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ABSTRACT

Chapter [il of this thesis focuses on accelerating perfect sampling algorithms for a Bayesian hierarchical
model. A discrete data augmentation scheme together with two different parameterizations yields two
Gibbs samplers for sampling from the posterior distribution of the hyperparameters of the Dirichlet-
multinomial hierarchical model under a default prior distribution. The finite-state space nature of
this data augmentation permits us to construct two perfect samplers using bounding chains that take
advantage of monotonicity and anti-monotonicity in the target posterior distribution, but both are
impractically slow. We demonstrate however that a composite algorithm that strategically alternates
between the two samplers’ updates can be substantially faster than either individually. We theoreti-
cally bound the expected time until coalescence for the composite algorithm, and show via simulation
that the theoretical bounds can be close to actual performance.

Chapters P and [ introduce a strategy for constructing scientifically sensible priors in complex
models. We call these priors catalytic priors to suggest that adding such prior information catalyzes
our ability to use richer, more realistic models. Because they depend on observed data, catalytic priors
are a tool for empirical Bayes modeling. The overall perspective is data-driven: catalytic priors have a
pseudo-data interpretation, and the building blocks are alternative plausible models for observations,
yielding behavior similar to hierarchical models but with a conceptual shift away from distributional
assumptions on parameters. The posterior under a catalytic prior can be viewed as an optimal ap-
proximation to a target measure, subject to a constraint on the posterior distribution’s predictive
implications. In Chapter E, we apply catalytic priors to several familiar models and investigate the
performance of the resulting posterior distributions. We also illustrate the application of catalytic
priors in a preliminary analysis of the effectiveness of a job training program, which is complicated by

the need to account for noncompliance, partially defined outcomes, and missing outcome data.
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PREFACE

This thesis focuses on methodology and computation for Bayesian and empirical Bayes
models. The major theme running through this work is the benefits that can come from
combining models and methods with complementary strengths. In perfect sampling, com-
bining bounding chain algorithms with complementary strengths can yield a composite algo-
rithm that outperforms either individual algorithm. Intuitively, some bounding chains may
be fast “marginally” and others may be fast “conditionally,” but for a valid and practical perfect
sampler, we want an algorithm that is fast “jointly.” In the Dirichlet-multinomial model, we
demonstrate this idea by constructing a discrete data augmentation that leads to one bound-
ing chain algorithm that is fast on the augmented-data margin, and another that is fast to coa-
lesce on the parameter, once we have already coalesced on the augmented data. Individually,
both algorithms are impractically slow to return a draw from the correct stationary distribu-
tion, but by strategically alternating between them, the time until coalescence can be reduced
dramatically.

Catalytic priors work by trading off between the strengths of a more complicated and a
simpler model. The more complicated model better reflects the complexity of the real world,
but may result in noisy, unreliable estimates. The simpler model does not capture all of the
relevant features of the phenomenon we are investigating, but it can be reliably estimated.
The intuition behind catalytic priors is to impute a small amount of data under the simpler
model, but analyze them alongside the observed data under the complicated model. These
imputed data shrink the estimates under the complicated model away from unreasonable
regions of parameter space, resulting in inferences that are more scientifically sensible—both
more realistic than estimates under only the simpler model, and more reliable than estimates

under only the complicated model.



Practical perfect sampling using composite

bounding chains

1.1 THE DIRICHLET-MULTINOMIAL MODEL

The multinomial model and its conjugate Dirichlet prior distribution are common building
blocks of more elaborate models for categorical data, with applications from topic modeling
(Blei et all, 2003) to biology (Holmes et all, 2012). Despite the model’s popularity, there is

room to improve algorithms for Bayesian inference. Although fast Newton-Raphson itera-



tions can find maximum likelihood estimates, as demonstrated in the 2003 technical report
by T. P. Minka, ‘Estimating a Dirichlet distribution,” sampling from the posterior distribution
of the parameters in a Bayesian setting is more challenging, especially in high dimensions.
In this paper we present a data augmentation scheme that yields a practical Gibbs sampler
and facilitates perfect sampling algorithms based on composite bounding chains. The cen-
tral idea of the composite perfect sampling algorithm is to strategically combine two or more
bounding chains, such that the composite chain has a much faster coalescence time than the
individual samplers. Our main theoretical result is a bound on the expected running time of
the composite algorithm, and we prove it using somewhat general language about bounding
chains, suggesting that similar speed gains may be possible for other bounding chain algo-
rithms. The dramatic increase in speed we achieve is a small but encouraging step on the

road toward perfect samplers that can be routinely used in practice for Bayesian computa-

tion.
Let y be an N x k matrix of observed counts with ith row 3,/ = (i1, ..., yi), and let u be
an N X k matrix with ith row MZT = (us,- - -, Mix), a k-dimensional probability vector with

wi; >0, Zle t;; = 1. Conditioned on y, the vectors y; are independent multinomial random

variables with probabilities y; and fixed sample sizes n;:

k
p(yi | 1) = k—,HM?j]’ i=1,...,N.
[Ti- %! 55
The probabilities x; in turn are independent draws from a Dirichlet(a, . . ., o) distribution:

L5 @) Hk a1
p(/'l’i|a17"'7ak): kji /J/Z--j 5 221,,N
[T Tey) 57



Integrating over i, the posterior of the hyperparameters under a prior 7(«y, . . ., ay) is

N k
F(Z _19j) INGEIEE yz
plag,...,qp | y) occ (o, ..., ag) { | | ] 28 (1.1)
g F(Z _aj + ) j=1

Constructing a practical perfect sampler for (l1:1]) is the main subject of this paper.

1.2 A DISCRETE DATA AUGMENTATION STRATEGY AND TWO GIBBS SAMPLERS

For reasons that will soon be clear, we shall use both the parameterization o = (o, ..., ay)
and the parameterization § = (w, \), where w = Zle «; is a concentration parameter and
A = (A1,...,\;) isamean vector with \; = «;/w. Throughout this paper, we assume that the

prior distribution on A and w factors into independent priors
A ~ Dirichlet(dy,...,d0), w ~ 7. (1.2)

Conditioning on the observed data y and the parameter 6, we construct our data augmentation
scheme. If y;; > 0, we define conditionally independent Bernoulli random variables v;; =
(Uz'j,h e 7Uij,yij) with

W)\j

Pr(vijm =11y,0) = oL m—1
J

and if y;; = 0, then v;; is defined as empty.

This data augmentation strategy has a nice interpretation in terms of a double-replacement
sampling scheme. The distribution of y given 6, integrating over y, is equivalent to supposing
that there are NV urns that initially have «; balls of color j for j = 1, ..., k, and we draw balls
independently from each urn following a double-replacement scheme. That is, when we draw

a ball of color j, we replace it and add another ball of the same color before sampling the next



ball. The observation y;; is the number of balls sampled from urn ¢ with color j, and the data
augmentation v;; ,, indicates for the mth (m = 1, ..., y;;) sampled ball whether it was drawn
from the original pool, in which case v;;,, = 1, or from the balls that were added to the urns
through the double-replacement scheme, in which case v;;,, = 0. Thus, it makes sense that
if y;; = 0, then v;; is empty because there is nothing to indicate, and if y;; > 0, thenv;;; =1
because the first sampled ball must have come from the original pool.

Letting v = {v;;};;, we then obtain the complete-data likelihood p(y, v | #) as the product

p(v | y,0)p(y | 0), clearly preserving the margin of interest p(y | ). Since I'(z + 1) = z['(x),

N

k Yij
o0 =TT T - oL

=1 7=1 {m=1

where we take the term in braces equal to 1 if y;; = 0. If the mean and concentration parame-
ters are independent in their prior distributions, which we will assume throughout, then they
will also be independent in their complete-data posterior distribution, since terms involving
w and A factor in (). More intuition about (B) appears at the end of this section.

This data augmentation scheme yields a Gibbs sampler that is easy to implement. De-

noting the sufficient statistics of the augmented data z; = SV, ™% | v, ., where we take

Y9 vijm = 0ify;; = 0, we transition from (z, ) to (z/, §') by alternating between updating

the parameters given the complete data by drawing 6’ from

X N F(w’) k
p(t | z.y) o< m(w!, N) w0 ? {H m} {H X?} (1.4)

Jj=1

and updating the missing data given the parameters by drawing independently, for j =

1,....k

Yij /)\/
2 |0y~ Z Z Bernoulli ( N ofm 1) (1.5)

i=1 m=1

We will call equations ([t.4)-(L.5) the standard Gibbs sampler. The discreteness of z =



(z1,...,2) is a major advantage of this algorithm, as it enables perfect samplers to coalesce
in finite time. Another benefit of this algorithm is that using a Dirichlet prior distribution on
A leads to a conjugate Dirichlet update for the multivariate )\, and the only step that requires
special attention is sampling the univariate w, for which many standard methods are avail-
able, including grid-based and rejection methods. Additionally, the density p(w | z,y) arises
in the context of Dirichlet process mixture models, and Escobar and West (1995) suggest a
Gibbs sampler for this distribution.

Following (Craiu and Meng (2011), we say that 2’ given ¢ and y in ([L.§) has a nonhomo-
geneous binomial distribution. In general, a nonhomogeneous binomial random variable
x ~ NhBin(N; (py, ..., pn)) can be represented as the sum of N independent Bernoulli ran-
dom variables b; ~ Bernoulli(p;), each with its own success probability p;. The nonhomoge-
neous binomial distribution can be easily generalized to the nonhomogeneous multinomial
distribution, which is familiar from the traditional data augmentation approach to fitting fi-
nite mixture models. To illustrate, suppose data y = (v, ..., yn) are independent and iden-

tically distributed according to the mixture model

k
p(yi | m) = Z i), (1.6)

where for simplicity we can suppose that the densities f;(-) are fully known and the mixture

weights = (7, ..., nx) are of interest. The usual model-fitting approach augments y with a
nonhomogeneous multinomial variable z = (z1, ..., zx) such that
Pr(si = | y.m) = ) j=1..k

mfi(wi) + - e fr(ys)’

The complete-data likelihood is therefore p(y,z | n) = [], H§:1 {n; f; (y:)}'*=7), which

as a product can lead to straightforward Gibbs sampling and Expectation-Maximization al-



gorithms that are much easier to work with than the sums in (). See Hobert et al) (1999),
Murdoch and Meng (2001), Casella et al| (2002), and Mukhopadhyay and Bhattacharya (2012)
for examples in the context of perfect sampling. The nonhomogeneous binomial augmenta-
tion in the Dirichlet-multinomial model plays the same role as in finite mixture models: it

turns sums into products. In the Dirichlet-multinomial model, we can rewrite (f.1)) as

ety o It HIT e - nf. )

i=1 i=1 j=1m=1

The z augmentation turns the sums w\; + (m — 1) on the right hand side of () into products
as shown in (), which are much more convenient for sampling.

Before developing our perfect samplers, it is helpful to introduce another Gibbs sampler
based on this same data augmentation strategy. However, instead of using the f parameteri-

zation, we use the original o parameterization and alternate between draws from

p(Oé; | Oé[—j]v’Z?y)’ p(Z; | O52‘704[—j]7z[—j]7y) (18)

forj =1,... k where o_j = (a1,...,05-1,41,...,0;) and z_;) is similarly defined. We
will see in Section that while this algorithm sacrifices the factorization between the mul-
tivariate A density and the univariate w density, it offers convenient monotonicity properties

that help in designing bounding chains.

1.3 PERFECT SAMPLING USING BOUNDING CHAINS

1.3.1 BOUNDING CHAINS

Propp and Wilson (1996) introduced coupling from the past to obtain exact draws from the

stationary distribution of a Markov chain in finite time. The key idea is to run coupled Markov



chains from the past to the present with the same transition probabilities but starting from
different states. The construction guarantees that if the chains couple by time 0, then the value
at time 0 is an exact draw from the stationary distribution of the chains. Propp and Wilson
(1996) recognized that the computation is much simpler when the updates of the chain are
monotone with respect to some partial order on the state space.

In general, it can be difficult to construct monotone chains. Bounding chains were therefore
introduced in Huber (1998) and Haggstrom and Nelander (1999) and developed in Huber
(2004)), among others. They provide a solution for perfect sampling without requiring the
monotonicity used by Propp and Wilson (1996). A bounding chain for a Markov chain x; on
a state space () is a set-valued Markov chain X; on the set of all subsets of 2, such that the
current state x; € X, for every starting value that could have been used for the z; chain; see
Huber (2004) for discussion and a slightly more general definition. When bounding chains
are used in the context of coupling from the past, coalescence is detected and the algorithm
returns a draw from the stationary distribution when X is a singleton.

