SIMPUT A File Format for SIMulation inPUT

Christian Schmid¹ (christian.schmid@sternwarte.uni-erlangen.de), Randall Smith² (rsmith@cfa.harvard.edu), Jörn Wilms¹ (joern.wilms@sternwarte.uni-erlangen.de)

> ¹ECAP, Sternwartstr. 7, 96049 Bamberg, Germany ²SAO, 60 Garden St., Cambridge, MA 02138, USA

> > Version: 2013 Dec 18 (HDUVERS = 1.1.0)

SUMMARY

We present a standard format for source input files to be used in simulations of astronomical observations. Each source file contains a catalog with one or multiple sources, which are described by specific properties such as position, brightness, energy spectrum, as well as optional characteristics such as time variability, polarization, and spatial extent.

This file format defines a common basis to exchange data between different software packages and scientific groups. It was developed in particular for the simulation of X-ray telescopes, but can also be used in different wavelength domains.

LOG OF SIGNIFICANT CHANGES

Release Date	Sections Changed	Brief Notes
2011 Dec 16		Initial version
2013 Dec 18	2 & 3	Updated nomenclature of FITS keywords and columns. Removed possibility of using PHA files for definition of spectra. Removed the keyword 'FLUXSCAL' from images and light curves. Included specification of the evolution of the period length in pe- riodic light curves.

1 Introduction

In X-ray astronomy, simulations of existing and future telescopes are used both to estimate the scientific capabilities provided by an instrument and to understand particular phenomena in measured data. As a result, a growing number of different simulation tools have been created to address particular issues, each implementing its own format for simulation input data.

X-ray point sources may be modeled using coordinates given either on the command line or in a separate file. For extended sources there are also various approaches parametrizing the observable shape or specifying an input image. The range of possible input formats extends even further when additional parameters such as the spectral shape or brightness variability have to be considered.

Due to the large number of existing input formats it is difficult to use data generated for one particular simulation within another software package. We address this issue by introducing a common input data format for simulations of astronomical X-ray telescopes based on the Flexible Image Transport System (FITS) file format defined by Hanisch et al. (2001) and Pence et al. (2010). The format enables modeling of all relevant source properties starting with source positions, spatial shapes for extended sources, energy spectra, polarization of the emitted radiation, as well as time-variable features such as brightness, spectral, and spatial variations. It can be regarded as an interface between different simulations and different scientific groups, for example the users of an instrument simulation and a Magnetohydrodynamic (MHD) modeler providing the input data. The use of this format simplifies the conversion processes needed to prepare for a simulation and provides a clear and flexible way to describe all relevant features to model X-ray sources.

Although the file format has been developed in particular for simulations of X-ray telescopes, it can also be used in different wavelength domains of astronomy by adjusting the required units. The usage of physical units within this format is based on the specification defined by George & Angelini (1995) and Pence et al. (2010).

2 File Format

A SIMPUT FITS file contains several different types of extensions with the formats described in this section. The main file must contain one source catalog extension defining the individual sources. Of course, the catalog can also consist of a single source. Additional data such as spectra, light curves, or images can be stored in separate extensions in the same file or in separate FITS files. An example for the basic structure of a SIMPUT file is shown in Fig. 1.

The file format can describe point-like and spatially extended sources with either constant or timevariable brightness. The spectral shape, spatial extension, or polarization of the emitted photons might also be time-dependent. The emitted radiation can have a particular polarization. By combining different features of the presented format, one can describe nearly all astronomical sources. For instance, a spatially extended source, which has different emission regions with particular spectra, can be described as the superposition of several separate source images with appropriate spectra. In addition each of these spectra can have different polarization.

In the following part of this section the format of the individual extension types is defined. The proposed order of columns in binary tables is not mandatory, but can be modified. Additional columns are allowed. Undefined string entries in a table are denoted by the FITS NULL value.

Figure 1: A SIMPUT file (main.simput) contains one source catalog extension with the basic description of one or multiple sources. Additional data such as spectra, light curves, and images are stored in separate HDUs or even in separate FITS files (additional.simput). The individual entries in the source catalog refer to the required extensions.

2.1 Source Catalog Extension

Description The main extension in a SIMPUT FITS file is a source catalog providing the basic properties of individual sources. It defines source characteristics such as the position and brightness. Additional information about the source spectrum, light curve, and spatial extension may be stored in separate FITS file HDUs. The entries in the catalog contain links to the corresponding extensions using the extended filename syntax (Pence, 1999).

In order to be used as simulation input, a SIMPUT FITS file must contain exactly one source catalog extension, even if it describes only a single source. The name of this extension is SRC_CAT.

Extension Header The following keywords are mandatory:

- HDUCLASS = 'HEASARC/SIMPUT'
- HDUCLAS1 = 'SRC_CAT'
- HDUVERS = '1.1.0'
- EXTNAME = 'SRC_CAT'
- RADESYS reference coordinate system, e.g. FK5
- EQUINOX reference coordinate system, e.g. 2000.0

The usage of the **RADESYS** and **EQUINOX** keywords is described by Calabretta & Greisen (2002) and Pence et al. (2010).

Data Format The data within the extension are organized as a binary table (BINTABLE) with the following columns:

- ID, an integer value containing a unique identifier for each entry. The FITS column name is SRC_ID. (unitless). This column is required.
- Name, a string containing the name of the source (need not be unique, as a single source might be modeled by several entries). The FITS column name is SRC_NAME.

HEASARC Memo HEASARC/2013-12-18 (SIMPUT File Format)

(unitless). This column is optional.

- α, a floating point value containing the right ascension of the source. The FITS column name is RA. The recommended units are decimal deg. This column is required.
- 4. δ, a floating point value containing the declination of the source. The FITS column name is DEC. The recommended units are decimal deg. This column is required.
- 5. ρ , a **floating point** value containing the rotation angle (measured in the direction N-E-S-W) around the reference point for extended sources and of the polarization vector for polarized sources respectively (see notes below). This quantity is only defined for extended or polarized sources. The FITS column name is **IMGROTA**. The recommended units are deg. This column is optional.
- 6. Image Scale, a floating point value containing the inverse linear scaling factor for extended sources (see notes below). This quantity is only defined for extended sources. The FITS column name is IMGSCAL. (unitless). This column is optional.
- 7. E_{\min} , a floating point value specifying the lower limit of the reference energy band. The FITS column name is E_MIN. The recommended units are keV. This column is required.
- E_{max}, a floating point value specifying the upper limit of the reference energy band. The FITS column name is E_MAX. The recommended units are keV. This column is required.
- 9. Flux, a floating point value containing the total observed flux from the source in the specified reference energy band.
 The FITS column name is FLUX.
 The recommended units are erg s⁻¹ cm⁻².
 This column is required.
- 10. Spectrum, a string containing a reference to a FITS file HDU describing the energy spectrum of the source. The reference is given via the extended filename syntax (see notes below). If source spectra are defined in the light curve extension (see Sec. 2.4.1) this field must be NULL. The FITS column name is SPECTRUM. (unitless). This column is required.
- 11. *Image*, a **string** containing a reference to a FITS file HDU with an image of the source. The reference is given via the extended filename syntax (see notes below). For a point source or if several source images are defined in the light curve extension (see Sec. 2.4.1), this field must be NULL.

