Segregating Solar Features by Temperature

Nathan Stein

California-Boston-Smithsonian AstroStatistics Collaboration

February 8, 2011
Solar Dynamics Observatory generates up to 1.4 terabytes/day

Atmospheric Imaging Assembly: four-telescope array on the SDO satellite

High-resolution (4096 × 4096) images of the corona in 7 extreme ultraviolet filters every 10 seconds

More than anyone could examine by eye

Need fast methods for processing data
Statistical Model

- Observe photon counts \(\{Y_{ib}\} \) in pixel \(i \) through filter \(b \)
- \(\gamma_i \) = unknown amount of plasma in pixel \(i \)
- \(\theta_{ij} \) = proportion of plasma in temperature bin \(j \) (\(\sum_j \theta_{ij} = 1 \))
- \(\gamma_i \theta_{ij} = \text{DEM}(\log T_j) \)
- \(\tau_b \) = known exposure time
- \(\Lambda_{bj} \) = known response function
- Likelihood:

\[
Y_{ib} \sim \text{Poisson} \left(\gamma_i \tau_b \sum_j \Lambda_{bj} \theta_{ij} \right)
\]

- Goal: identify regions with similar \(\theta_i \)
Statistical Model

- γ_i is a nuisance parameter
- $\sum_b Y_{ib} = N_i \sim \text{Pois} \left(\gamma_i \sum_j M_j \theta_{ij} \right)$, with $M_j = \sum_b \tau_b \Lambda_{bj}$
- Distribution of N_i depends on γ_i and θ_i, whereas distribution of
 \[
 \left(\frac{Y_{i1}}{N_i}, \ldots, \frac{Y_{iB}}{N_i} \right)
 \]
 (conditional on N_i) only depends on θ_i
- Cluster pixels with similar proportions, ignore totals N_i
Clustering probability vectors

- How to cluster vectors of probabilities or proportions?
- Squared Hellinger distance between \(p \) and \(q \) is

\[
d^2_H(p, q) = \frac{1}{2} \sum_b (\sqrt{p_b} - \sqrt{q_b})^2
\]

\[
= 1 - \sum_b \sqrt{p_b q_b}
\]

- Modify \(k \)-means clustering to use Hellinger distance:
 - “\(h \)-means clustering”
Clustering probability vectors

- Observations p_1, \ldots, p_n
- Cluster assignments c_1, \ldots, c_n
- Cluster centers q_1, \ldots, q_k

1. Given cluster centers, set

 $$c_i = \arg \min_j d_H^2(p_i, q_j)$$

2. Given cluster assignments, set

 $$q_j = \arg \min_q \sum_{i: c_i = j} d_H^2(p_i, q)$$ (2)

 The minimization in (2) has an analytic solution:

 $$q_{jb} = \frac{(\sum_{i: c_i = j} \sqrt{p_{ib}})^2}{\sum_{b'} (\sum_{i: c_i = j} \sqrt{p_{ib'}})^2}$$
Clustering AIA data

- Cluster the vectors \((y_{i1}/n_i, \ldots, y_{iB}/n_i) \) for \(i = 1, \ldots, n \)
- For illustration, examine a coarsened \((256 \times 256)\) set of images, with 3 clusters
Clustering AIA data
Clusters in log Y space
Clusters in Y/n space
Distribution of pixels in each cluster
Distribution of pixels in each cluster
Simulated Data

Simulated Temperature Map

Simulated Temperature Distributions

Simulated Map of Total Plasma
Simulated Data
Simulated Data

<table>
<thead>
<tr>
<th>94 A</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>131 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211 A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>335 A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulated Data: Results

2 clusters
Simulated Data: Results

4 clusters
Simulated Data: Results

10 clusters
Simulated Data: Results

- How to make images of results more meaningful? (Cluster label is arbitrary number)
- Assign a level l_j to each cluster
- Many choices for quantitatively meaningful l_j's
- For example:

$$l_j = \frac{\sum_{i: c_i = j} y_i}{\sum_{i: c_i = j} n_i}$$

10 clusters
Full Resolution Images

- 4096×4096 pixels $\times 6$ bands
- $k = 64 + 1$ clusters (1 extra for pixels with zero counts in all 6 images)
- Two observations:
 1. October 2, 2010, 05:57
 2. October 2, 2010, 18:43
Next Steps

- Model-based clustering to compare multiple images, to identify regions that are thermally similar in different observations
- DEM reconstruction: what is the state of the art?
Acknowledgements

Vinay Kashyap

Xiao-Li Meng