Specifically, if the original x; chain can be written as a stochastic recursive sequence

Ti41 = éb(l‘ty Ut);

where ¢ is a deterministic function and u; is a random input, then the set-valued chain

Xt+1 = @(Xt,ut) (19)

is a valid bounding chain if ¢(x;,u;) € ®(Xy,u,) for every x, € X, as illustrated in Fig-
ure [.14(a). Coupling from the past for this bounding chain proceeds as follows: first, set
T = T, for some fixed 7} such as 1, and X_7 = (). Then, run the chain forward from X_ by
repeatedly calling () until we obtain X, as illustrated in Figure (b). If X, is a singleton

{z}, then z is an exact draw from the stationary distribution of the chain defined by ¢. Other-



wise, setToq = 1, setT = Thew > Tog, Where typically Thew = 27514, and repeat the procedure,

drawing new random inputs u_r, ..., u_g,,—1 and reusing the sequence u_r,,, ..., u_1.

¢(',u,)

X,=Q X, X, ={x}
Xt CI)( " uf) Xt+1 -T —t 0
(a) (b)

Figure 1.1: (a) The relationship of the bounding chain ®(-, u;) to the underlying Markov chain ¢(-, u¢). (b)
lllustration of coupling from the past using bounding chains.

To define the bounding sets used in our perfect samplers, we use the partial orders z < 2
whenz; < Z;,anda < awhena; < aj,forallj =1,..., k. Wesaythatt < O when o < &,and
(2,6) < (%,0) when z < % and 6 < 6. These partial orders admit a minimum and maximum

state for z, but only a minimum state for a:

N N N
2 = (Z Ly > 0),.., Y Ly > 0)) CAmM =) "y o™t =(0,...,0).

i=1 =1 1=1

It may seem surprising that 2™ is not 0, but recall that if y;; > 0, then v;;; = 1, so z;«“i“ is the
number of nonzero entries in the jth column of . These partial orders allow us to construct

bounding sets, the details of which appear below in the context of the two algorithms we use.

1.3.2 COMPONENT-WISE ALGORITHM

For our first algorithm, we work with the parameterization («y, ..., ;) instead of (w, ). To
guarantee the necessary monotonicity, it is sufficient for the prior density on w to satisfy the

following property.



Property 1. The ratio

kg
7T0(O./j+§j) <Oéj+§j)1 23:16]

1.10
mo(y +85) \ oy + 55 (1:10)
is increasing in a;; whenever §; > s;, where ¢y, . . ., ; are the Dirichlet parameters in ().
From the conditional density
s Moo (o + 55)
1-325_165 6j+z;—1 J J
;| Y, 2, ap_q) X o (o 4+ 85) (e + 85 =1 o , 1.11
plaj |y [J]) 0 (o i) (o i) j gr(aj+5j+ni) ( )

where s; = ZZ# oy, we can show that for any prior satisfying Property E], the conditional
density (fL.11]) will enable monotone updates of a;. One such prior is w ~ Gamma(by, b;) for
by < Zle d; and any b;.

The following lemma, which is a slightly more general version of Lemma 1 in Mgller| (1999),

can be used to demonstrate why Property fil enables monotone updates for aj.

Lemma 1. Suppose X and Y are univariate random variables with densities f and g, respec-
tively, with respect to the same measure v. Let Sy = {x : f(x) > 0} and Sy = {x : g(z) > 0}.

If the function h defined below is increasing for x € Sx U Sy,

.

0 T € S)C( N Sy,
h(z) =9 f(x)/g(z) =€ SxnSy, (1.12)
o0 x € SxnN Sg,
\

then X stochastically dominatesY, thatis, Pr(X < ¢) < Pr(Y <¢) forallc.

Proof. For h(z) to be increasing in z, it must be true thatif ; € S¢ N Sy, z» € Sx N Sy, and
T3 € SXﬂSg, then x; < x4 < x3. Therefore, ifc € S)C(ﬂSy, thenPr(X <¢)=0<Pr(Y <o)
Similarly, if c € Sx N SY, then Pr(Y < c¢) =1 > Pr(X < ¢).

Now consider the case c € Sx N Sy. Let A = {X € Sy }. Since 1(Y < ¢) is decreasing in Y’



and h(Y) is increasing,

0>cov{l(Y <¢),h(Y)} =Pr({X <c}NA) —Pr(Y <c)Pr(A),

whence Pr({X < c} N A) < Pr(Y <e¢). But Pr({X < ¢} N A%) = 0, since if c € Sy N Sy and

r € Sx N SY, then x > ¢. Thus, Pr(X < ¢) < Pr(Y <c¢)forallc O

If a_;) = apj and Z = z, then the conditional distribution of a; given (y, Z, &;)) will
stochastically dominate the distribution of «; given (y, z, aj_;)). This enables a monotone up-
date using inverse transform sampling by coupling upper and lower chains, which serve as
upper and lower bounds for our bounding sets, with the same uniform random input. We
can update z given («, y) by drawing Uniform(0, 1) random variables w;,, fori = 1,..., N and

m =1,...,y;; — 1, and then setting

N yij—1
a.
= 1(y;; >0) |1 1< wpyy < J 1.1
5= 010> 0) 1437 1 {5 0 (113)

To update Z;, we use the same random inputs u but replace «; by &;, which makes clear that
if &; > «;, then the updated z; satisfies z; > z;.

It is natural to ask why any other algorithms are needed, since perfect sampling using
monotone coupling from the past is well established. Two problems make this algorithm im-
practical. First, since the update for o; conditions on a|_j, this is not a two-step Gibbs sam-
pler, and hence the marginal sequence {z;,t = 1,...} does not form a Markov chain, where ¢
indexes iterations rather than components. Therefore, if we only checked the coalescence on
z, we would ignore the possibility that # may be different in the lower and upper chains, which
can in future steps allow z to uncoalesce. Unfortunately, updating o via inverse transform
sampling guarantees that 6 will almost surely never coalesce, because Pr(oz;-J > onL) = latev-

ery time ¢, where U and L denote respectively the upper and lower chains; a similar situation

10



occurs in Mgller (1999).

Second, to make the problem worse, because there is no natural maximum state for «, we
do not even have a method to draw the initial values oV and o, conditioning on z = 2™ in the
upper chain and z = 2™ in the lower chain respectively, that would guarantee aFf jz o [L_ i
forall j. The coordinate-wise approach using (f.11]) cannot initialize the full parameter vector

with this guarantee because it only updates each «; conditional on all the other values o_j.

1.3.3 VECTOR ALGORITHM

Our vector algorithm solves both problems above, but introduces a new one. It first updates
the entire parameter vector given the complete data, and then updates the augmented data
given the parameter. All random draws in the upper and lower chains are coupled by using

probability integral transform sampling with the same random quantiles. First, we draw
W epwly 2, wl~plw ]y, 2Y). (1.14)

Here, the actual implementation of () will depend on the choice of 75, which we assume
satisfies Property E] Then, forj =1,..., Lk, we draw

vy ~ Gamma(d; + 2, 1), 7] ~ Gamma(d; + z;,1). (1.15)

If we were to set af = w"y}/ Sy 7k and af = wyj/ S5, 7Y, these would be valid draws
from the complete-data posterior distributions p(« | y, 2) and p(«a | y, 2Y), as given in (fL.4).
Unfortunately, this would not guarantee that o < a”. Even if v; < ~7 for all j, it is possi-
ble for ~;/ S k> v/ S 7Y for some j, and the difference may be large enough that
WAt/ S k> w3/ S 7Y, even though w" < wV.

However, we can achieve a valid bounding chain algorithm that preserves the order o' < oV

11



by dividing by the sum of 7, in the opposite chain:

LoL U U
whAt w9}
Oz; = k—,ij’ OZ}J = k—VJL (1.16)
D01 e D01 e
If 2% = 2" immediately before this parameter update, then o = o forall j = 1,.. ., k, so that

it is possible to coalesce on z and a.

To see that alternating between updating « using ()—() and then updating z given
« and y yields a valid bounding chain algorithm, suppose (2, 6;) € Z; x ©;, where Z, = {z :
2k 22z <X 2yand©; = {0 : 0 < 6 < 0}. Then, we can draw w ~ p(w | v, z) and
7v; ~ Gamma(d; + 2z j, 1), where z; ; is the jth component of z at time ¢, and draw w", w?, 7, 7Y

using (fL.14)) and (f.15), guaranteeing that w" < w < wV and v; <75 < 7j. Therefore,
WL’}/]L WU’)/;J

WY
< Ek =
=17¢

k R —"y
D oem1 Vi D em1 Ve

<

so that 6,1 € ©;;,. The z draw (..13) ensures that 241 € Lt

The new problem is that this bounding chain is loose, making it impractical even on low-
dimensional, low-count data sets; see Section . However, strategically alternating between
the vector algorithm and the component-wise algorithm can yield a much speedier composite

algorithm, as we demonstrate empirically in Section , after a theoretical investigation in

Section .

1.4 THEORETICAL RESULTS: COMPOSITE BOUNDING CHAINS

As a general setting, suppose we wish to sample from p(6 | y), and we have an augmented-data
model p(z, 0 | y). To detect coalescence, it is helpful for z to be discrete, but see Murdoch and
Green (1998) for perfect samplers on continuous state spaces. We assume two underlying

Markov chains with stochastic recursive sequences =1 = ¢(zy,u;) and z;11 = (24, vy),
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where u; and v; are random inputs and z; = (z, ;). We use bounding chains X; > z; with
associated stochastic recursive sequences X, 1 = ®(X;, u;) and X, = ¥(X,, v;). We assume
that the bounding sets can be written as X; = Z; x ©,, with z; € Z;, and 6, € ©,.

Since our goal is to draw samples of 6, a perfect sampler will not terminate before ©; is a
singleton. Thus, if ® can quickly reduce Z; to a singleton and if ¥ can reduce ©; to a singleton
once Z, is a singleton, then alternating between ® and ¥ can be faster than either individually.
To take an extreme case, an alternating algorithm can coalesce on (z, #) even if ® can never
coalesce on f and W can never coalesce on z.

Our composite algorithm alternates between (M — 1)-fold compositions o - -0 ® = M1
for some pre-chosen M > 1, and single instances of ¥; more general combination strategies
are of course possible. That is, in notation, the composite stochastic recursion function is
Vo dM-1,

Recall that a stochastic recursive sequence for a monotone Markov chain satisfiesz < = =
Y(x,v) = ¥(Z,v) for all random inputs v. For bounding chains, we can use the subset rela-
tionship as a partial order. That is, a bounding chain 3 is monotone if for all its random inputs

v, B(X,v) C B(X,v) whenever X C X.

Lemma 2. If we let ® denote the component-wise algorithm of Section @ and V denote the

vector algorithm of Section then both ® and V are monotone bounding chains.

Proof. This is easy to verify directly once we recognize thatif = < Zand a_; =< a|_;, then
() p(ey | v, Z, &—;)) stochastically dominates p(«; | y, 2, a—j), (ii) p(w | y, Z) stochastically
dominates p(w | y, ), and (iii) Gamma(Jd; + Z;, 1) stochastically dominates Gamma(J; + z;, 1).
Then, the partial ordering 72" < 2 < 2Y < 7Y is preserved by using inverse transform sam-

pling with the same uniform random inputs to draw from the distributions in Sections
and . O

(I)]V[fl

To bound the expected running time until coalescence for ¥ o , we assume that if Z,
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is a singleton, then W causes Z;; x O, to be a singleton:

U({z} x ©,v) = {2} x {0} (1.17)

for any z, ©, v. We call this property the ability to conditionally induce coalescence on 6. While
this may seem restrictive, our focus is on Bayesian computation where 6 is the parameter
of interest and z is part of an augmented data model. In such settings it is often possible to
develop bounding chain algorithms that can conditionally induce coalescence by including
draws of the full parameter vector ¢ given the observed and augmented data.

The time until coalescence is 7 = min (¢ : X; = {z}), where ¢ is incremented each time
either ® or V is called, that is, we define the time index ¢ via

(X, u), ift+10;
X = (%1, 1) 7 (mod M) (1.18)

\P(Xt,’l)t), lf t+1 EO
Note that we check for coalescence only after each time V is called. To initialize the chain, we

pass the state space to U:

Xo = U(Qy, v0). (1.19)

In a coupling-from-the-past implementation, we would initialize X_ = U (Q,,v_r) for 7" >
0. Incrementing ¢ each time we use either update, rather than with each block, guarantees that
different values of 7 corresponding to different choices of M can be compared directly, in that

smaller 7 roughly corresponds to faster computation. We then have the following theorem.