The FITS column name is IMAGE. (unitless). This column is optional.

Source Catalog Extension												
SRC_ID	SRC_NAME	RA	DEC	IMGROTA	IMGSCAL	FLUX	E_MIN	E_MAX	SPECTRUM	IMAGE	TIMING	
1									SPEC01	NULL	LC01 -	
2									SPEC01-	IMG01	LC02 -	1
:	:	:	:	:	:	:	:	:	:	:	÷	
			-							,		۲
	SPEC01								h			
								1				
IMG01												
								V				
LC01												
New York Contraction of the Cont												
LC02												

Figure 2: Layout of the source catalog extension. Apart from basic source properties such as the position or energy flux, each source must refer to a spectrum extension. The specification of a timing extension and a source image is optional. In order to allow reuse of data, multiple sources can refer to the same extensions. If the spectrum or the spatial shape of a source is time-dependent, the corresponding fields in the source catalog must be NULL. In that case the light curve must contain links to the respective spectra or images, as shown in Fig. 3.

12. Timing, a string containing a reference to a FITS file HDU defining the time-dependence of the source brightness. As described in Sec. 2.4, this extension can contain either a light curve or a Power Spectral Density (PSD). The reference is given via the extended filename syntax (see notes below). For a source with a constant brightness this field must be NULL. The FITS column name is TIMING. (unitless). This column is optional.

The basic scheme of the source catalog extension is displayed in Fig. 2.

Points to note & Conventions

- The reference band defined in the E_MIN and E_MAX columns must be covered by the assigned source spectrum. In general this energy band does not agree with the range observable with the simulated instrument. It is therefore only used to determine the flux normalization of the associated spectrum but not to constrain the simulated energy range.
- The value of the column FLUX represents the total observed flux from the source within the reference band specified by E_MIN and E_MAX. It takes into account source-intrinsic absorption as well as absorption by the interstellar medium. For extended sources it is defined as the integrated flux over the entire source.
- Links to additional FITS file HDUs containing spectra, light curves, or images are given according to the extended filename syntax (Pence, 1999) by the name of the corresponding file, the

extension name (EXTNAME), extension version (EXTVER), and additional selectors such as the table row containing a particular spectrum or the corresponding name, in case the spectrum table contains a NAME column. For instance, the spectrum in row number 4 within the HDU with EXTNAME = SPECTRUM and the EXTVER = 3 stored in the file data.simput is identified by the reference data.simput [SPECTRUM,3] [#row==4].

If the spectrum table contains the optional column NAME (see Sec. 2.2.1), the particular spectrum, which has the value 'powerlaw2.1' in its NAME field, is identified with the reference data.simput[SPECTRUM,3][NAME=='powerlaw2.1']. The latter syntax is more flexible in terms of the table structure, since spectra can be rearranged without taking care of their row numbers.

References to data residing within the current file are given without the filename, in order to avoid inconsistency problems, when the file is renamed: [SPECTRUM,3] [#row==4]

- In order to model a time-variable source, multiple energy spectra or images might be required to describe the temporal evolution of the system. In that case the source must refer to a light curve containing a SPECTRUM or IMAGE column with links to the corresponding FITS file HDUs (see Sec. 2.4.1), and the SPECTRUM or IMAGE fields in the source catalog must be NULL.
- A single extended source with different energy spectra for different emission regions can be described by multiple entries in the source catalog with different images and spectra. The superposition of all entries in the simulation results in the complete image of the extended source.
- Different source entries in the catalog can refer to the same spectrum, light curve, or source image. It is possible to apply individual scales to spectra or images through the FLUX, IMGSCAL, and IMGROTA columns in order to match the respective sources. For instance, the value of the column FLUX in the source catalog determines the absolute flux of the corresponding source, providing the possibility to use the same spectral shape for multiple sources with different brightness.

In a similar way extended sources, which are either characterized by a source image or by a photon list, can be rotated and scaled in size using the columns IMGROTA and IMGSCAL. The rotation is performed around the reference point of the source image or photon list in N-E-S-W direction. It is also applied to the polarization direction defined in a spectrum. For extended and polarized sources the value of IMGROTA defines the rotation of both the spatial shape and the polarization angle.

The angular extent γ of the image or photon list is scaled as follows in order to obtain the simulated source extent γ' :

$$\gamma' = \frac{1}{\text{IMGSCAL}} \cdot \gamma \tag{1}$$

2.2 Spectrum Extension

In SIMPUT files there are two different basic ways to describe the energy spectrum of a source. Each entry in the catalog must refer to at least one such spectrum extension. Several sources with different brightness can refer to the same spectrum, which is scaled according to the particular energy flux of the respective entries in the catalog.

A time-variable source can also have multiple spectra specified in the assigned light curve extension (see Sec. 2.4.1). The spectra valid for the different points of time or phases during the simulated time interval are stored separately in different rows of a spectrum extension or even in different HDUs. In order to have a continuous spectral variation, the simulation software might, e.g., apply a linear interpolation for the time intervals in between two specified spectra.

Each spectrum extension can contain information about the polarization of the emitted radiation by specifying the following optional keywords:

- STOKES_Q Stokes parameter Q
- STOKES_U Stokes parameter U
- STOKES_V Stokes parameter V
- RADESYS reference coordinate system, e.g. FK5
- EQUINOX reference coordinate system, e.g. 2000.0

The keywords STOKES_Q, STOKES_U, and STOKES_V define the Q (S_1) , U (S_2) , and V (S_3) components of the normalized Stokes vector (Stokes, 1852) specifying the polarization of the emitted radiation. The information about the absolute intensity of the measured radiation is neglected, such that the I (S_0) component of the normalized Stokes vector has always a value of 1, and therefore does not have to be specified explicitly. The absolute intensity is given by the particular source brightness. The keywords **RADESYS** and **EQUINOX** define the coordinate system the polarization direction refers to.

In order to be able to reuse the same spectrum for different source entries in the catalog, the polarization direction can be modified by the IMGROTA value in the catalog. For each individual source the polarization direction is rotated by this angle in N-E-S-W direction.

2.2.1 Mission-Independent Spectrum

This is the preferred format for the description of a source spectrum, because it is mission-independent and physically accurate at the same time. It can therefore be used for simulations of different telescopes covered by the specified energy range.

Description The spectrum extension describes one or multiple energy spectra in a mission- (and therefore effective area-) independent way giving the photon flux density in a particular energy range. In order to determine the observed photon spectrum for a specific telescope, it has to be multiplied with the corresponding effective area (George & Zellar, 1995) or Ancillary Response File (ARF, George et al., 1998, 2007) respectively.

Similar to Pulse Height Amplitude (PHA) type II files (Arnaud et al., 2009; George & Arnaud, 2004), multiple spectra can be stored in a single binary table HDU. Each single spectrum is stored in a single row using vector columns. The spectra in the table can be either identified by their row number or by a unique name defined in the corresponding optional column.

