_{g} p_{g}(\hat{x}, \hat{y}) = 1 \lor \hat{x}, \hat{y}$$

(but how do we make best use of this?)

Let's do some simplifications:

- Use one energy E
- ignore X-ray background
- ignore chip type (front/back-illuminated)

- Look at one grade g at the time.
- Bin continuous f into discrete distributions F, e.g. grid of 3×3 or 5×5 sub-pixels.

For each event, calculate shape of PSF in the pixel where we detected something, e.g. for an event detected just to the "bottom left" of a point source:

$$PSF = \begin{pmatrix} .3 & .2 & .1 \\ .2 & .1 & .0 \\ .1 & .0 & .0 \end{pmatrix}$$

with $\sum PSF_{ij} = 1$ since we know that the event occured somewhere in the pixel.

(Let us assume PSF(E, x, y) is known for now.)

$$p_g = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{pmatrix}$$

So, can write likelyhood for event i as

$$L_{gi} = PSF_i \times p_g$$

and now maximize the sum of the likelihoods (or in practice, minimize the negative log likelihood) for all events of grade g

$$L_g = \sum S_i imes F_g$$

where the sum is over all events with detected grade g.

• Get weights w_g just from observed frequency

$$p(\hat{x}, \hat{y}) = \begin{pmatrix} w_1 p_1(\hat{x}, \hat{y}) \\ w_2 p_2(\hat{x}, \hat{y}) \\ w_3 p_3(\hat{x}, \hat{y}) \\ \dots \end{pmatrix}$$

- Practical: Easy to set up parallel fits, limited number of variables
- Practical: Need to ensure $F_g(i,j) \ge 0$ for all i,j and $\sum F_g(i,j) = 1$
- Not correct (but maybe good enough?)! Does not enforce $\sum_{g} F_{g}(i,j) = 1$ for all (i,j).
- I feel there is a lot of information I do not use, which makes me think there must be a better way.

- Did run some simulations
- but not totally happy with results

Your ideas here...