Theorem 1. Suppose ® and ¥ define monotone bounding chains, and that V conditionally in-
duces coalescence on 6 as in @) Then, letting Zy;_1 be the bounding set for z at the end of the

first sequence ®~! and letting | Z,;_,| be its cardinality, the expected time until coalescence of
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the composite algorithm @) and @) satisfies

M
M < E(1) < Pr(Zu =1 (1.20)

In our composite algorithm for the Dirichlet-multinomial model, we let  be the component-
wise algorithm of Section and ¥ be the vector algorithm of Section . It is then
straightforward to show that the assumptions of Theorem E] apply. Moreover, if we let ¢ be a
stochastic recursive sequence for the Gibbs sampler in () and 1 correspond to the sampler
in ()—(@), then the composite chain 1) o »~! has the correct stationary distribution
p(2,0 | y), and ¥ o ®M~1 is a valid bounding chain for this composite Gibbs sampler. Thus,

a perfect sampler using the composite updates ¥ o ®~! will return a genuine draw from

p(2,0 | y).

Proof of Theorem [ﬂ The lower bound is trivially true because we check for coalescence only
at the end of a block, and it takes M steps to reach the end of the first block.

For the upper bound, we will show that 7 is stochastically dominated by a scaled geometric
random variable with expectation M/ Pr(|Z,, 1| = 1). Consider a modified version of ¥,
called ¥, that first resets X = Q, = 2, x Qy and then updates 2, via ¥. Thatis, Uo(X,v) =
U(Q,,v) for any X. Because we use U to set the algorithm’s starting values, we can write the
composite algorithm as

oW o dM Lo T o ML o .

Since ¥ conditionally induces coalescence on 6, if Z has coalesced at the end of ®"~!, then
U will cause © to coalesce in the next step. Thus we can group the composite algorithm’s
updates

o (@M o W) o (@M o W) o (OM T o W) (1.21)

and check whether Z has coalesced at the end of each block, though in practice we must be
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sure to still call ¥ after Z has coalesced to obtain a valid draw (z, ). By using the same se-
quence of random inputs, we couple this composite algorithm to a modified algorithm that
substitutes ¥, for every V¥, and we similarly group the sequence of updates in the modified
algorithm:

o (BT o W) o (@M o W) o (@M o ). (1.22)

Assuming that the random inputs to the stochastic recursive sequences at different steps
are independent, then since ¥, deterministically resets X ignoring the current states, the
blocks in the modified algorithm are independent, and the indicators 7,,, for Z-coalescence
in block m are independent and identically distributed, with Pr(7,, = 1) = Pr(|Zy 1| = 1).
Therefore the number of steps until the first /,, = 1 is a scaled geometric random variable
with mean M/ Pr(|Z,,_1| = 1), where the scaling is necessary because there are M steps per
group.

Finally, since ® and ¥ are monotone bounding chains, when we couple the composite and
modified algorithm by using the same sequence of random inputs, Z-coalescence in the mod-

ified algorithm implies Z-coalescence in the composite algorithm, yielding the upper bound

in (f.20). O

Since both M and Pr(|Z,;_,| = 1) are monotonically increasing functions of M, Theorem [
suggests an intuitively sensible trade-off that occurs when choosing M, the block size. If M is
too small, then Pr(|Z,,_;| = 1) is also small, and the upper bound on the expected time until
coalescence blows up, so that we have much weaker guarantees on the expected running time.
However, if M is so large that Pr(|Zy,—1| = 1) =~ 1 and Z typically coalesces well before M
steps, then much of the within-block computation will be wasted. In the next section, we will
see from simulation that minimizing the upper bound in (f.2d) can lead to a choice of M that

is not far from optimal; see Figure 4.
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1.5 NUMERICAL ILLUSTRATION

To explore how the composite algorithm scales with the dimension k, the row total n;, and
the number of rows N, we simulated data sets under various conditions. In Figure (a), we
fixed the dimension £ = 20 and simulated data sets with number of rows N = 5, 30, and 100,
and with average cell count n; /k = 20, 50, and 100. For Figure @(b), we fixed the number
of rows NV = 5 and simulated data sets with £ = 20, 50, 100, and 200, and with average cell
count n;/k = 20,50, and 100, for all . For each choice of N, n;, and k, we simulated and fit
100 data sets under independent exponential priors with mean 1 on ay, ..., ay. Figure
plots the results for running the component-wise algorithm on each data set. The vertical
axes are estimates of M*, the block size such that Pr(|Z,;«_;| = 1) = 0.5, so that if the block
size M = M, then the expected time until coalescence for the composite algorithm satisfies
M* < E(r) < 2M*. Encouragingly, M* appears to increase slower than linearly with N, k,
and n;/k, and our method is not restricted to small samples, as we are able to fit data sets
with up to 200,000 total counts.

However, our implementation leaves room for improvement. With N = 100, each iteration
took approximately 14 seconds on a 2.80 GHz CPU. We do not view this as a fundamental lim-
itation of our method, however, since we made no attempt to optimize our code, and further
numerical and computational work could reduce the computation time for the draws from
() and (), just as there are now fast algorithms to evaluate the inverses of common
cumulative distribution functions, for instance. Of course, the computation time per iteration
must also increase linearly with £, since the component-wise algorithm must cycle through
each dimension.

To illustrate the speed gains in greater detail, we fit two simple artificial datasets, given

in Table , assuming independent exponential prior distributions on a; and «,. Figure
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Figure 1.2: Plot of the dependence of estimates of M*, where Pr(|Zy/«—1] = 1) = 0.5, on the number
of rows N, the dimension k, and the average cell count n; /k. In (a), the dimension is fixed at 20, and in
(b), the number of rows is fixed at 5. Estimates of M * are based on 100 simulated data sets under each
condition, and error bars are +2 standard deviations estimated via bootstrap.

shows a histogram of coalescence times for the vector algorithm of Section applied to
the first artificial data set. The 37% of runs that did not coalesce in 10° iterations are omitted.
We also applied the vector algorithm to the second artificial data set, but we stopped it at 10°
iterations without observing coalescence. Thus, it can take an extremely long time for the
vector algorithm to return a value, even on low-dimensional, low-count problems with few
observed rows. By itself, the vector algorithm is useless in practice, as is the component-wise
algorithm, since the latter almost surely never returns a sample.

However, the composite algorithm () is much faster. Figure shows the times until
coalescence for the composite algorithm on both data sets, using various M. The gains are
substantial. Whereas the vector algorithm could not return a single sample for the second
artificial data setin 10° iterations, typical coalescence times for the composite algorithm are in
the dozens. Also plotted are the lower and estimated upper bounds in ([.20d) on the expected

coalescence times. The denominator Pr(|Z);_1| = 1) in the upper bound is estimated as the
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Table 1.1: Artificial data sets used to illustrate the speed gains of the composite algorithm

Artificial data set 1 Artificial data set 2

Class1 Class2 Class1  Class 2
Observation 1 5 10 10 20
Observation 2 6 9 12 18

proportion with |Z,; ;| = 1 0f 200 runs of the component-wise algorithm. On a 2.66 GHz CPU,
code for the composite algorithm took on average 16.0 and 16.1 milliseconds per iteration,
with standard deviations 0.2 milliseconds per iteration, for the low- and high-count artificial

data sets, respectively.

Coalescence times (units, 104)

Figure 1.3: Histogram of coalescence times 7 for the vector algorithm of Section applied to the first
artificial data set in Table fi.1. Only shown are the 63% of runs with coalescence times less than 10° itera-
tions.
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Figure 1.4: Plots of the dependence of the composite algorithm’s expected time until coalescence on the
block size M, for the (a) lower-count and (b) higher-count artificial data sets in Table [i.1]. Grey points are
jittered values of the number of iterations until coalescence for different runs of the composite algorithm.

Dashed lines are the lower bound and estimated upper bound in (i.20), and the solid lines connect aver-
age coalescence times for each block size.

1.6 DISCUSSION

Our data augmentation strategy was inspired by the algorithm of Kou and McCullagh (2009)

for approximating the weighted matrix permanent, defined as

per,(4) = Y w¥ ﬁAz’,aw
1

o€ll, 1=

where A;;, is the (j, k)th entry of an n x n matrix 4; cyc(o) is the number of cycles of the per-
mutation o; and II,, is the set of all permutations of {1,...,n}. The weighted permanent is
the density function for permanental processes, a class of Cox processes that can be used for
classification (McCullagh and Mgller, 2006; McCullagh and Yang, 2006). The sequential im-
portance sampling algorithm of Kou and McCullagh (2009) approximates the weighted per-

manent by drawing ordered partitions of {1, . .., n}, which can be mapped to permutations of
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{1,...,n} by viewing each block of the partition as a cycle, with the order of elements in each
cycle determined by their order in the partition. If A;; = 1 for all j and £, then the weighted
permanent is I'(w + n)/I'(w). The algorithm of Kou and McCullagh (2009) can then be inter-
preted as first randomly ordering the elements of {1,...,n}, and then partitioning them by

drawing

2; ~ Bernoulli (L) i=1,....n—1,
w+1—1

where z; = 0 means that elements i and ¢ + 1 are in the same block.
In the aforementioned technical report by Minka (2003), an exponential-family approxi-
mation is used to interpret the Dirichlet-multinomial model as a “multinomial with ‘damped’

counts.” Our method offers another perspective on that statement. Let us consider the likeli-

hood for one observation y = (y1, ..., yx):
['(wA; + yj
w, \) . 1.2
p(y| N + m ]1;[1 o (1.23)
In (), we observe the class assignments aq, . .., a, and count the number of individuals

n

assigned to each class y; = > ", 1(a; = j). Unlike in Section 1.2, here we introduce an

augmented variable o via p(y,o | ) = p(o | 0) p(y | 0,0). We therefore must verify that

p(y | 0) =3, p(0 ] 8) ply | 0,0) is the same as (L.23).

We first draw o, a permutation of {1, ...,n}, from
I'(w)
0 — W) o)
plo|0) Tt

This distribution depends only on w, not A, thus isolating the role of the parameter w and giv-
ing us a natural interpretation. This permutation then partitions the individuals {1,...,n}
according to the cycles of the permutation. We let C;(c) C {1,...,n} denote the set of ele-

ments included in the ith cycle of o, wherei = 1, ... cyc(o), and the order can be chosen, for

21



example, according to the smallest element in each cycle. We let B;; denote the event that all
of the individuals in cycle ¢ are assigned to class j; thatis, B;; = {a,, = j forallm € C;(o)}.
To ensure that class assignments are consistent within cycles of o, we also define the event
D = ﬂficl(a) U;?:l Bi;. Then, given o, individuals are assigned to classes according to the multi-

nomial distribution
cyc(o) k

plyo.0) =1 T] T[N,

i=1 j=1
where 1 is the indicator for the event D. This distribution depends only on A, not on w. We
can then verify that marginalizing p(o | 6) p(y | o, 0) over o yields ([L.23).

This augmented-data model quantifies several well-known and intuitive features of the
Dirichlet-multinomial model. First, no approximation is required to interpret the Dirichlet-
multinomial model as a “multinomial with ‘damped’ counts.” A draw from the Dirichlet-
multinomial model can be exactly generated by first partitioning the data according to a
permutation of individuals, and then by classifying individuals by a multinomial distribu-
tion acting on the blocks of the partition. The dampening is therefore a result of blocking
observations according to the permutation o.

Second, it is commonly known that small values of w induce sparsity in the observed data,
while the mean vector A controls the expected frequencies of each class. Sparsity means that
there may be many classes with zero observations and a few classes with many observations.
Thus, sparsity is associated with high variance. In the permutation augmentation, small val-
ues of w favor permutations with few cycles, so that most individuals are partitioned into just
a few blocks. The multinomial allocation to classes then necessarily results in sparse obser-
vations, because the class assignment operates on blocks, not individuals. Conversely, large
values of w favor permutations with many cycles, corresponding to fine partitions of individ-

uals and a lower chance of observing sparsity.
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1.7 CONCLUDING REMARKS

The block structure of our composite algorithm is reminiscent of read-once coupling from
the past (Wilson, 2000), which allows exact sampling without requiring the storage of random
inputs necessary for traditional coupling from the past. However, in Wilson (2000), each block
restarts with the maximal bounding set if the chain fails to coalesce in the previous block.
Thus, using the notation of Section , a read-once implementation of our sampler could be
based on blocks ¥ o @14 o [,

On the limitation side, our approach assumes that the prior 7 on 6 satisfies (@) and that
the prior 7wy on w satisfies Property E] While this is limiting, importance sampling can be
used if another prior is desired. Suppose we wish to estimate the expectation of a function
h(6) under the posterior distribution assuming the prior 7;. We can generate exact samples
01y, ..,0() from the posterior distribution assuming the prior = and use the importance

sampling estimator
L Wl(e(e))h(e
. =1 7w M 0w)
E{h) |y} = ===
=1 7(0r))

An avenue for future work is to investigate the tradeoff between using this importance sam-
pling estimator based on independent exact samples under 7, and using an approximate algo-
rithm for sampling directly under 7, such as any non-exact Markov chain sampler. A further
challenge is to extend our approach to models that account for covariates.