Extension Header The following keywords are mandatory:

- HDUCLASS = 'HEASARC/SIMPUT'
- HDUCLAS1 = 'SPECTRUM'
- HDUVERS = '1.1.0'

If applicable, the following optional keyword can be used to specify the spectral model and parameters the spectrum has been generated from:

• MODEL - filename referring to the spectral model and parameters

Data Format The data within the extension are organized as a binary table (BINTABLE) with the following columns:

HEASARC Memo HEASARC/2013-12-18 (SIMPUT File Format)

1. *Name*, a fixed-length **string** containing a unique case-sensitive designator for each individual spectrum.

The FITS column name is NAME. (unitless). This column is optional.

- Energy, a floating point fixed or variable length array containing the grid of photon energy values. The FITS column name is ENERGY. The recommended units are keV. This column is required.
- 3. Photon Flux Density, a **floating point** fixed or variable length array containing the photon flux density at the respective energies. The number of entries in the array must be the same as the number of entries in the array contained in the ENERGY column. The FITS column name is FLUXDENSITY. The recommended units are photon $s^{-1} cm^{-2} keV^{-1}$ or photon $cm^{-2} keV^{-1}$.

This column is required.

Points to note & Conventions

- The energy flux density can be easily obtained by multiplying the photon flux density with the corresponding photon energy.
- In a simulation the spectrum is scaled to match the flux of the associated source in the reference band, which is defined in the columns E_MIN and E_MAX of the source catalog table. Therefore the photon flux density can be given as photon $s^{-1} \text{ cm}^{-2} \text{ keV}^{-1}$ or as photon $\text{cm}^{-2} \text{ keV}^{-1}$. Only the relative shape of the spectrum but not its absolute normalization is of importance.
- The entries in the columns E_MIN and E_MAX of the source catalog only define the reference band for the flux normalization but not the range of the simulated spectrum, which is determined by the capabilities of the regarded instrument. Both, the flux reference band as well as the observable range, have to be covered by the specified spectrum.
- Each array in the ENERGY column should have ascending order.
- In order to refer to a particular spectrum in the table via the extended filename syntax, the filename and the HDU have to be specified in combination with either the respective row number or the unique name of the spectrum, in case the NAME column is present.
- It is important that the NAME column, if present, has a fixed and not a variable length, since with variable length strings a selection like NAME=='...' via the extended filename syntax is not supported by the cfitsio library.

2.2.2 Photon List

Description The energy spectrum of an X-ray source can also be described by specifying a sample of photons distributed according to the respective spectrum. This approach can be useful if the photon sample is obtained, e.g., from a complicated MHD simulation.

Extension Header The following keywords are mandatory:

- HDUCLASS = 'HEASARC/SIMPUT'
- HDUCLAS1 = 'PHOTONS'
- HDUVERS = '1.1.0'
- RADESYS reference coordinate system, e.g. FK5
- EQUINOX reference coordinate system, e.g. 2000.0
- REFRA right ascension of reference point in deg
- **REFDEC** declination of reference point in deg

The usage of the **RADESYS** and **EQUINOX** keywords is described by Calabretta & Greisen (2002) and Pence et al. (2010).

In addition a photon list with information about the arrival time of the photons must contain the following time definition keywords:

- MJDREF Modified Julian Date (MJD) for reference time
- TSTART start time
- TSTOP stop time
- TIMEZERO zero time
- TIMESYS the system used to define the time
- TIMEUNIT units of TSTART, TSTOP, TIMEZERO. The recommended units are s.
- CLOCKCOR if time is corrected to Universal Time (UT)

The usage of the time definition keywords is described by Angelini et al. (1994).

Data Format The data within the extension are organized as a binary table (BINTABLE) with the following columns:

- Time, a floating point value containing the arrival time of the photon (relative to the offset given by the header keywords MJDREF and TIMEZERO). The FITS column name is TIME. The units are defined by the header keyword TIMEUNIT. This column is optional.
- α, a floating point value containing the right ascension of the origin of the photon. The FITS column name is RA. The recommended units are deg. This column is required.
- δ, a floating point value containing the declination of the origin of the photon. The FITS column name is DEC.
 The recommended units are deg. This column is required.
- 4. Energy, a floating point value containing the energy of the photon. The FITS column name is ENERGY. The recommended units are keV. This column is required.
- 5. *Polarization Angle*, a **floating point** value containing the polarization angle of the photon. The FITS column name is POLANG.

The recommended units are deg. This column is optional.

Points to note & Conventions

- The main advantage of photon lists is that event lists obtained from observations can be easily converted to this format and therefore be used as input for simulations of different telescopes.
- A photon list is capable of describing the energy spectrum of a source, the spatial distribution of the emitted photons, and also time-dependent phenomena if the optional TIME column is used. In the latter case the TIME column should have ascending order. For time-independent photon lists the simulation software can randomly select entries. In that case no sorting of the list is required. For time-dependent photon lists it is up to the simulation to apply an appropriate algorithm to select photons without destroying the time-dependent features.
- The number of photons in the list should be sufficiently large for the statistical purpose of the simulation. Depending on the applied algorithm, not every photon in the list will be used in a simulation, but only some of them will be selected by a randomization process. The number of actually required photons depends on the particular source flux, the effective area of the selected telescope and the length of the simulated time interval. If N is the number of photons in the list with an energy in the reference range and T is the simulated time interval, the photon rate required for the simulation of a particular source should be at least by a factor of 5 smaller than N/T in order to guarantee a sufficiently large number of photons. The simulation software should make sure that this criterion is fulfilled.
- In order to be able to reuse the same photon list extension for different entries in the source catalog, the direction of each photon in the simulation is obtained from its right ascension and declination value with respect to the reference point defined by the REFRA and REFDEC keywords and its position in the source catalog. For each catalog entry the reference point is translated to match the position in the source catalog, and the angular distances of the individual photons with respect to the reference point are scaled by a factor 1/IMGSCAL. In addition the photon positions are rotated around the reference point in N-E-S-W direction according to the angle given in the IMGROTA column.
- Each photon in the list can have a polarization defined by the optional POLANG column. The angle is determined with respect to the north pole of the reference coordinate system via the eastern direction. For the special case of a photon coming directly from one of the poles, the angle is measured with respect to the meridian corresponding to RA=0. In order to be able to reuse the same photon list for different sources, the polarization angle can be adjusted by the IMGROTA value in the source catalog. This value, which can be different for each source, is added to the value of the column POLANG in order to obtain the polarization direction.

The specification of an explicit polarization angle overrides the polarization characteristics defined by the header keywords STOKES_Q, STOKES_U, and STOKES_V.

2.3 Image Extension

Description Extended sources are described by an image obtained from an observation or from a simulation. The image represents the spatial flux distribution. The coordinates of the image are given via World Coordinate System (WCS) keywords.

If the spatial shape of a source is time-dependent, this can be described by several images valid for particular points of time or phases in case of a periodic system. The relation between the time or phase of the system and the corresponding images is defined in the light curve extension (see Sec. 2.4.1).

