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New Paradigm for Solar Imaging Processing

I Current solar observatories are generating an enormous volume
of high-resolution solar image data.

I Manual identification, classification and tracking of sunspots
and other solar features is becoming increasingly laborious.

I Studying images “by eye” limits the types of analyses that can
be performed—interesting features must be extracted and
propagated in machine-readable form if they are to be utilized
in a sophisticated statistical procedure.

I Automated data processing = reproducible science

More data is not just more data...more is different!

(K. Borne, Computational Astrostatistics 2010)



Sunspots

Image Credit: NASA/SDO

I
Sunspots form when intense magnetic fields inhibit convection.

I
Show up as dark spots on the Sun’s photosphere in white-light

images (left image).

I
Classified based on the complexity of magnetic flux distribution

as seen in magnetograms (right image).



Mount Wilson Classification

Four broad classes— a, b , bg, and bgd—based on the complexity of magnetic
flux distribution. Top row: magnetograms. Bottom row: white-light images.



Mount Wilson Classification Rules: Decision Tree



Science-Driven Feature Extraction

I
Classification is predictive of solar activity (e.g., solar flares)

I
Use Mt. Wilson rules to guide feature selection ! science-driven

feature extraction

I Physically meaningful and interpretable features

I
Features from mathematical morphology

I
Capture relevant information in more informative manner vs.

manual classification

I
Amenable to statistical analyses: model sunspot evolution

By crafting numerical features that are motivated by knowledge of

the underlying physical processes, we are attempting to steer

“black-box” classification algorithms with science.



Basic Morphological Operations
Dilation and Erosion

I The two fundamental operations in mathematical morphology
are dilation and erosion.

I They use a structuring element (SE) B to probe and alter the
shapes of the objects inside an image X.

I
The dilation of X by B is the set of points z such that B hits X

when the origin of B is placed at z.

I
The erosion of X by B is the set of points z such that B fits

wholly inside X when the origin of B is at z.



Basic Morphological Operations
Opening and Closing

I Dilation and erosion are combined to form the two most
common morphological operations: opening and closing.

I
Morphological opening is an erosion of the image with a SE,

followed by a dilation with the same SE.

I Smoothes features from the interior and removes noise.

I
Morphological closing is a dilation followed by an erosion.

I Smoothes out the image and fills in gaps without degrading or
distorting the salient features.



Feature Extraction Routine I: Active Region Identification

I
Using MM to take a white-light image, image (a), and

corresponding magnetogram, image (e), to produce a simple

“trinary” representation of the active region, image (j).



Feature Extraction Routine II: Numerical Summaries

I
From (a) we calculate the ratio of the number of opposite polarity

pixels and the amount of scattering of the pixels for each polarity.

I
A seeded region growing algorithm applied to (a) yields (b), from

which we obtain the polarity inversion line (c). We then calculate

the polarity inversion line curvature.

I
Convex hulls around the pixels of opposite polarity in (a) yields (d),

from which we calculate the polarity mixture.



Feature Extraction Routine III: Delta Spots

I We return to the white light image, image (a) above, and use
MM to identify the umbrae and penumbrae pixels.

I Image (d) above, when combined with the trinary active region
representation, is used to determine the number of delta spots

and the total size of delta spots.



Numerical Summaries Summary

We use our morphological representation of sunspot groups and
active regions to obtain scientifically based numerical features:

I The ratio of pixels of opposite polarities.
I The amount of scattering of the pixels for each polarity.
I Polarity inversion line curvature.

I Area of mixture for the convex hulls around each polarity
region.

I The number and size of delta spots.



Science-Driven Feature Extraction: Examples

bg sunspot group:

b sunspot group:



Machine Learning

Image Credit: https://uk.mathworks.com/discovery/machine-learning.html



Decision Trees (for Classification)

Figure Credit: http://gautam.lis.illinois.edu/monkmiddleware/public/analytics/decisiontree.html



Decision Boundaries

Figure from ISLR (Figure 8.7, pg 315)



Advantages and Disadvantages of Trees

Adapted from ISLR (pgs 315-316):
I

Easy to explain. (Easier than linear regression!)

I
Mirror human decision-making. (Maybe? Seems to be

the case for MW classification!)

I
Can be displayed graphically.(Easy for non-experts!)

I
Easily incorporate qualitative predictors. (No dummy

variables needed!)

I
Predictive accuracy can be poor compared to other methods.

I
Non-robust. Small change in data typically results in large

change in final tree.



Random Forest (RF)

Figure: https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d

I An RF is an ensemble of decorrelated decision trees
I With N cases in a training set and p features, each tree in the

(RF) is constructed by
I

sampling n = N cases from the training set with replacement

I
randomly selecting

p
p features to make a decision at each

node, and growing tree to completion

I Resulting classifications are decided are by majority vote



Mount Wilson Classification Rules: Decision Tree



Classifying Sunspot Groups with Random Forests

I The features we have derived—pixel ratio, amount of
scattering, separating line curvature, polarity mixture, and
number and size of delta spots—are used as inputs to an RF.

I Scientific validity of the numerical features is determined by a
satisfactory level of agreement between the manual and
automatic classifications.

I RF well-suited to this particular problem:
I

features were crafted to make “if-then-else” type decisions

I
”soft” classifications

I
can easily incorporate new features

I
easy to use software (e.g., randomForest package in R)



Random Forest Results

I Data are 119 magnetogram and white light image pairs
I Because the training set for a particular tree in the RF is a

bootstrap sample, the cases not included form an “out-of-bag”
(OOB) test set for that tree.

I We can thus evaluate the RF’s performance based on
prediction on OOB data.

I Using a RF with 1000 trees we obtain:

Manual Classification

a b bg bgd
a 25 1 0 0

Automatic b 2 63 5 0
Classification bg 0 1 11 1

bgd 0 0 2 8



Classification Disagreements

I Perfect classification is not necessarily the gold standard when
automating a manual classification that is artificial and
subjective.

I Classification “by eye” is prone to error and inconsistencies.
I

Two experts looking at the same images will not have 100%

agreement.

I Nevertheless, results suggest that the numerical summaries we
derived capture salient scientific information.

I
In particular, all disagreements are over adjacent classes.



Example: bg/bgd Disagreement

This active region has a manual classification of bg and was given a
classification of bgd by the random forest classifier. The presence of a d spot
in the center of the active region is ambiguous.



Beyond Discrete Classification

I Manual classification routines must necessarily rely on a
discrete number of classes, but automatic routines need not be
likewise hindered.

I Continuous numerical features allow us to better describe the
continuum of sunspot group/active region morphology.

I By tracking particular sunspots/active regions over time, we
will be able to model the evolution of the magnetic field
structure.

I This will hopefully allow for better prediction of dramatic solar
events.



High-Cadence SOHO Data

I Have 14 years of SOHO data with images taken every few
hours

I Numerical features that were used for classification will be
extracted for all active regions, creating a time series of
features

I
Useful for predicting solar flares?



Other Data to Consider?

Image Credit: NASA/SDO/GSFC



Thanks!

Collaborators:

I David A. van Dyk (Imperial College London)
I Vinay Kashyap (Smithsonian Astrophysical Observatory)
I Thomas C.M. Lee (UC Davis)
I C. Alex Young (NASA)

Also, thanks to Imperial College London and the CHASC
International Astro-Statistics Collaboration!

Any questions? (I have plenty for you!)
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