Despite the limitations of our specific algorithm, we believe the idea of using divide-and-
conquer composite bounding chains is suitably general, and it may provide an important
building block toward our ultimate goal of making perfect sampling a workhorse in statis-

tical computing.
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Catalytic priors: General methodology

2.1 INTRODUCTION

2.1.1 OUR GOALS

This article proposes a general strategy for constructing prior distributions in complex mod-
els. In complicated data analysis settings, the primary model under consideration is often so
flexible that additional regularization is necessary. One way to provide such regularization
is through informative or weakly informative prior distributions, but in multilevel models it

is often not clear how to build prior distributions on parameters that may be many levels
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removed from the observed data, and bad choices of priors may lead to problems such as
unrealistic predictions under the fitted model.

However, a simpler model for the observations is often available. While this simpler
model does not capture all of the scientifically relevant characteristics of the data or the
data-generating process, its simplicity means that it can be reliably estimated. The strategy
we propose builds a prior that shrinks the complex model toward the estimated simpler
model. One advantage of our approach is that it can be applied when the simpler model is
not a sub-model of the more complicated one, and in fact even when there is no relationship
between the parameters of the two models. Thus, our approach enables behavior similar to
hierarchical models in settings in which it is not clear how to enforce such behavior through
direct distributional assumptions on parameters. We call the priors resulting from our ap-
proach catalytic priors to suggest that adding such prior information catalyzes our ability to
use richer, more realistic models.

The remainder of this paper is organized as follows. We review some of the literature
on noninformative priors in Section and the recent developments on weakly informa-
tive priors in Section . Section p.2 introduces catalytic priors, which are defined in Sec-
tion . We provide two separate justifications of catalytic priors, one from the perspective
of missing data imputation in Section .3, and the other based on information theory in Sec-

tion @ Finally, Section @ concludes with a discussion of some related work.

2.1.2 DEFAULT PRIOR DISTRIBUTIONS

Before introducing catalytic priors, we briefly review some popular default priors. We re-
fer the reader to Kass and Wasserman (1996) for a more in-depth discussion of many of the
principles that have been suggested to guide the choice of default priors. After uniform pri-
ors, Jeffreys’s prior (Jeffreys, 1961)) is perhaps the most common default choice. Jeffreys’s

prior is meg() oc {det I(0)}/?, where I(f) is the expected Fisher information. Jeffreys’s
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prior is often justified by its invariance to reparameterization. If we transform from 6 to ¥
and let J be the Jacobian matrix of partial derivatives with ijth element J;; = 06;/0¢;, then
Tetr(V) = ()] det J| oc {det I(3p)}1/2. Thus, Jeffreys’s prior takes the same form regard-
less of the choice of parameterization, which is attractive if we want to interpret Jeffreys’s
prior as noninformative. Intuitively, if we have no information about ¢, then we also have no
information about ¢/(6), and it would make little sense for a noninformative prior for ¢ to be
informative for ().

Jeffreys’s prior also has attractive asymptotic frequentist properties, including bias reduc-
tion (Firth, 1993) and posterior intervals with coverage correct to O(n~!) when 6 is a scalar
parameter (Welch and Peers, 1963; Nicolaou, 1993). Brown et al| (2001) showed that when
used to construct confidence intervals for binomial proportions, Jeffreys’s prior performs well
in terms of coverage and interval length both in small samples and in “unlucky” large samples
in which the usual Wald intervals do not perform well.

In multidimensional settings, however, Jeffreys’s prior has well-known disadvantages.

Consider y; ~ N(p,0?),i = 1,...,n. If only p is unknown, then Jeffrey’s prior is uniform;

2 2

if only o? is unknown, then meg(c?) o< (0?)~'; but if both x and o2 are unknown, then

7(1, 0?) o< (6)73/2, In fact, if there are k unknown means jy, . . ., j; and a common variance,

then the usual rule for Jeffreys’s prior yields 7(u1, ..., ux, 0?) o< (o2)~17F/2

. The marginal
posterior distribution of an individual mean, say i, is a ¢ distribution with n degrees of
freedom, where 7 is the total number of observations across all groups. Thus, the degrees
of freedom do not depend on the number of means being estimated, which Jeffreys found
unacceptable (Jeffreys, 1961). Under the prior m(uy, . .., ux, 0?) < (¢?)~!, the corresponding
degrees of freedom would be n — k, reflecting the extra uncertainty due to estimating k
different means. Jeffreys addressed this by proposing to give location parameters uniform

priors, and to apply the rule {det I(¢)}'/? to the remaining parameters, where I(¢) is the

expected Fisher information for the non-location parameters ¢, holding the location param-
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eters fixed. Of course, this remedy sacrifices the invariance that was the original justification
for this prior (although Jeffreys (1961, p. 183) argued that it maintains invariance for the only
transformations we should care about).

Bernardo’s reference prior is another default prior with appealing properties (Bernardo,
1979; Berger and Bernardo, 1992; Berger et al, 2009, among others). The idea is to maximize
for a given likelihood the amount of expected missing information, so that the prior is least in-
formative in that it leaves the maximum amount of information to be learned from the data. In
many circumstances, the reference prior reduces to Jeffreys’s prior. Other principles that can
be used to construct noninformative or default priors include maximizing entropy (Jaynes,
1957, 1968) and guaranteeing that the frequentist coverage of posterior intervals is approx-
imately equal to the posterior mass contained within those intervals (see Fraser et al, 2010;
Datta and Mukerjee, 2004, for recent examples). Deriving matching priors that ensure correct
coverage in complex models can be difficult in practice, or even theoretically impossible. We
will discuss maximum entropy priors more in Section @

A more fundamental problem with most approaches to objective or default priors is that a
diffuse prior can be very informative in high dimensions. Kass and Wasserman (11996 discuss
this issue in depth. Their conclusion is that in large-sample settings in which the likelihood is
sharply peaked, many default methods (most of which are based on asymptotic arguments)
such as Jeffreys’s prior will work quite well, but so may other naive diffuse priors. In fact,
improper posteriors may even give reasonable results if model-fitting is concentrated around
the peak of the likelihood. On the other hand, in small samples, conclusions may be extremely
sensitive to the choice of prior. Then, none of the default methods may be reliable, and much
care is needed. If the model is complicated enough, we may effectively be in a small sample
setting even when there are many observations. The question then becomes whether there
are good general strategies for guaranteeing that inferences are scientifically sensible, even

when the likelihood is not sharply peaked. Providing such a strategy is one goal of weakly
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informative priors, so we discuss them next.

2.1.3 WEAKLY INFORMATIVE PRIOR DISTRIBUTIONS

Recently, weakly informative prior distributions have been proposed and investigated in Gel-
man (2006), Gelman et al. (2008), Fiquene et al) (2009), and Polson and Scott (2012), among
others. These priors are motivated by a desire to find a robust middle ground between a
noninformative prior and a subjective, informative prior. In modern statistical problems,
investigators often have a wealth of subject-matter expertise. While some of this expertise
is undoubtedly used to build a reasonable likelihood or hierarchical model, rarely does that
model capture all of an investigator’s scientific knowledge. A combination of statistical and
subject-matter knowledge may also be available; for instance, Gelman et al, (2008) scaled
their prior based on the plausible size of logistic regression coefficients when covariates have
been standardized. The goal of a weakly informative prior distribution is to inject enough
of this additional knowledge into the model to prevent unreliable behavior and scientifically
unreasonable inferences, while leaving enough flexibility in the model so that the prior has
little influence on the final conclusions if there is strong information in the data to contradict
the prior.

The goals of our approach are similar to those of weakly informative priors. The literature
on weakly informative priors has focused on developing and evaluating default weakly infor-
mative priors for typical models, one class of models at a time, as in Gelman (2006) and Polson
and Scott (2012) for hierarchical variance parameters and Gelman et al| (2008) for logistic re-
gression models. In contrast, the approach we take here is to develop a general strategy for
building into the final inferences additional scientific knowledge in the form of a plausible
simpler model that we can reliably fit using the data at hand. To be clear, we are aiming nei-
ther for noninformative priors nor for elicitation of subjective prior knowledge. Rather, we

hope to provide a guide for the incorporation of additional weak prior information.
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Finally, we emphasize that while Gelman (2006), Gelman et al, (2008), Fiquene et al, (2009),
and Polson and Scott (2012) all focus on heavy-tailed priors such as the Cauchy, our approach
does not: it yields conjugate priors which may have light tails. We do not view these as con-
flicting points of view because our framework makes it possible to combine these approaches,
using a heavy-tailed prior as an underlying default prior, and altering it into a catalytic prior
that effectively builds in hierarchical structure. Investigating such a combined approach is

beyond the scope of the work here.

2.2 DEFINING CATALYTIC PRIORS

2.2.1 NOTATION

To avoid confusion among the several models at play, we will use the same letter to denote
different densities within the same Bayesian model, allowing the arguments to specify the
intended distribution. We let f denote the full, flexible model that needs additional regular-
ization. The likelihood of our full model is f(y | 6), where § € R%, and we assume we have
a default prior density f(0) with respect to Lebesgue measure. However, the posterior dis-
tribution under the full model may not be proper given observations y. That is, we may have
[fly10)f(0)dd = co. If [ f(y | 0)f(8)df < oo, then we denote the posterior density under
the full model by (6 | y) = f(y | 0)(0)/f(y), where f(y) = [ f(y | 0)f(0)db.

We also have a simpler, estimable model g. For reasons that will soon become clear, we call
g the prior generating model. The likelihood under the prior generating model is g(y | ¢),
where ¢ € R%, and we also have a default prior density g(¢). We assume that the posterior
distribution g(¢ | y) is proper, as is the posterior predictive distribution g(7 | y) for future
data g.

We denote by 7 the final model used for inference and prediction. Thus, 7(¢ | y) is the

operational posterior distribution on 6, the parameter of the full model, and 7 (7 | y) is the
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operational posterior predictive distribution for y.

2.2.2 SETTING THE STAGE

We motivate our definition of catalytic priors with two examples.

Example 2.2.1. Suppose y = (yi,...,y,) consists of n independent and identically dis-
tributed draws from an exponential family with sufficient statistic 7'(y) and natural parame-
ter B(0), so that

fly | 6) = " TOEO-COLf),

A conjugate prior for 6 is

7(6)df o emoHoBO-CO gy,
The posterior density under this likelihood and prior is therefore

(0 |y) < f(y | 0)m(0)

e e{nouo+nT(y)}’B(9)—(no+n)C(9)’

which as a function of ¢ is identical to the likelihood if we had observed an additional ng ob-
servations with sufficient statistics 1. This is the well-known pseudo-data interpretation of

conjugate priors.

Example 2.2.2. Consider a logistic regression model

e’

z'.0
Z] | 97mj,xj ~ Binomial (m], m) s j = 1, cea, N

Suppose the predictors x; are discrete with finitely many distinct values, and suppose that for
some but notall values of j, m; may be 0, in which case z; = 0. To prevent complete separation

and infinite maximum likelihood estimates in this model, even when the observations are
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sparse, Clogg et all (1991) considered a data-dependent conjugate prior

o0 kp/n 1 k(1-p)/n
O( - 75 )
H 1+ %0 + €% (1 + exfe)

where £ is the dimension of ¢ and p = > 7_, z;/ > 7_, m; is the marginal proportion of “suc-
cesses” in the data. The posterior under this prior is identical to the likelihood if we had ob-
served an additional kp/n successes and k(1 — p) /n failures for each possible predictor vector
x;. Aslong as 0 < p < 1, which is obviously necessary for this logistic regression model to be
sensible, there will be positive values in every cell of the full n x 2 contingency table formed
by the data and the pseudo-data, guaranteeing finite posterior modes. Clogg et al. (1991)
partly justified this data-dependent prior by drawing an analogy with James-Stein estima-
tion, in which the mean squared error for estimating a multivariate normal mean vector can
be improved by shrinking the maximum likelihood estimate toward the mean of the observed

components.

2.2.3 CATALYTIC PRIORS

Our definition of catalytic priors provides a generalization of the approach of Clogg et al.
(1991) that can be implemented in more complicated settings. A catalytic prior will shrink
the full model estimates toward an estimated simpler model, in a manner that will be made

more precise in Section @

Definition 1. A catalytic prior for a Bayesian model { f(y | #), f(6)} given a prior generating

model {g(y | ¢), 9(¢)} is
mry(0) oc f(0) exp {T/g(yp | y)log f(yp | Q)dyp}7 (2.1)
where g(yp | ¥) = [9(yp | ¢)9(¢ | y)d¢ is the posterior predictive distribution for y,, and 7
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is a tuning parameter. (The subscript ‘p’ is meant to indicate that y,, is used to create pseudo-

data.)