Extension Header The following keywords are mandatory:

- HDUCLASS = 'HEASARC/SIMPUT'
- HDUCLAS1 = 'IMAGE'
- HDUVERS = (1.1.0)

The image coordinates are defined by an appropriate set of WCS header keywords, as described by Greisen & Calabretta (2002), Calabretta & Greisen (2002) and Pence et al. (2010). For instance, one can use the following keywords:

- CTYPE1 WCS axis type
- CTYPE2 WCS axis type
- CUNIT1 units of CRVAL1 and CDELT1
- CUNIT2 units of CRVAL2 and CDELT2
- CRPIX1 reference point in pixels
- CRPIX2 reference point in pixels
- CRVAL1 coordinate value at reference point
- CRVAL2 coordinate value at reference point
- $\bullet\,$ CDELT1 coordinate increment at reference point
- CDELT2 coordinate increment at reference point
- RADESYS reference coordinate system, e.g. FK5
- EQUINOX reference coordinate system, e.g. 2000.0

Data Format The source image is a FITS image representing the spatial flux distribution. For the simulation of a particular source, the absolute flux $F_{\rm src}(i)$ in the pixel *i* is determined by the reference value $F_{\rm src}$ as specified in the column FLUX of the source catalog and the value of the pixel f(i) relative to the sum of all pixels:

$$F_{\rm src}(i) = F_{\rm src} \cdot \frac{f(i)}{\sum_{j} f(j)}$$
(2)

In order to be able to reuse the same image for multiple sources in a catalog, the absolute position of the image in the sky defined by the WCS header keywords, is neglected. Instead of that, the reference point given by the CRPIX1 and CRPIX2 header keywords is translated to match the position of the individual source specified by the corresponding RA and DEC values in the source catalog. In addition to this translation, the image can be rotated and linearly scaled using the optional columns IMGROTA and IMGSCAL in the source catalog. The rotation angle around the reference point is defined in the direction N-E-S-W. The linear scale of 1/IMGSCAL is applied to the angular extent of the image.

Points to note & Conventions

• A spatially extended source with different emission regions characterized by particular spectra can be modeled by a superposition of several images in combination with the spectra describing the particular emission features of the corresponding regions. An example of that is shown in Sec. 3.2.

Light Curve					
PHASE	FLUX	SPECTRUM			
0.1	0.82	spectra.simput[SPECTRUM,1][#row==1]			
0.2	1.15	spectra.simput[SPECTRUM,1][#row==2]			
:	:	:			

Figure 3: The light curve shown in this figure represents a periodic system with a spectral evolution during the transition between the different phases of the oscillation. The spectrum corresponding to each phase is given in a table column such that the specification of a spectrum for this particular source in the source catalog table is not applicable. In the same way different source images can be assigned to particular phases or points of time in the light curve using the optional IMAGE column.

2.4 Time Variability Extension

Brightness variability of a source can be modeled either by an explicit light curve or by a PSD, which can be used to simulate a light curve.

2.4.1 Light Curve

Description A light curve describes the time-dependence of the flux observed from a source. If the variability is periodic, it can be defined with respect to the phase of the oscillation instead of the absolute time. This feature is especially useful, when modelling the pulse profile of a pulsar.

A light curve also allows the specification of time-dependent spectra and images. For instance, if a source is oscillating between a hard and a soft spectrum, it can be described by a light curve defining the brightness variation during the different phases of this oscillation and giving references to the corresponding spectra (see Fig. 3 and Sec. 3.2).

Extension Header The following keywords are mandatory:

- HDUCLASS = 'HEASARC/SIMPUT'
- HDUCLAS1 = 'LIGHTCURVE'
- HDUVERS = '1.1.0'
- MJDREF MJD for reference time
- TIMEZERO zero time
- TIMESYS the system used to define the time
- TIMEUNIT units of TSTART, TSTOP, and TIMEZERO. The recommended units are s.
- $\bullet\,$ CLOCKCOR if time is corrected to UT
- PERIODIC flag whether the light curve is periodic (1) or not (0)

The usage of the time definition keywords is described by Angelini et al. (1994).

If the light curve describes a non-periodic system, the following additional keywords are required:

- TSTART start time
- TSTOP stop time

If the light curve describes a periodic system, the following additional keywords are required:

- PHASEO phase of periodic oscillation at t = 0, which is defined by MJDREF and TIMEZERO (recommended value between 0 and 1)
- PERIOD duration of one oscillation period (units given by TIMEUNIT)

If the light curve describes a periodic system, the following optional keywords can be used:

- DPERIOD first derivative of the period length PERIOD with respect to time: $\dot{P}(0) = \frac{dP(0)}{dt}$
- D2PERIOD second derivative of the period length PERIOD with respect to time: $\ddot{P}(0) = \frac{d^2 P(0)}{dt^2}$
- D3PERIOD third derivative of the period length PERIOD with respect to time: $\ddot{P}(0) = \frac{d^3 P(0)}{dt^3}$ D4PERIOD forth derivative of the period length PERIOD with respect to time: $\ddot{P}(0) = \frac{d^4 P(0)}{dt^4}$
- D5PERIOD fifth derivative of the period length PERIOD with respect to time: $\frac{d^5 P(0)}{dt^5}$

Data Format The data within the extension are organized as a binary table (BINTABLE) with the following columns:

- 1. *Time*, a **floating point** value containing the time (relative to the offset given by the header keywords MJDREF and TIMEZERO). If this column exists, the table must not contain a PHASE column. The FITS column name is TIME. The units are defined by the header keyword TIMEUNIT. This column is optional (either TIME or PHASE column must exist).
- 2. Phase, a floating point value containing the phase for a periodic system. If this column exists, the table must not contain a TIME column. The FITS column name is PHASE. (unitless, value in the interval from 0 to 1). This column is optional (either TIME or PHASE column must exist).
- 3. Relative Flux, a floating point value describing the relative observed flux with respect to the reference value given in the source catalog. The FITS column name is FLUX. (unitless). This column is required.
- 4. Spectrum, a string containing a reference to the FITS file HDU describing the energy spectrum of the source valid for this particular point of time or phase respectively. The reference is given via the extended filename syntax (see Sec. 2.1). Entries in this column might be NULL (see notes below).

The FITS column name is SPECTRUM. (unitless). This column is optional.

5. Image, a string containing a reference to the FITS file HDU with an image of the source valid for this particular point of time or phase respectively. The reference is given via the extended filename syntax (see Sec. 2.1). Entries in this column might be NULL (see notes below). The FITS column name is IMAGE. (unitless).

This column is optional.

The table must contain either a TIME or PHASE column.

For the simulation of a particular source, the absolute flux $F_{\rm src}(t)$ at time t is determined by the reference value $F_{\rm src}$ as specified in the column FLUX of the source catalog and the light curve value l(t) via the following relation:

$$F_{\rm src}(t) = F_{\rm src} \cdot l(t) \tag{3}$$

Points to note & Conventions

- A value of 1 in the column FLUX of a light curve means that the observed flux at the corresponding time is equivalent to the reference value for the respective source, which is given in the source catalog.
- The columns TIME and PHASE are mutually exclusive. A light curve extension may contain only one of them. The column TIME is used for non-periodic light curves, whereas the column PHASE is used for periodic systems.
- The TIME and PHASE columns should have ascending order.
- A complex time-variable system with time lags or independent variability in different energy bands can be modeled by a superposition of multiple entries in the source catalog, each having its own spectrum and light curve.
- The SPECTRUM and IMAGE columns are only used for sources with a time-dependent spectrum or spatial extent. Otherwise the spectrum and image for a particular source should be defined in the source catalog (see Sec. 2.1).
- If the light curve has a very high resolution, references to the spectra or images might not be given for all time bins. Some entries in these columns might be NULL. In that case the simulation must interpolate between the given spectra or images.
- It is up to the simulation software to make sure that the required time interval is covered by the light curve. Otherwise the source can, e.g., be either considered to be in an off-state or a warning for the user can be produced.
- If the period of an oscillating system is not constant, its evolution over time can be expressed by a Taylor series

$$P(t) = P(0) + \dot{P}(0) \cdot t + \frac{1}{2}\ddot{P}(0) \cdot t^{2} + \frac{1}{6}\ddot{P}(0) \cdot t^{3} + \frac{1}{24}\ddot{P}(0) \cdot t^{4} + \frac{1}{120}\frac{\mathrm{d}^{5}P(0)}{\mathrm{d}t^{5}} \cdot t^{5}$$
(4)

where P(0), $\dot{P}(0)$, $\ddot{P}(0)$, $\ddot{P}(0)$, $\ddot{P}(0)$, and $d^5P(0)/dt^5$ denote the period and its derivatives with respect to time up to the fifth order. These coefficients are determined by the values of the keywords PERIOD, DPERIOD, D2PERIOD, D3PERIOD, D4PERIOD, and D5PERIOD respectively. The time corresponding to t = 0 is defined by MJDREF and TIMEZERO.

2.4.2 Power Spectral Density

Description Instead of giving an explicit light curve, the time-variability of a source can be described by a PSD, which can be converted to a light curve in the simulation itself, e.g. by using the algorithm presented by Timmer & König (1995). In contrast to a light curve, a PSD can be used to describe statistically-independent brightness variations such as noise for different sources with only one data set.

Extension Header The following keywords are mandatory:

- HDUCLASS = 'HEASARC/SIMPUT'
- HDUCLAS1 = 'POWSPEC'
- HDUVERS = '1.1.0'

Data Format The data within the extension are organized as a binary table (BINTABLE) with the following columns:

- Frequency, a floating point value containing the frequency. The FITS column name is FREQUENCY. The units are Hz. This column is required.
- Power, a floating point value containing the power spectral density of the flux variation normalized as the squared fractional root mean square (rms) variability per frequency interval. The FITS column name is POWER. The units are Hz⁻¹. This column is required.

Points to note & Conventions

- The FREQUENCY column should have ascending order from low to high frequencies. It covers the range from $f_{\min} = 1/T$ to $f_{\max} = 1/(2\Delta t)$, with Δt the resolution of the generated light curve and $T = N\Delta t$ its total length. The individual frequencies can therefore be calculated as $f_i = \frac{i}{N\Delta t}$ for $1 \le i \le N/2$.
- The PSD can be converted into a light curve using, e.g., the algorithm presented by Timmer & König (1995). The resulting light curve represents the relative variation of the reference flux given in the source catalog (see Sec. 2.4.1). Therefore the average of the generated light curve must be 1.
- The normalization of the PSD to the squared fractional rms variability per frequency interval is described by Lewin et al. (1988), Belloni & Hasinger (1990), and Miyamoto et al. (1991). The power is given in units of (rms/mean)²/Hz=Hz⁻¹.

3 Examples

In order to illustrate the structure of the SIMPUT file format, this section lists two examples. One of them describes a simple system of two single point-like X-ray sources with constant brightness, each having its own spectrum. The other one describes an extended X-ray source with different polarized emission regions and a point-like source oscillating between two emission states.

3.1 Simple Example

The following example describes a simple system of two single point-like X-ray sources. Both sources have a constant brightness and each of them has its own spectrum. All data are combined in one FITS file simple.simput with three HDUs (one empty primary, one source catalog, and one spectrum extension containing both spectra).

3.1.1 simple.simput

The primary HDU is empty and therefore neglected here.

HDU 2 This HDU contains the source catalog.

```
XTENSION= 'BINTABLE'/ binary table extensionBITPIX =8 / 8-bit bytesNAXIS =2 / 2-dimensional binary tableNAXIS =2 / 2-dimensional binary tableNAXIS2 =2 / number of rows in tablePCOUNT =0 / size of special data areaGCOUNT =1 / one data group (required keyword)TFIELDS =10 / number of fields in each rowTTYPE1 = 'SRC_ID '/ label for field 1TFORM1 = 'J '/ data format of field: 4-byte INTEGERTTYPE2 = 'SRC_NAME'/ label for field 2TFORM2 = '8A '/ data format of field: ASCII CharacterTTYPE3 = 'RA '/ label for field 3TFORM3 = 'E '/ label for field 4TTYPE4 = 'DEC '/ label for field 5TFORM4 = 'E '/ data format of field: 4-byte REALTTYPE5 = 'E_MIN '/ label for field 5TFORM5 = 'E '/ data format of field: 4-byte REALTTYPE6 = 'E_MAX '/ label for field 7TFORM6 = 'E '/ data format of field: 4-byte REALTTYPE8 = 'SPECTRUM'/ label for field 8TFORM6 = '2L '/ label for field 9TFORM5 = '2LA '/ label for field 9TFORM5 = '2LA '/ label for field 9TFORM5 = '2LA '/ label for field 10TFORM5 = '2LA '/ label for field 9TFORM5 = '2LA '/ label for field 9TFORM5 = '2LA '/ label for field 9TFORM5 = '2LA '/ label for field 10TFORM5 = '2KC_CAT '/ label for field 10TFORM5 = '3KC_CAT '/ label for field 10TFORM5 = '
     XTENSION= 'BINTABLE'
                                                                                                                                                   / binary table extension
     BITPIX =
                                                                                                                                         8 / 8-bit bytes
    HDUCLAS1= 'SRC_CAT '
    HDUVERS = '1.1.0 '
     RADECSYS= 'FK5
                                                                                             ,
     EQUINOX =
                                                                                                                        2000.
     TUNIT3 = 'deg
                                                                                            ,
     TUNIT4 = 'deg
                                                                                           ,
     TUNIT5 = 'keV
                                                                                            ,
     TUNIT6 = 'keV
                                                                                            ,
     TUNIT7 = 'erg/s/cm**2'
```

END

SRC_ID SRC_NAME RA DEC E_MIN deg keV deg 1 1 SIMPLE-1 1.000000E+00 2.3469999E+01 -8.1199999E+00 -7.8800001E+00 2 2 SIMPLE-2 2.3920000E+01 5.000000E-01 E_MAX FLUX SPECTRUM IMAGE TIMING keV erg/s/cm**2 5.3299999E-12 [SPECTRUM,1] [#row==1] NULL NULL 1 1.000000E+01 2.1799999E-11 [SPECTRUM,1] [#row==2] NULL 2 1.200000E+01 NULL