To perform inference under a catalytic prior, we combine it with the likelihood of the full

model to obtain the posterior distribution

(0| y) o< f(y | 0)mry (0).

Because of the appearance of ¢(y, | y) in (1), catalytic priors depend on the observed data,
and so depart from strict Bayesian principles. We believe it is still useful to refer to them as
“priors” because of the role they play in regularizing complicated models. However, viewed
as prior distributions, they do not result in coherent inferences, in that if the data y are parti-
tioned into (y1, y2), observing first y; and then y, will give different results than observing first
y2 and then y;, which will in turn differ from observing (y1, y-) together. These give different
results because different data will be used to fit the prior generating model g.

Because of the inclusion of the factor f(6) in ([1]), catalytic priors are invariant to one-to-

one reparameterizations. Letting .J be the Jacobian matrix of the transformation from 6 to

v,

(1) = 0y {O(0)} | det J]
x exp [ [ st 1108 540 ew)}dyp} F{606)) | det ]

~oxp { [ ston 108 £ | ¢>dyp} 7).

The propriety of ., (#) is often especially easy to verify in exponential families. Under mild
regularity conditions, if f(y | #) is a natural exponential family with sufficient statistic 7'(y),

then Theorem 1 of Diaconis and Ylvisaker (1979) implies that when 7 > 0 and E,{T'(y,)|y} =
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f 9(yp | )T (yp)dyy is not on the boundary of the sample space, we have
/ﬂw&/m%HM%ﬂ%HM%}w<m.

2.2.4 EXAMPLES OF CATALYTIC PRIORS

Example 2.2.1] (continued). Suppose the default prior f(6) o 1, and suppose log flyp | 0) =
T(yp)'B(#) — C(0), ignoring terms that do not depend on 6. If we set 7 = n,, then any prior
generating model such that E,{T'(y,) | y} = po for all y (for example, we may choose ¢ so

that g(y, | ¥) = g(yp)) will yield the conjugate prior

7(0) o eroliBO=-CO)}

as the catalytic prior 7, ,(¢). For example, to obtain a Beta(a, b) prior for a Binomial(n, #)

observation, we could let f(y, | #) be Bernoulli(f), set 7 = a + b, and choose ¢ so that

Eg(@/p‘ﬂ) =a/(a+b).

Example @ (continued). Again, suppose the default prior f() 1, and also suppose

that under the prior generating model the likelihood is
2; | ¢, my, z; ~ Binomial(m;, ¢),

where ¢ is a scalar probability of success, so that g(z; | ¢,m;,z;) = g(z; | ¢, m;). Fur-
ther, consider the prior g(¢) o« ¢~ '(1 — ¢)~'. Under g, the posterior distribution of ¢ is
Beta(__, zj, > .;_,(m; — 2;)). Now, suppose 2, = (zp1, . - ., zpn) is @ vector of binary pseudo-

responses. Thus,

log f(zp | 0, x) = const + Z 2p 250 — Z log(1 4 €%1?),

j=1 j=1

33



and, for all j,

Ey(zp; | z,m) = Ey(¢ | z,m)
= Z Zj/ij.
j=1 j=1

Therefore, the approach of Clogg et al) (1991) can be viewed as a catalytic prior with the prior

generating model given above and 7 = k/n.

Example 2.2.3. Suppose the full model for y = (y1,...,y,)is
y| 6~ N 0%L), (2.2)

where 0 = (04, ...,0,), I,, is the n x n identity matrix, and the variance o2 is for now assumed

known. The celebrated James-Stein estimator

05 =g+ (1— Z‘f(”‘?’) ) (v — 1),

j:l(yj - 9)°

where ¢ is the sample mean, has lower quadratic risk than the maximum likelihood estimate
OMLE — 4. if n > 4, and has a nice empirical Bayes justification; see James and Steinl (1961),
Stein (1962, particularly Lindley’s discussion), and Efron and Morris (1973), among many
others.

To derive a catalytic prior for (@) that can be directly compared with the James-Stein
estimator, we assume that the prior generating model is y, ~ N (41, agln), where 1,, is the
n-dimensional vector of ones. For simplicity, we will treat 03 as known (assumptions we make
on ag do not affect the catalytic prior, so it does not matter if we assume 02 to be known or

unknown), and we will let g(p,) o< 1. Because we assume that o2 in the full model is known,

the sufficient statistic for a pseudo-dataset y, under the full model is just y,. Under the prior
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generating model, the posterior predictive distribution y, is yp | y ~ N(y1,, 0, (1 + 1/n)1,).

Therefore, assuming f(6) 1, the catalytic prior is

T " _
777',1!(9) X exp {_ﬁ Z(el - y)Q} )
=1

corresponding to § ~ N (y1,,7 '021,). The posterior mean of § under this model is

-
1+7

B0 1) =1t (1= ) - L)

so that the posterior mean agrees with the James-Stein estimator if

ey

2.3 IMPUTATION PERSPECTIVE

Viewing prior distributions as pseudo-data inspires us to treat prior specification as a missing

data problem. We envision a complete dataset

{(yh wl)? SR (ym wn)? (ypl7 wp1)7 BRI (ypm7 wpm)}7

where y = (v1,...,¥y,) are observations given weights w = (wy,...,w,), and the missing
values ¥, = (Yp1, - - -, Ypm) are pseudo-observations given weights w, = (wp, ..., Wpy,). We
will assume that w; = 1 and wy; < 1 for all 7 and j, downweighting the pseudo-data so that
they have less influence on our final inferences. One simple way to incorporate the weights
w; is to set f(y; | w;,0) = {f(y: | 0)}**, where f(y; | 0) is the likelihood for y; assuming unit

weight. If we had observed the pseudo-data y,, we could use the likelihood f(y | w, ) of our
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full model and a default prior f(¢) to obtain the posterior distribution

FO [ {y, w}, {yp, wp}) ox {H f(yi | wi,H)} {H S (s | ijﬂ)} f(0). (2.3)

Because the pseudo-data y, are not observed, we generate them under the prior generat-
ing model g. A single realization of y, would correspond to a fixed prior distribution on 0,
proportional to f(0) H;”:l f(yp; | wp;,0). Here, we average over multiple realizations of y,,
drawn from the posterior predictive distribution g(y, | v) under the prior generating model.

That is, we average f(0 | {y, w}, {yp, wp}) over g(y, | v), yielding a posterior distribution

p(6] ) = / 101 {5, 0}, (s wp g | 1)y (2.4)

This procedure is similar to multiple imputation (Rubin, 1987; Little and Rubin, 2002). In
the multiple imputation literature, the roles of the imputer and the analyst are distinct. For
example, given a survey with missing responses, the imputer may fill in these missing val-
ues multiple times using draws from a probabilistic model. Then, multiply-imputed surveys
can be released to the analyst, who can analyze each of them with standard complete-data
methods and combine the results using rules that lead to valid inferences. Here, we view y,
as missing data and multiply impute it under the prior generating model g(y, | v). However,
there are at least two differences between this setting and traditional multiple imputation
for missing data. First, the pseudo-data are merely a useful construction, not real missing
observations. Second, we intentionally choose a prior generating (imputation) model g that
is simpler than the full (analysis) model f in order to constrain the inferences under the full
model. In multiple imputation for missing data, if the imputer assumes a simpler model than
the analyst, the analyst may be unable to obtain valid inferences (Meng, 1994). Here, without

the additional constraints provided by the observations imputed under a simpler model, the
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analyst may be unable to fit the full model at all.

Of course, (g.4) does not agree with the catalytic prior of Definition f. The derivation
leading to (@) assumed that the pseudo-dataset had a fixed size m, but it is not clear how
to choose a good value of m. We can consider a high-resolution version of (@) by letting
m — oo. Of course, to avoid overwhelming the observed data, the weights given to a dataset
with larger m should be reduced. We can do this by setting w,; = 7/m for all j. As suggested

above, we can incorporate the weights by setting

Fypg L wps, 0) = {f(yps | 0)}» = {f (s | )}/

Then, by the law of large numbers,

m 7_ m
log [ [ £(ups | wps.0) = — > log f(ups | 0)
=1 =1

—>T/g(yp | y)log f(yp | 0)dy,

asm — 0o, assuming the y,; are independent and identically distributed draws from g(y;, | v).

This inspires the posterior distribution

(0 | y) o< f(y | 0)f(0)exp {T/g(yp | y)log f(yp | 9)dyp}- (2.5)

which in turn motivates our definition of catalytic priors.

Clogg et al, (1991) used catalytic priors in logistic regression to multiply impute 1980
U.S. Census industry and occupation codes for 1970 public use samples. They wanted to use
a flexible imputation model so that a wide range of valid analyses could be performed on the
imputed datasets. Thus, rather than dropping covariates and using more parsimonious lo-

gistic regression models, they retained all plausibly relevant predictors and introduced weak
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regularization through catalytic priors. Because their application was multiple imputation,
their goal was prediction; in particular, they wanted to obtain predictive distributions that
were appropriately diffuse when the data provided little information. In the next section,
we will investigate how catalytic priors constrain the predictive consequences of the final

posterior predictive distribution 7, (7 | y).

2.4 INFORMATION PERSPECTIVE

We can rewrite the logarithm of (@) as
log 7. (0 | y) = const +log f(y | ) + log f(8) — 7D, (), (2.6)

where

D, (0) =xi{g(yp | v), f(yp | 0)} = /g(yp | y) log ?igﬁ—hg;d@/p

is the Kullback-Leibler divergence (Kullback and Leibler, 1951) from the posterior predictive
distribution under the prior generating model to the likelihood of the full model. Thus, (@)
can be interpreted as adding a penalty to the original log posterior that keeps the likelihood
under the full model from diverging too far from the estimated predictive distribution under
the simpler model.

Defining , = arg max, log 7. (0 | y) and observing that

0, = arg max{log f(y | 9) +log /(6) — 7D, (6)}

1 1 T
_ 1 0) + — log f(0) — D, (6
arg;naX{HT 0g f(y | 0) + 108 f(0) — Dy )}>
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~

we immediately see that 0 =lim, ... 0. = arg min, D, (¢). Under regularity conditions,

-
6=>0

assuming it is valid to interchange differentiation and integration. Under further conditions,

0

Olog f(y, | 0)
@Dy(@ -

=F
o 9(yply) { o0

as 7 increases, the posterior distribution of 7'/2(f — é) converges to a normal distribution

with mean zero and inverse covariance matrix

82

0? log f(yp ’ 9)
9000’ Dy(0) B

=E P { /
ot 9(yply) 90060

o

See Johnson (1967) for a rigorous development of the normal asymptotics in the case of a
scalar parameter. Thus, in the limit 7 — oo, the posterior shrinks to a point mass on é, and
fyp | é), plugging in f for 6, is the Kullback-Leibler projection of the prior generating model’s
estimated predictive distribution onto the full model family. This is reminiscent of the well-
known result that the maximum likelihood estimate under the wrong model converges to the
parameter value that minimizes the Kullback-Leibler divergence from the true model to the
parameterized family under which the MLE is calculated.

We now consider the posterior predictive distribution of future data ¢ under catalytic pri-

ors. Denoting this posterior predictive distribution

(i | ) = / (5| 0)7, (6| )do,

by Jensen’s inequality we have

KLA{R(), (9 | )} < Ex o) [KL{A(G), f(5 ] 0)}] - (2.7)

If we replace h(7) by g(7 | y), and if  has the same sampling distribution as y, under both f
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and g, we obtain

KL{g(@ | ¥), 7 (| ¥)} < Er (o) {Dy(0)} - (2.8)

On the other hand, if 7 is not restricted to have the same sampling distribution as y,, and
if we view A(g) in (.7) as the true distribution generating future data §, then (.7) is an ar-
gument in favor of estimating 4 (7) with the posterior predictive distribution, rather than the
plug-in estimate f(g | %), for 0* drawn from 7. (6 | y) (Akaike, 1978). Of course, there may still
exist some 6* such that KL {h(9), f(7 | 0*)} < KL{h(9),7-(7 | y)}. However, Aitchison (1975)
showed that for multivariate normal observations, the posterior predictive distribution un-
der a flat prior on the mean uniformly dominates in Kullback-Leibler risk the distribution
obtained by plugging in maximum likelihood estimates.

Aitchison (1975) also showed that a posterior predictive distribution p(y | y) minimizes the
Bayes risk of estimating the true distribution f (7 | 0e) under Kullback-Leibler loss, where
the Bayes risk averages over the prior distribution used to obtain p(7 | y). lAitchison (1975)
interpreted this as the unsurprising result that if we really believe our prior, we should be
Bayesian. However, here we do not necessarily believe our prior 7, ,(¢), but we would like to
know whether the posterior distribution 7. (6 | y) and the posterior predictive distribution
7.(§ | y) are optimal under any other considerations. This turns out to be true, and the
result is closely related to maximum entropy methods as in Jaynes (1968) and to variational

Bayesian approximations.

Theorem 2. Suppose [ f(y | 0)f(0)e ™P»9df < oo if T > 0. Then the posterior m.()(0 | y)

under the catalytic prior is the solution to the constrained optimization problem

minimize /7(9 | y) log %d@ subjectto  Erg,{Dy(0)} = c.
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The constraint implies that

KL{g(Yp | ¥), Tr(o)(p | Y)} < c (2.9)

Proof. See, for example, Kullback (1968, p. 37-38), but note that the proof is valid even if

[ f(y | 0)f(8)do = oo. Also, see Shore and Johnson (1981). Finally, (.9) is a consequence of

(2.9). O

It is easy to show that

0
EEmem{Dy(@)} = —Var, g, {Dy(0)},

so that if Var, g, {Dy(6)} > 0 forall 7, then E.._,){Dy(0)} is strictly decreasing in 7. Thus,
c(t) = Er (gy{Dy()} is a one-to-one function of 7. Valid choices of ¢ must lie between
lim, o ¢(7) = D,(f) and lim,_, ¢(7), to guarantee that the corresponding 7 = 7(c) will fall
within (0, c0).

Theorem @ means that if f(y) = [ f(y | 0)f(0)dd < oo, then the posterior under the

catalytic prior can be viewed as the best approximation of the posterior

fO1y)=fyl0)f(O)/f(y),

subject to a constraint on the expectation of the Kullback-Leibler divergence from the pos-
terior predictive distribution g(y, | y) to the full model likelihood f(y, | #). On the other
hand, if the posterior distribution under the full model is improper, meaning that [ f(y

0)f ((9)(19 = 00, then we are finding the best probability distribution to approximate the mea-
sure u(A)= [, f 1 f(y | 0)f(0)do, again subject to a predictive constraint. Although we interpret
this constraint as restricting candidate posteriors to a family of models that lead to predic-

tive distributions not too far from a simple but reliably estimated predictive distribution, we
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do not optimize under an inequality constraint on KL{g(y, | ¥),7-(yp | v)}. This latter ex-
pression, as a divergence from one posterior predictive distribution to another, may be eas-
ier to interpret than the posterior expectation E_,){D,(f)}. By optimizing instead under
the stricter constraint on £ _(|,){Dy(¢)}, we both obtain a tractable solution that can be im-
plemented in complex models and guarantee a bound on the more interpretable divergence
KL{g(yp | ), 7 (4 [ )}

We can derive the catalytic prior analogously by trying to approximate the prior f(6) sub-
ject to a constraint on the prior expectation E,_ ) {D,()}. The proof of the following re-
sult is essentially identical to that of Theorem B. Of course, in general, B o{Dy(0)} #

Er. 011D, (0)}, so for the same value of 7, the values of ¢ in Theorems fJ and k{ will differ.
Theorem &*. Suppose [ f(0)e ™"")df < oo if T > 0. The catalytic prior m,(,(0) is the

solution to the constrained optimization problem

minimize /7r(9) log %d@ subjectto  Erg{D,(0)} = c.

The constraint implies that KL{g(yp | ¥), M+(c)4(¥p)} < ¢, where

moton() = [ 161670560 2-10)

is the prior predictive density or marginal likelihood.

The optimizations in Theorems @ and @ are closely related to variational Bayesian methods
in which an approximation is sought of a computationally intractable posterior distribution
p(@ | y). A family Q of more tractable densities ¢(6) is chosen, and we approximate the pos-

terior distribution of interest via

(0 ) = argmin kL {9(6).p(0 | )
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Though they minimize the same objective function, catalytic priors have a different aim. The
computational tractability of the full-model posterior f(f | y) is not the issue; instead, we are
concerned about possible posterior impropriety, noisy behavior, and unreasonable parameter
estimates, all of which can result in predictive distributions for future data that conflict with
our scientific knowledge. Thus, catalytic priors are designed to restrict the family of candidate
approximate posteriors for the purpose of regularization.

The form of the catalytic prior is very similar to maximum entropy priors derived by Jaynes
(1968) under constraints on prior expectations of functions of §, where for continuous 6 the
entropy is defined as — [ () log{ () /mo(0) }df, with ,(6) an “invariant measure” intended
to be a noninformative prior for 6. This is somewhat ambiguous, since it is often not clear
how to choose a noninformative prior m(¢) (Berger, 1985, p. 92). Catalytic priors do not
suffer from this ambiguity because no attempt is made to create a formal rule leading to an
objective prior.

Bernardo’s prior (Bernardo, 1979; Berger et al;, 2009) also originates in information theo-
retic considerations, but there are several crucial differences between Bernardo’s prior and
catalytic priors. Bernardo’s prior is motivated by an attempt to maximize the expected Kull-
back-Leibler divergence from the posterior to the prior under the same model, where the
expectation is taken over the marginal distribution of the data, while the catalytic prior at-
tempts to shrink toward an estimated predictive distribution under a simpler model. There
is only one likelihood at play in the Bernardo prior, while the catalytic prior relies on two
different likelihoods, one for the full model and one for the simpler prior generating model.
In contrast to the catalytic prior, Bernardo’s prior has no tuning parameters. Finally, unlike
Bernardo’s prior (see Berger and Bernardo, 1992)), the catalytic prior does not involve a dis-
tinction between parameters of interest and nuisance parameters.

Statistical physicists call the normalizing constant Z(3) = [ f(0)e’"»®)df the partition

function, where we have substituted 5 = —7 to agree with standard notation in physics, and
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it is well known and easy to show that

d
Er o) {Dy(0)} = i log Z(3).

This immediately leads to the following result, which is perhaps more statistically inter-
pretable and is closely related to path sampling for computing ratios of normalizing constants

(Gelman and Meng, 1998).

Result 1. Suppose [ f(0)e~™Pv)dh < oo, Then the difference between the posterior and prior

expectations of the Kullback-Leibler divergence D, () satisfies

0
Er 01 Dy(0)} — Ex, ,0){Dy(0)} = ~5- log m, (), (2.11)

where the derivative is evaluated at the value of T used in the catalytic prior, and m. ,(-) is the

prior predictive density defined in (@)

Proof. Assuming we can interchange integration and differentiation, () can be verified

directly by differentiating

log My (y) = log / fly | 6)f(0)e ™ Ddb —log / F(O)e ™) ap.

]

Intuitively, if increasing 7 decreases log m ,(y), then the observed data y do not favor the
values of # that make f(y, | 6) close to g(y, | y). Itis therefore unsurprising that, in such
settings, the posterior expectation of the divergence of f(y, | #) from g(y, | v) is larger than

the prior expectation.
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2.5 DISCUSSION

The power priors of Ibrahim and Chen (2000), [brahim et al} (2003), and Chen and Ibrahim
(2006), among others, have some similarities to our approach. Power priors are proportional
to the likelihood of a historical dataset, raised to a power a( between 0 and 1. Ibrahim and
Chen (2000) suggest a hierarchical specification in which «a is given a prior distribution. The
posterior (@) that conditions on a particular realized pseudo-dataset {y,, w,} is similar to
a power prior with fixed ao, if we interpret y, as historical data and we set w,; = q for all
J. Of course, y, are not actually historical data and must be simulated from a model in our
approach. [brahim and Chen (2000, Section 7) briefly discuss the scenario in which historical
data Dy = (no, yo, Xo) are not available, suggesting that prior prediction can be used to obtain
yo- The focus on prior prediction differs from our approach of using posterior predictions
under another fitted model.

As mentioned in Section p.2.3, our definition of catalytic priors was inspired by Clogg et al.
(1991). Heinze and Schemper (2002) and Galindo-Garre et al. (2004) compared Clogg et al/'s
approach to alternative methods, including Jeffreys’s prior. Heinze and Schemper (2002)
found that the penalized likelihood method of Firth (1993) had lower bias than Clogg et al.’s
method, but this is unsurprising since Firth's method is explicitly designed to reduce bias.
We are not willing to dismiss Clogg et al's approach on the basis of this study because in
practice we are often interested in criteria other than bias. In the Monte Carlo simulations
of Galindo-Garre et al) (2004), Jeffreys’s prior and the Clogg et al/s approach performed al-
most identically in terms of median squared error, interval coverage, and interval width, and
the authors concluded that these two priors “may be the most recommendable in general
settings” (Galindo-Garre et al,, 2004, p. 113). Heinze (2006) also discussed methods for sepa-
ration in logistic regression, recommending penalized profile likelihood, but did not include

a comparison to Clogg et al's approach. Zorn (2005, p. 162) mentioned Clogg et al's method
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but dismissed it in an apparent misreading of Galindo-Garre et al, (2004):

In addition to the ad hoc nature of [Clogg et alls] solution, both Heinze and
Schemper (2002, p. 2413-2414) and Galindo-Garre et al] (2004) demonstrate
conclusively via Monte Carlo simulations that Clogg et al’s approach is inferior to
other available alternatives; accordingly, I do not discuss it any further here.
This statement is not supported by the results in the papers cited. We believe it is important
to push back against this claim because we do not want it to become conventional wisdom,
leading practitioners to ignore Clogg et al's approach. In Chapter B, we will show through
simulations that Clogg et al.’s catalytic priors often perform extremely well. In addition, we
believe that the work in this thesis, by placing catalytic priors on a principled foundation,
should reassure practitioners tempted to dismiss Clogg et al/s approach as ad hoc.

This chapter has proposed a general strategy for constructing prior distributions that en-
sure shrinkage toward an estimated simpler model. We expect this strategy to be most useful
in complex problems in which a simpler plausible model is available but other methods for
constructing priors are either intractable or lead to ill-behaved posterior distributions. While
we have focused on the case in which the simpler model is a Bayesian model that leads to a
posterior predictive distribution ¢(y, | y), it would be possible to consider a more general
set-up in which the expectation of log f(y, | ) is calculated with respect to any estimated
predictive distribution §(y, ), not necessarily a Bayesian posterior predictive distribution. For
instance, instead of using ¢(y, | ), it may sometimes be much more tractable to use g(y, | é),
plugging in the maximum likelihood estimate ¢ under g(y | ¢) for the parameter ¢, and in
some cases there may be little practical difference between the results under the plug-in and

posterior predictive approaches. Investigating these issues more closely is left to future work.
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Catalytic priors: Specific models

3.1 INTRODUCTION

In this chapter, we develop and evaluate catalytic priors for a variety of parametric models.
In Section @, we will examine a simple two-state Markov process. In Section , we ex-
plore how to apply catalytic priors to regression models that include covariates, applying this
approach to logistic regression in Section @ and to linear regression in Section @ To illus-
trate how to apply catalytic priors when the observed-data model is a latent variable model,

we examine latent variable and multilevel models in Section @ and Section @ extends this
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to a more complicated mixture model in a preliminary analysis of the effectiveness of a job

training program.

3.2 TWwWO-STATE MARKOV PROCESS

Suppose we observe a two-state continuous-time Markov process z(t) at regular time inter-
vals. Such a process can arise in biophysics, for example when studying single-molecule dy-
namics (Kou et al,, 2005). Let the states of the chain be 0 and 1 and the interval between

observations be . We can write the infinitesimal generator of the chain as

_l{Ol kOl
klO _kIO

Sojourn times in states 0 and 1 are independently exponentially distributed with means
ko' and kg, respectively, and the stationary distribution of this chain has probability
p = koi/(ko1 + kio) of being in state 1. Letting A\ = ko + ko, the transition probabilities
Pya(1, ) = Pr(a(t) = j | 2(0) = i) are

Poos(p, A) = (1= p) + pe™
Pora(p, A) = p(1 — ™)
Pioa(p, A) = (1= p)(1 — ™)

Prg(p,A) = p+ (1= p)e™,

where the notation is chosen to emphasize the dependence of the transition probabilities on
the parameters ;. and \. We observe y; = z(id),7 = 0,1,...,n, which can be viewed as a

realization of a discrete-time Markov chain with transition probabilities that are functions of
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the parameters of interest. Conditioning on ¥, we obtain the full likelihood

FylmN = T Puslw. )",
(i,7)€A

where A = {0,1} x {0, 1} and NV;; is the number of observed switches from state i to state j.

If § is too large, then it may be possible to accurately infer y, but the likelihood will be rela-
tively flat in \. Indeed, as 6 — oo, the process becomes a sequence of independent and iden-
tically distributed Bernoulli(x) observations, with no information on \. On the other hand, if
the time interval nd is too short relative to k;,' and k;;, we will not observe many switches
between states, which can make it hard to reliably estimate both 1 and A via maximum likeli-
hood. In fact, if no switches between states are observed, then both maximum likelihood and
posterior estimates under catalytic priors will fail. This is analogous to trying to fit a binary
logistic regression when all responses are equal.