HDU 3 This HDU contains the spectra of both sources in the catalog. The spectrum of the first source is stored in the first row, the spectrum of the second source in the second row. The spectra do not have explicit names. In the source catalog they are therefore identified by their row numbers.

```
XTENSION= 'BINTABLE'
                               / binary table extension
BITPIX
                             8 / 8-bit bytes
       =
                             2 / 2-dimensional binary table
NAXIS
        =
NAXIS1 =
                          1592 / width of table in bytes
NAXIS2 =
                             2 / number of rows in table
PCOUNT
                             0 / size of special data area
GCOUNT
       =
                             1 / one data group (required keyword)
TFIELDS =
                             2 / number of fields in each row
TTYPE1 = 'ENERGY
                               / label for field
                                                   1
                   ,
       = '199E
                               / data format of field: 4-byte REAL
TFORM1
TTYPE2
       = 'FLUXDENSITY'
                               / label for field
                                                   2
TFORM2 = '199E
                               / data format of field: 4-byte REAL
                   ,
EXTNAME = 'SPECTRUM'
                               / name of this binary table extension
HDUCLASS= 'HEASARC/SIMPUT'
HDUCLAS1= 'SPECTRUM'
HDUVERS = '1.1.0
EXTVER =
                             1
                   ,
TUNIT1
       = 'keV
TUNIT2 = 'photon/s/cm**2/keV'
END
        ENERGY
                        FLUXDENSITY
                        photon/s/cm**2/keV
        keV
          1.500001E-01
                          2.4727488E-31
      1
          2.500000E-01
                          6.2420113E-06
          3.500002E-01
                          9.5439553E-02
          4.4999999E-01
                          1.7395188E+00
          5.500001E-01
                          3.5762501E+00
      2
          1.500001E-01
                          1.3464495E+00
          2.500000E-01
                          6.6499877E-01
          3.5000002E-01
                          4.2314768E-01
          4.4999999E-01
                          2.8910589E-01
          5.500001E-01
                          2.2885041E-01
```

• • •

3.2 Elaborate Example

The following example file contains an extended X-ray source with two different polarized emission regions described by two separate images, and a point-like source oscillating between two states, one with a hard spectrum and low intensity and one with a soft spectrum and high intensity.

In the source catalog the extended source is split up in two separate entries, each with a specific spectrum and image of the particular emission regions. The periodic point-like source consists of a single entry in the catalog referring to a periodic light curve and two spectra for the different states. The source catalog and the light curve of the second source are stored in the file elaborate.simput, the spectra and images in the separate file data.simput.

3.2.1 elaborate.simput

The primary HDU is empty and therefore neglected here.

HDU 2 This HDU contains the source catalog.

```
XTENSION= 'BINTABLE'
                              / binary table extension
BITPIX =
                            8 / 8-bit bytes
NAXIS
                            2 / 2-dimensional binary table
NAXIS1 =
                           95 / width of table in bytes
NAXIS2 =
                            3 / number of rows in table
PCOUNT =
                            0 / size of special data area
GCOUNT =
                            1 / one data group (required keyword)
TFIELDS =
                           12 / number of fields in each row
TTYPE1 = 'SRC_ID '
                              / label for field
                                                  1
               ,
TFORM1 = ^{\prime}J
                              / data format of field: 4-byte INTEGER
TTYPE2 = 'SRC_NAME'
                             / label for field
                                                  2
                            / data format of field: ASCII Character
TFORM2 = '10A '
                  ,
TTYPE3 = 'RA
                            / label for field
                                                  3
                  ,
TFORM3 = 'E
                            / data format of field: 4-byte REAL
TTYPE4 = 'DEC
                  ,
                            / label for field
                                                  4
TFORM4 = 'E
                  ,
                             / data format of field: 4-byte REAL
TTYPE5 = 'IMGROTA '
                             / label for field
                                                  5
TFORM5 = 'E
             ,
                             / data format of field: 4-byte REAL
TTYPE6 = 'IMGSCAL '
                             / label for field
                                                  6
TFORM6 = 'E
                            / data format of field: 4-byte REAL
                  ,
TTYPE7 = 'E_MIN
                            / label for field
                                                  7
                  ,
TFORM7 = 'E
                             / data format of field: 4-byte REAL
                  ,
TTYPE8 = 'E MAX
                             / label for field
                                                  8
TFORM8 = 'E
                  ,
                             / data format of field: 4-byte REAL
TTYPE9 = 'FLUX
                             / label for field
                                                  9
TFORM9 = 'E
                  ,
                              / data format of field: 4-byte REAL
TTYPE10 = 'SPECTRUM'
                              / label for field 10
```

```
TFORM10 = '21A
                  ,
                             / data format of field: ASCII Character
TTYPE11 = 'IMAGE '
                             / label for field 11
TFORM11 = '20A
                  ,
                             / data format of field: ASCII Character
TTYPE12 = 'TIMING '
                            / label for field 12
                  ,
                            / data format of field: ASCII Character
TFORM12 = '16A
EXTNAME = 'SRC_CAT '
                            / name of this binary table extension
HDUCLASS= 'HEASARC/SIMPUT'
HDUCLAS1= 'SRC_CAT '
HDUVERS = '1.1.0 '
                  ,
RADECSYS= 'FK5
                        2000.
EQUINOX =
TUNIT3 = 'deg
TUNIT4 = 'deg
                  ,
TUNIT5 = 'deg
                  ,
TUNIT7 = 'keV
                  ,
TUNIT8 = 'keV
                  ,
TUNIT9 = 'erg/s/cm**2'
END
       SRC_ID
                   SRC_NAME
                                             DEC
                                                            IMGROTA
                             RA
                             deg
                                             deg
                                                            deg
                 1 EXTENDED-1 -1.0500000E+01 -3.0999999E+00
                                                             3.000000E+01
     1
     2
                 2 EXTENDED-2 -1.0500000E+01 -3.0999999E+00
                                                             3.000000E+01
     3
                 3 PERIODIC
                              -9.6999998E+00 -4.1999998E+00 0.000000E+00
       IMGSCAL
                       E_MIN
                                      E_MAX
                                                      FLUX
                       keV
                                      keV
                                                      erg/s/cm**2
         8.9999998E-01
                        5.000000E-01 1.000000E+01 7.6999998E-14
     1
     2
         8.9999998E-01
                        5.000000E-01 1.000000E+01
                                                       9.9999998E-14
         0.000000E+00 1.000000E-01 1.5000000E+01
                                                       5.6999998E-11
     3
       SPECTRUM
                                                   TIMING
                              IMAGE
     1 data.simput[SPECTRUM,1] data.simput[IMAGE,1] NULL
     2 data.simput[SPECTRUM,2] data.simput[IMAGE,2] NULL
     3 NULL
                              NULL
                                                   [LIGHTCURVE,1]
```

HDU 3 This HDU contains the light curve of the periodic source.

```
XTENSION= 'BINTABLE'
                             / binary table extension
BITPIX =
                           8 / 8-bit bytes
NAXIS =
                           2 / 2-dimensional binary table
NAXIS1 =
                          43 / width of table in bytes
NAXIS2 =
                          10 / number of rows in table
PCOUNT =
                           0 / size of special data area
GCOUNT =
                           1 / one data group (required keyword)
TFIELDS =
                           3 / number of fields in each row
                           / label for field
TTYPE1 = 'PHASE
                  ,
                                                1
                  ,
                           / data format of field: 4-byte REAL
TFORM1 = 'E
                 ,
TTYPE2 = 'FLUX
                            / label for field
                                                 2
```

```
TFORM2 = 'E
                 ,
                             / data format of field: 4-byte REAL
TTYPE3 = 'SPECTRUM'
                             / label for field
                                                3
TFORM3 = '37A
                ,
                             / data format of field: ASCII Character
EXTNAME = 'LIGHTCURVE'
                             / name of this binary table extension
HDUCLASS= 'HEASARC/SIMPUT'
HDUCLAS1= 'LIGHTCURVE'
HDUVERS = '1.1.0 '
EXTVER =
                            1
MJDREF =
                       48043.
TIMEZERO=
                           0.
                  ,
TIMESYS = 'MJD
                  ,
TIMEUNIT= 's
CLOCKCOR= 'YES
                  ,
PERIODIC=
                            1
PHASEO =
                         0.31
PERIOD =
                      283680.
END
       PHASE
                       FLUX
                                      SPECTRUM
        0.000000E+00
                        1.4700000E+00 data.simput[SPECTRUM,3][NAME=='hard']
     1
     2 1.000000E-01 1.3802379E+00 NULL
     3
         2.000000E-01 1.1452379E+00 NULL
     4
         3.0000001E-01 8.5476196E-01 NULL
         4.0000001E-01 6.1976200E-01 NULL
     5
         5.0000000E-01 5.2999997E-01 data.simput[SPECTRUM,3][NAME=='soft']
     6
     7
         6.0000002E-01 6.1976206E-01 NULL
     8
         6.9999999E-01 8.5476196E-01 NULL
     9
         8.0000001E-01 1.1452380E+00 NULL
         8.9999998E-01 1.3802379E+00 NULL
     10
```

3.2.2 data.simput

HDU 1 This HDU contains one of the two emission region images of the extended source. (Note that the image itself is not displayed in this text.)

```
SIMPLE =
                            T / file does conform to FITS standard
BITPIX =
                          -32 / number of bits per data pixel
NAXIS
                            2 / number of data axes
NAXIS1 =
                            3 / length of data axis 1
NAXIS2 =
                            3 / length of data axis 2
                            T / FITS dataset may contain extensions
EXTEND =
COMMENT FITS (Flexible Image Transport System) format is defined in 'Astronomy
COMMENT and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H
EXTNAME = 'IMAGE
                  ,
HDUCLASS= 'HEASARC/SIMPUT'
HDUCLAS1= 'IMAGE
                 ,
HDUVERS = '1.1.0
EXTVER =
                            1
CTYPE1 = 'RA---CAR'
```

CTYPE2	=	'DECCAR	,	
CUNIT1	=	'deg	,	
CUNIT2	=	'deg	,	
CRPIX1	=			2.
CRPIX2	=			2.
CRVAL1	=			0.
CRVAL2	=			0.
CDELT1	=			0.25
CDELT2	=			0.25
RADECSYS	3=	'FK5	,	
EQUINOX	=			2000.
END				

HDU 2 This HDU contains the other emission region image of the extended source. (Note that the image itself is not displayed in this text.)

XTENSION=	'IMAGE	,		/	IMAGE extension
BITPIX =			-64	/	number of bits per data pixel
NAXIS =			2	/	number of data axes
NAXIS1 =			3	/	length of data axis 1
NAXIS2 =			3	/	length of data axis 2
PCOUNT =			0	/	required keyword; must = 0
GCOUNT =			1	/	required keyword; must = 1
EXTNAME =	'IMAGE	,			
HDUCLASS=	'HEASARC/	'SIMPUT'			
HDUCLAS1=	'IMAGE	,			
HDUVERS =	1.1.0	,			
EXTVER =			2		
CTYPE1 =	'RACAF	ί,			
CTYPE2 =	'DECCAF	ί,			
CUNIT1 =	'deg	,			
CUNIT2 =	'deg	,			
CRPIX1 =			2.		
CRPIX2 =			2.		
CRVAL1 =			0.		
CRVAL2 =			0.		
CDELT1 =			0.25		
CDELT2 =			0.25		
RADECSYS=	'FK5	,			
EQUINOX =		2	000.		
END					

HDU 3 This HDU contains the emission spectrum of the extended source corresponding to the first image in HDU 1.

XTENSION= 'BINTABLE' / binary table extension BITPIX = 8 / 8-bit bytes NAXIS = 2 / 2-dimensional binary table

```
4003 / width of table in bytes
NAXIS1 =
NAXIS2
                            1 / number of rows in table
PCOUNT
                             0 / size of special data area
GCOUNT =
                             1 / one data group (required keyword)
                             3 / number of fields in each row
TFIELDS =
                  ,
                             / label for field
TTYPE1 = 'NAME
                                                  1
TFORM1 = '11A
                   ,
                             / data format of field: ASCII Character
                             / label for field
TTYPE2 = 'ENERGY '
                                                   2
TFORM2 = '499E
                  ,
                              / data format of field: 4-byte REAL
TTYPE3 = 'FLUXDENSITY'
                              / label for field
                                                 3
TFORM3 = '499E
                              / data format of field: 4-byte REAL
                 ,
                               / name of this binary table extension
EXTNAME = 'SPECTRUM'
HDUCLASS= 'HEASARC/SIMPUT'
HDUCLAS1= 'SPECTRUM'
HDUVERS = '1.1.0
EXTVER =
                             1
TUNIT2 = 'keV
                  ,
TUNIT3 = 'photon/s/cm**2/keV'
STOKES_Q=
                            0.
STOKES_U=
                            1.
STOKES_V=
                            0.
RADECSYS= 'FK5
EQUINOX =
                         2000.
END
        NAME
                   ENERGY
                                    FLUXDENSITY
                                    photon/s/cm**2/keV
                   keV
      1 cutoffpl1.6
                      1.1993988E-01
                                      3.0327507E+01
                      1.5981963E-01
                                      1.8991982E+01
                      1.9969940E-01
                                      1.3242880E+01
                                      9.8731565E+00
                      2.3957916E-01
                      2.7945894E-01
                                     7.7058897E+00
```