Figure @ displays the probability of observing at least one switch between states 0 and 1
as a function of the total observation time nJ, fixing ky; = 0.1 and k;y = 0.9. In general, this
probability is

L— p{Prag(p, A} — (1= ) {Poos(p, A}

assuming 1, is drawn from the stationary distribution. Although in the likelihood we do not
condition on observing at least one switch, in practice we would not analyze data with zero
switches (assuming we only observe one dataset, so there is no opportunity for pooling infor-
mation across multiple datasets). As seen in Figure El], when nd is too small, observing any
switches is unlikely. In this regime, avoiding explicitly conditioning on observing at least one
switch may lead to estimation problems because we will almost certainly observe very few
switches, and the model will not properly account for the strength of evidence in such data

for extremely low rates.
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Figure 3.1: The probability of at least one switch between states in n = 100 observations as a function of
the total observation time nd, assuming that kyp; = 0.1 and k19 = 0.9.

For moderate §, we can use a catalytic prior. For our prior generating model, we fix i = 1/2
as a plausible default choice, so we can write the likelihood under the prior generating model
as g(y | \), depending only on \. To compute the expected log likelihood of the full model
under the posterior predictive distribution of this null model, we begin with the expectations
E,(Npij | A) of the sufficient statistics with respect to ¢g(y, | A), where N,;; denotes the num-
ber of transitions from state 7 to state j in a pseudo-dataset of size n,. The expected number
of transitions from state i to state j can be computed by constructing the Markov chain on the

augmented states v, = (s, yo11)- The stationary distribution of this chain is

Pr{v, = (i,7)} = w'(1 — 1) " Pijs(, V).

Consequently,
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Assuming a uniform default prior in the full model, so that f(u, \) o< 1, and letting

o= [ By | NgM | 9)d (3.1)

the catalytic prior yields the posterior

m(w A y) oo T AP A}t (3-2)

(i,5)eA
Evaluating the integral in (B.1) may not be straightforward. However, if the sample size is
large enough, then under reasonable choices of the prior g(\) for the prior generating model,

a;; can be well approximated by
aij = E9<Npij ’ >‘g = 5‘g)a (3-3)

where ;\g maximizes the likelihood g(y | A). Using a;; means we are shrinking toward the
plug-in estimate of the predictive distribution, g(y, | 5\9), rather than toward the posterior
predictive distribution ¢(y, | y). This may be reasonable in many settings, particularly when
the uncertainty in the maximum likelihood estimate is low and when the full posterior pre-
dictive distribution is intractable.

Conveniently, fixing ;o = 1/2 leads to a simple expression for the maximum likelihood esti-

. 1 T—-S
)\g: —glog (T),

where S = Ny; + Npg is the number of observed switches and 7' = n — S is the number of

mate \,:

transitions to the same state. This expression demonstrates that we will only run into prob-
lems when either S = 0, in which case we have no hope of fitting this model because we have

observed no switching between states, or 77 < S, in which case the likelihood g(y | A) is
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Table 3.1: Comparison of the simple plug-in estimate a;; with values of a;; obtained via numerical inte-
gration under two different priors, the Jeffreys prior and A~2. Under the null model that sets u=1/2,the
pseudo-observations a1 = agg and a9 = ao;.

oo ao1

(T,S) | Plug-in Jeffreys A2 | Plug-in Jeffreys  \72
(75,25) 37.50 37.38 37.96 12.50 12.62 12.04
(90, 10) 45.00 44.80 45.50 5.00 5.20  4.50
(98,2) 49.00 48.76 49.50 1.00 1.24  0.50

monotonically increasing in A\ and, because we have observed at least as much switching as
persistent states, the model itself is perhaps not a sensible choice.

TableR.1 compares the plug-in a;; to the a,; given in (@) under the full posterior predictive
distributions for two choices of the prior distribution g()\), for a range of choices of 7" and S
and with n, chosen to equal n = 100. Because lim_, g(y | A) = 27" > 0, the improper prior
g(A) oc A71, which might seem a natural choice, leads to an improper posterior distribution.
Thus, we compare the prior A=2 to the Jeffreys prior e=°*(1 — ¢=2%*)~1/2, The approximations
a,; fall between the values under the two priors.

Figure 3.2 displays results from fitting this model to data simulated under the model, for a
range of time intervals . The process was simulated using ky; = 0.1, k1o = 0.9, and n = 100.
We set 7 = 1/n;, equivalent to adding one total pseudo-count split among the four possible
transitions. The likelihood was parameterized in terms of (log ko1, log k10). Estimates were
found via maximum likelihood and by maximizing the posterior (@), and standard errors
were estimated from the Hession of the log likelihood or log posterior at the mode. Figure B.2
compares the coverage and width of the intervals f + 2, ,5e(0), where 2, , is the (1 — a/2)
quantile of the standard normal distribution and 6 denotes either log k¢, or log k1. When
the total observation time is approximately in the range (25, 350), the coverage of both inter-
vals is satisfactory, but the posterior intervals are almost always shorter. At the lower end

of this range, posterior intervals are shorter than likelihood-based intervals by an order of
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magnitude or more, and the posterior modes have much lower mean squared error than the
maximum likelihood estimates.

When nd is larger than about 350, the coverage of both likelihood-based and posterior
intervals drops sharply, with the posterior intervals doing notably worse, but as discussed
above, when ¢ is too large, there is very little information about \. If nd is smaller than about
25, then we may observe few switches between states. While maximum likelihood estimates
usually exist in these cases, they may perform quite poorly. For these cases, likelihood-based
and posterior intervals have lower than nominal coverage, but in this regime, the posterior

modes dominate the maximum likelihood estimates in mean squared error.

3.3 INTRODUCING COVARIATES

We often want to condition on observed covariates. To apply catalytic priors in this context,
we assume that the data y = (z, X), where 2z is a response vector and X is a matrix of pre-
dictors. Suppose the full model is a regression model and we are only interested in the con-

ditional distribution of z given X. We assume that

[z, X 10,8) = [z X,0)f(X | £),

where £ are nuisance parameters not of scientific interest, and § and £ are distinct in the sense
of Rubin (1976), that is, independent in the default prior, f(6,£) = f(0)f(£), with no links
implied by parameter space restrictions. The prior generating model is a joint model on 2

and X:

9(z, X [¢) = g(z | X,0)9(X | 9).
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Figure 3.2: Simulation results for a continuous-time Markov process observed at regular time intervals.
True values were kg1 = 0.1 and k1o = 0.9. The process was simulated 5000 times for each value of the
time & between observations using n = 100 intervals. The top row gives results for log ko1, the bottom
row for log k1. The first column is the ratio of mean squared error for the maximum likelihood estimates
to the mean squared error using the catalytic prior. The second column displays coverage of nominal 95%
intervals, with the dashed line corresponding to intervals based on maximum likelihood, the solid line cor-
responding to posterior intervals using the catalytic prior. The third column gives the ratio of the average
width of the likelihood-based intervals to the average width of the posterior intervals. Dotted lines are pro-

vided for reference.
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Then we can construct the catalytic prior

T-y(0) < f(0)exp {T/g(zp,Xp | y) log f(2p, Xp | 0,§)dzdep}

x /(6) exp { [ oo X 110z 12 | Xp,e>dzpdxp} , (3.4)

where the second line follows because log f(.X,, | {) does notinvolve the parameter of interest
6. Requiring a prior generating model for X, even when we are only interested in the param-
eters of the conditional distribution of z given X forces us to be explicit about the predictive
distribution toward which the catalytic prior will shrink the final model.

Depending on the structure of the data, we might evaluate the expectation over X, in dif-
ferent ways. If we have a fully-specified joint (z, X') prior generating model, we may be able
to evaluate it analytically, but this will probably be rare in practice. If we cannot evaluate the

expectation over g(X, | y) analytically, we have several options.

3.3.1 DISCRETE PREDICTORS WITH FEW COMBINATIONS

Let n, denote the number of rows X, the covariate matrix to be used in constructing a cat-
alytic prior. Suppose the predictors are discrete, and there are few enough of them that the
number ¢, of distinct possible predictor vectors is not too large. Let X, be the matrix ofall pos-
sible distinct predictor vectors (so that n, = ¢,), and consider a prior generating model that
places equal probability on each predictor vector, so that g(z,, X, | ¢) = g(2p | Xp, ¢)9(Xp).
Further, let x{m. be the ith row of X, and suppose that under the full model, responses are con-

Tip

ditionally independent given the covariates and ¢, that s, f(zp | X;,0) = [ L2, f(2pi | Zpis 6).
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Assuming that g(z,, X;, | ¢,v) = g(2p, X, | ¢), we have

9(zp: Xp | y) = g(Xp)/g(Zp | Xp,0)9(9 | y)do

= g(Xp)g(Zp | Xpa?/)'

Then, taking the expectation over g(X,)g(z, | X,, ), the prior (B.4) becomes

Tral0) o SO exp { [ 9t | Xouw)=- > log 1| xpi,mdzp}
Pi=1

= f(0) exp {Cl/g(zp | Xp,y)log f(2 | Xp70)dzp}' (3.5)

P

Clogg et al; (1991)) took exactly this approach, letting X, be the matrix of all possible dis-
tinct predictor vectors. Their choice of weight corresponds to 7 = k, where k is the number
of parameters in the full likelihood. By formulating the catalytic prior through a joint expec-

tation for (2, z,;), we therefore obtain a natural justification for making the pseudo-counts

in Clogg et al''s method inversely proportional to ¢,. (Note that in Example 2.2.2 (continued),

we did not consider a taking an expectation over z,;, and we accordingly set 7 = k/c,, in the
notation of this section.)

The prior (B.5) also has an appealing invariance to coarsening or refining the predictors.
Consider two models for the covariates, g(X,) and §(X,), where X, collapses some of the cat-
egories of X, together so that ¢, < ¢,, where ¢, and ¢, are the numbers of distinct predictors
in the coarse and fine models, respectively. Fixing 7 to a constant ensures that the pseudo-
dataset is roughly the same size compared to the observed data under either covariate model,

because we are simply calculating expectations over different covariate models in (5.4)).
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3.3.2 CONTINUOUS PREDICTORS

Now suppose either that there are continuous predictors or that the predictors are discrete
but ¢, is too large for it to be computationally feasible to enumerate all of the distinct pos-
sible predictor vectors. Then we can approximate the expectation by sampling n, different

predictor vectors from an appropriate model. The prior (@) becomes

Try(6) o< f(0) exp {nl /g(zp | Xp,y)log f(2 | Xp,G)dzp} ) (3.6)

p

Design principles can also be used instead of random sampling for choosing predictor vectors

for the pseudo-data.

3.3.3 EMPIRICAL DISTRIBUTION

Finally, in some settings we may want to set X, = X, so that the covariates for the pseudo-data
are the same as for the observed data. This is equivalent to using the empirical distribution
as g(Xp, | y). In complicated regression analyses with many observations and predictors, this
may be much more practical than trying to build a reasonable model g(X,, | y) or trying to
fill in a large contingency table of discretized predictors. It also may make more sense than
building a model if a particular experimental design led to the original X. Here, the expression

for the catalytic prior will also be (@).

3.4 LOGISTIC REGRESSION

3.4.1 GENERAL APPROACH

We have briefly discussed logistic regression in Examples p.2.2 and p.2.2 (continued), but we

now examine it in more detail. First, we give the general formulation. In Section 3.4.2 we

will re-analyze a simulated example from Clogg et al, (1991), comparing Clogg et alls ap-
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proach both to maximum likelihood and to the scaled Cauchy priors advocated by Gelman
et al, (2008). In Section , we look at a more complicated simulation in which some inter-
actions are important, and which gives us the opportunity to investigate the choice of prior
generating model.

Following the development of Section .3, the data y = (2, X) consist of responses z and
covariates X. Suppose the full model f(z | X,#) is a non-hierarchical logistic regression
model

zj | my, ;5,0 ~ Binomial(m;, p(z}0)), (j=1,...,n),

wherez; = (7j1,...,25),0 = (01,...,0,),and p(z}0) = 1/{1+exp(—}0)}. Asadefault prior,
we use f(f) x 1. If we have many predictors, we will often see complete separation, leading
to infinite maximum likelihood estimates for components of #. To constrain these estimates

for 6, we use a simpler logistic regression model

Zj ’ mg, Tj, ¢ ~ Binornial(mj,p(gg;qf)))7

as our prior generating model g(z | X, ¢), where ¢ = (¢1,...,¢,,0,...,0). Thatis, the prior
generating model uses only the first k, < £ predictors. Clogg et al. (1991) used the intercept-
only model with ¢ = (¢1,0,...,0). Under the prior generating model, we can use a flat prior
on the components of ¢ that are not fixed at zero, assuming that we have enough data that the
posterior distribution g(¢ | y) under this prior is well-behaved. Of course, we could also use
other choices of g(¢).