• • •

HDU 4 This HDU contains the emission spectrum of the extended source corresponding to the second image in HDU 2. This emission spectrum has a different shape and polarization than the spectrum in HDU 3.

```
XTENSION= 'BINTABLE'
                              / binary table extension
BITPIX =
                            8 / 8-bit bytes
NAXIS
                            2 / 2-dimensional binary table
       =
NAXIS1 =
                         4003 / width of table in bytes
NAXIS2 =
                            1 / number of rows in table
PCOUNT =
                            0 / size of special data area
GCOUNT =
                            1 / one data group (required keyword)
                            3 / number of fields in each row
TFIELDS =
                            / label for field
TTYPE1 = 'NAME
                  ,
                                                 1
                            / data format of field: ASCII Character
                  ,
TFORM1 = '11A
TTYPE2 = 'ENERGY '
                            / label for field
                                                 2
                  ,
TFORM2 = '499E
                            / data format of field: 4-byte REAL
```

```
TTYPE3 = 'FLUXDENSITY'
                               / label for field
                                                    3
TFORM3 = '499E
                 ,
                               / data format of field: 4-byte REAL
EXTNAME = 'SPECTRUM'
                               / name of this binary table extension
HDUCLASS= 'HEASARC/SIMPUT'
HDUCLAS1= 'SPECTRUM'
HDUVERS = '1.1.0 '
EXTVER =
                             2
TUNIT2 = 'keV
                   ,
TUNIT3 = 'photon/s/cm**2/keV'
STOKES_Q=
                           -1.
STOKES_U=
                            0.
STOKES_V=
                            0.
RADECSYS= 'FK5
                   ,
EQUINOX =
                         2000.
END
        NAME
                    ENERGY
                                    FLUXDENSITY
                    keV
                                    photon/s/cm**2/keV
      1 cutoffpl2.0
                      1.1993988E-01
                                      3.5723953E+01
                      1.5981963E-01
                                     1.9869173E+01
                      1.9969940E-01
                                      1.2651364E+01
                                      8.7613888E+00
                      2.3957916E-01
```

2.7945894E-01

. . .

HDU 5 This HDU contains the two spectra assigned to the point-like source with the periodic brightness variation. The soft spectrum in row 1 corresponds to phase 0.0 of the oscillation, the hard spectrum in row 2 corresponds to phase 0.5. The spectra have explanatory names, which are used to identify them.

6.4260769E+00

```
XTENSION= 'BINTABLE'
                               / binary table extension
BITPIX =
                             8 / 8-bit bytes
NAXIS
                             2 / 2-dimensional binary table
NAXIS1 =
                          7996 / width of table in bytes
NAXIS2 =
                             2 / number of rows in table
PCOUNT =
                             0 / size of special data area
GCOUNT =
                             1 / one data group (required keyword)
                             3 / number of fields in each row
TFIELDS =
TTYPE1 = 'NAME
                   ,
                               / label for field
                                                  1
TFORM1
       = '4A
                   ,
                               / data format of field: ASCII Character
TTYPE2 = 'ENERGY
                   ,
                              / label for field
                                                   2
                   ,
TFORM2 = '999E
                              / data format of field: 4-byte REAL
TTYPE3 = 'FLUXDENSITY'
                               / label for field
                                                   3
TFORM3 = '999E
                               / data format of field: 4-byte REAL
                  ,
EXTNAME = 'SPECTRUM'
                               / name of this binary table extension
HDUCLASS= 'HEASARC/SIMPUT'
HDUCLAS1= 'SPECTRUM'
HDUVERS = '1.1.0
EXTVER =
                             3
TUNIT2 = 'keV
                   ,
TUNIT3 = 'photon/s/cm**2/keV'
```

END

```
NAME ENERGY
                        FLUXDENSITY
       keV
                        photon/s/cm**2/keV
                          0.000000E+00
1 soft
         1.0995996E-01
         1.2987988E-01
                          0.000000E+00
         1.4979979E-01
                          2.9485973E-31
         1.6971973E-01
                          2.9727975E-21
         1.8963963E-01
                          6.3447998E-15
 . . .
2 hard
         1.0995996E-01
                          0.000000E+00
         1.2987988E-01
                          0.000000E+00
         1.4979979E-01
                          4.2619467E-32
         1.6971973E-01
                          4.6920876E-22
         1.8963963E-01
                          1.0827650E-15
 . . .
```

4 Summary

The presented format provides a common standard to define elaborate models of astronomical sources as input for simulation programs. It comprises approaches to specify simplistic point-like sources up to detailed descriptions of time-variable spatially extended systems with polarized emission. Although it has been developed in the context of X-ray astronomy, it provides sufficient flexibility to be suitable for other wavelengths.

References

- Angelini L., Pence W., Tennant A.F., 1994, The Proposed Timing FITS File Format for High Energy Astrophysics Data, OGIP/93-003, HEASARC, Greenbelt, USA
- Arnaud K.A., George I.M., Tennant A.F., 2009, The OGIP Spectral File Format, OGIP/92-007, HEASARC, Greenbelt, USA
- Belloni T., Hasinger G., 1990, Astronomy and Astrophysics 230, 103
- Calabretta M.R., Greisen E.W., 2002, Astronomy and Astrophysics 395, 1077
- George I.M., Angelini L., 1995, Specification of Physical Units within OGIP FITS files, OGIP/93-001, NASA/GSFC, Greenbelt, USA
- George I.M., Arnaud K.A., 2004, The OGIP Spectral File Format Addendum: Changes log, OGIP/92-007a, HEASARC, Greenbelt, USA
- George I.M., Arnaud K.A., Ruamsuwan B.P.L., Corcoran M.F., 1998, The Calibration Requirements for Spectral Analysis, HEASARC, Greenbelt, USA
- George I.M., Arnaud K.A., Ruamsuwan B.P.L., Corcoran M.F., 2007, The Calibration Requirements for Spectral Analysis, HEASARC, Greenbelt, USA
- George I.M., Zellar R.S., 1995, The OGIP Format for effective area files, CAL/GEN/92-019, HEASARC, Greenbelt, USA

Greisen E.W., Calabretta M.R., 2002, Astronomy and Astrophysics 395, 1061

Hanisch R.J., Farris A., Greisen E.W., et al., 2001, Astronomy and Astrophysics 376, 359

Lewin W.H.G., van Paradijs J., van der Klis M., 1988, Space Science Reviews 46, 273

Miyamoto S., Kimura K., Kitamoto S., et al., 1991, Astrophysical Journal 383, 784

Pence W., 1999, In: D. M. Mehringer, R. L. Plante, & D. A. Roberts (ed.) Astronomical Data Analysis Software and Systems VIII, Vol. 172. Astronomical Society of the Pacific Conference Series, p. 487

Pence W.D., Chiappetti L., Page C.G., et al., 2010, Astronomy and Astrophysics 524, A42

Stokes G.C., 1852, Trans. Cambridge Philos. Soc. 9, 399

Timmer J., König M., 1995, Astronomy and Astrophysics 300, 707

List of Acronyms

ARF	Ancillary Response File
FITS	Flexible Image Transport System
HDU	Header and Data Unit
MHD	Magnetohydrodynamic
MJD	Modified Julian Date
РНА	Pulse Height Amplitude
PSD	Power Spectral Density
RA	Right Ascension
rms	root mean square
SIMPUT	SIMulation inPUT
UT	Universal Time
WCS	World Coordinate System