In regression problems, we need to specify covariates for the pseudo-data:

Tpj = (xpjla ce ,a:pjk), ] = 1, <oy Npe

In Clogg et al| (1991), because the predictors were discrete, the natural choice was to include
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a covariate vector for every possible combination of predictor values, so that n, = c,; see
Section @ In logistic regression, the sufficient statistics are linear in the observations, so

for the catalytic prior, we must compute

aj = /Eg(yp | 2pj, 0)9(¢ | y)do
—myy [ plat 00906 | 9o (7

where we fix my; to a convenient value. For simplicity, we will assume that m,; = 1 for all

J. We still have flexibility in choosing the weight 7 assigned to the pseudo-data, but setting

mp; = 1 for all j means that the same weight is assigned to each row of predictors ;.
Under these choices for f and g, the posterior distribution under the catalytic prior be-

comes

9 | y H {p Z; 0 }yJ {1 m] y]] [H {p Taj/np {1 _p(x;je)}T(lfaj)/np

After choosing 7 and calculating a;, this is easy to fit using standard logistic regression soft-

ware.

3.4.2 AN EXAMPLE FROM CLOGG ET AL. (1991)

As discussed in Example p.2.2 (continued), the approach of Clogg et al! (1991) can be inter-

preted as a catalytic prior under a specific choice of prior generating model g and tuning
parameter 7. Clogg et al, (1991) compared the performance of their method to maximum
likelihood for simulated data in a setting in which it is likely that finite maximum likelihood
estimates will not exist. In Table @, we reproduce a 2 x 2 x 2 contingency table with two

sampling zeros from Clogg et al| (1991, Table 6). We want to fit the additive logit model with
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Table 3.2: A 2 x 2 x 2 contingency table with two sampling zeros, reproduced from Table 6 of Clogg et al.
(1991).

Predictors = Response

Tit  Tjp Y My — Y

1 1 0 3

-1 1 9 4

1 -1 6 3

-1 -1 5 0

Total 20 10

linear predictor

n; = Bo + Bz + Baxjo,

but, as Clogg et al, (1991)) note, even though there are observations in each row of the con-
tingency table and the sufficient statistics are nonzero, the maximum likelihood estimates
are not finite. Fitting the data in Table using Clogg et al/s method results in the param-
eter estimates (5o, 51, 32) = (0.73,—1.29, —1.23). For this example, a; = 2/3 for all j and,
because the full model has three parameters, 7 = 3. Multiplying the fitted probabilities in
each cell of the table by the corresponding sum m; + 7/n, yields expected frequencies for
samples of size Z?Zl(mj + 7/np) = 33. Table B.3 gives expected frequencies for samples of
size N = Z?Zl m; = 30. Clogg et al. (1991) simulated datasets with NV = 30 and N = 100
using the corresponding expected frequencies from this fitted model to evaluate the repeated
sampling properties of their suggested approach and of maximum likelihood.

We have repeated the analysis of Clogg et al, (1991), adding a comparison with the scaled
Cauchy priors that Gelman et al, (2008) recommend as a default for logistic regression. Ta-
ble @ shows mean squared error, interval coverage, and interval width for the maximum
likelihood estimates, posterior modes under Gelman et al.’s priors, and posterior modes un-

der Clogg et al/'s priors. Posterior intervals were obtained from normal approximations to
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Table 3.3: Expected frequences of the 2 x 2 x 2 contingency table when n = 30, used for a simulation in
Clogg et al/ (1991).

Predictors Expected frequencies
Zj1 zjo  E(y;) E(m; —y;)

1 1 0.5 2.9

-1 1 8.6 3.9

1 -1 5.9 3.0

-1 -1 5.0 0.2

Total 20 10

the posterior distribution. For N' = 30, maximum likelihood estimates existed in less than
half of the simulated datasets; for N = 100, they existed 91% of the time. Of course, because
Gelman et al's priors are proper and because Clogg et al/'s priors add positive values to each
cell of the contingency table, estimates always exist under both priors. The coverage proba-
bilities for maximum likelihood-based intervals are conditional on the existence of maximum
likelihood estimates. Unconditionally, the coverage for these intervals is reduced by a factor
of 0.48 or 0.91, depending on the sample size. Overall, with the exception of the intercept
term for small samples, Clogg et al.’s prior performs the best in terms of mean squared error.
Moreover, Gelman et al/'s prior leads to under-coverage, which is less of a problem for Clogg
et al's prior. We also performed a simulation fixing the row totals m; to the values in Ta-
ble 3.2 when N = 30 and to (10,44, 30, 16) (from the top row to the bottom row in Table B.2)
when N = 100, instead of using multinomial sampling as in Clogg et al. (1991). Appendix El]
presents those results, which do not change our conclusion that Clogg et al.’s prior leads to
superior performance in terms of both mean squared error and interval coverage.

For completeness, we now describe how we obtained point estimates and posterior inter-
vals using Gelman et al/'s prior, as implemented in the bayesglmroutine in the R package arm.
Gelman et al| (2008) advocate scaled Cauchy priors for all logistic regression coefficients, with

a scale of 10 for the intercept and a scale of 2.5 for all other predictors. However, this prior is
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Table 3.4: Comparison of maximum likelihood (ML), scaled Cauchy (SC) priors (Gelman et al., 2008), and
Clogg et al.’s priors (CP) for a simulated 2 x 2 x 2 table with high probability of sampling zeros. 5000
simulated data sets were generated. Compare to Table 8 of Clogg et al. (1991).

N =30 N =100

ML SC Cp ML SC CP

1. Fraction of samples where estimates exist 0.48 1 1 091 1 1
2. Mean squared error (given existence)

(a) BO 23 .22 .29 .07 .06 .06
(b) Bl 27 .30 .26 .11 .12 a1
(©) Bg 28 31 27 12 13 12

3. Coverage of 95% intervals for coefficients
(percent of samples where estimates exist)

(@) Bo 96.4 96.9 96.8 955 957 953
(b) 51 94.9 89.7 944 96.9 92.9 95.0
(c) B2 93.8 89.6 93.9 96.9 92.2 094.8

4. Coverage of 95% intervals for logits
(percent of samples where estimates exist)

(@) (zj1, zj2) = (=1, -1) 93.5 883 93.0 96.8 92.0 94.4
(b) (1,-1) 97.3 97.1 978 954 955 95.6
(0 (=1,1) 97.0 96.6 97.2 957 958 95.8
(d) (1,1) 03.8 89.6 93.9 096.6 92.6 94.4

5. Width of 95% intervals for logits
(given existence)

(@) (zj1,252) = (—1,-1) 4.81 4.17 490 3.26 2.81 3.02
(b) (1,-1) 298 282 291 1.53 149 1.50
(o) (—=1,1) 2.55 2.38 247 1.31 1.28 1.29
(d) (1,1) 430 3.89 4.31 3.02 2.62 2.78
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designed for models with standardized regression inputs. Binary inputs are assumed to have
mean zero and range one. To use Gelman et al/'s prior, we standardized the inputs for each
simulated dataset, found the point estimates and estimated covariance matrix of regression
coefficients on the standardized scale, and transformed the results to the original scale using
the appropriate linear transformation. This will be valid as long as the normal approximation

to the posterior distribution is adequate.

3.4.3 SIMULATIONS WITH INTERACTIONS

To investigate the performance of different priors under a more realistic logistic regression
setting, we simulated data with eight binary covariates in a full factorial design. In order to
directly use the scaled Cauchy priors of Gelman et al) (2008), we coded these covariates as
+0.5. Figure @ shows the four coefficient vectors used. Figures @—@ show results from
fitting 1000 simulated datasets with m; = 1 for all j, using maximum likelihood and the pos-
terior modes under scaled Cauchy priors and catalytic priors with varying weights and dif-
ferent prior generating models. Figure @ displays mean squared error of estimates for the
linear predictors z’,3, but results for the coefficients 3 were qualitatively similar. There are
ny = ¢, = 2% linear predictors, corresponding to each row of covariates, so box plots are given
for each model. Results are shown for catalytic priors over a range of values of 7 when the
prior generating model only includes the intercept term, as in Clogg et al. (1991), and when
the prior generating model is the model that includes the intercept and all main effects. Fig-
ures @ and @ show coverage and width, respectively, of 95% intervals for linear predictors.

In practice, we may not collect observations for every covariate combination. We also sim-
ulated data by sampling N = 120 units with covariates given values 0.5 with probability 0.5;
see Figures @—. In our simulation, 100 rows of the full covariate matrix were observed.

We fixed this observed covariate matrix and simulated 1000 response vectors under each of

63



(a) (b) (c) (d)

0 v 0 X X X X v
X x
X X X X X

@ Q‘A © AAA © Q‘A © AAA X X X x
3 o M‘«XWXWMW 3 o H 0 XK XK XX XRRIK XXX XK 3 o N XX XK XK XRRHK XK SXHK b o H o0 xx PV ¥

o % o %A % " o % o %A >°<>< « X y

x X X

? 9 - 7 x 9 -
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Figure 3.3: Four coefficient vectors used in regression simulations, with (a) small sparse interactions, (b)
medium sparse interactions, (c) large sparse interactions, and (d) medium dense interactions. The circles
denote the intercept terms, the triangles the main effects, and the x’s the two-way interactions.

the four coefficient vectors used above in the full factorial simulation. As in the full factorial
design, we set X, to the full factorial predictor matrix, so that n, = ¢, = 2°. Because of the
smaller sample size, complete separation is a problem for maximum likelihood. For some of
the cases, the R routine glm failed to converge. For others, glm satisfied its convergence cri-
terion, but estimated standard errors were on the order of 10 or higher for some covariates.
To make our comparisons as favorable to maximum likelihood as possible, we (somewhat
arbitrarily) disregarded simulations in which standard errors for any coefficients exceeded
1000 when we evaluated the mean squared error, coverage, and interval width. Table @ gives
the fraction of simulated datasets for which maximum likelihood either failed to converge or
numerically converged but had excessively large standard errors. It is clear that maximum
likelihood struggles with the smaller sample. Especially striking is that only 29 of the 1000
small-sample simulations with large, sparse two-way interactions led to well-behaved maxi-
mum likelihood-based intervals. Even with the full factorial design, however, the coefficient
vector with large, sparse two-way interactions causes problems.

It is clear from these simulations that the catalytic priors, with an appropriate choice of
weight, can do substantially better than maximum likelihood. Catalytic priors are competitive
with the scaled Cauchy priors of Gelman et al, (2008). When the true interactions are sparse

and not too large, the catalytic priors under the intercept-only prior generating model are
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clearly better than the other models, with lower mean squared error, higher coverage, and
shorter intervals. In this setting, catalytic priors under the main-effect prior generating model
perform roughly the same as scaled Cauchy priors, with some slight under-coverage. With too
high a tuning parameter, interval coverage for the catalytic priors under both prior generating
models unsurprisingly drops.

Scaled Cauchy priors do better than catalytic priors when the true model has large, sparse
two-way interactions. One way to interpret this is that if the truth is heavy-tailed, we will do
better using a heavy-tailed prior. In these cases, interval coverage for some of the linear pre-
dictors under the catalytic priors can be much too low if we choose the weight according to
the recommendation of Clogg et al, (1991)), although a slightly lower tuning parameter would
enable the catalytic priors to perform comparably with the scaled Cauchy priors. This sug-
gests that adaptively choosing the catalytic prior tuning parameter could lead to improved
performance, if a good adaptive procedure were developed.

When the true model has dense interactions, catalytic priors and scaled Cauchy priors per-
form similarly. When the observed covariates are a full factorial design, the catalytic priors
yield slightly better mean squared error than the Cauchy priors, but under the intercept-only
prior generating model, there is more under-coverage than under the main-effect prior gener-
ating model or under Cauchy priors. When we only observe a sample of the full table of covari-
ates, catalytic priors yield lower mean squared error but also slightly more under-coverage
than Cauchy priors.

Overall, the original procedure of Clogg et al; (1991)) (intercept-only prior generating model
and 7 = k) does remarkably well, only clearly deficient when the true model has large, sparse
interactions and our criterion is coverage. In applications, context should help us decide
whether large, sparse interactions are scientifically plausible and thus should be a concern. If
no such guidance is available, robust priors may be a better option. However, it is important

to keep the analysis goals in mind, as the catalytic priors can yield substantially lower mean
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Table 3.5: The fraction of simulated datasets out of 1000 for which the maximum likelihood software failed
to converge and for which it nominally converged but returned standard errors greater than 1000, for four
different true coefficient vectors. Small, medium, large, sparse, and dense refer to the magnitudes and
number of nonzero coefficients for two-way interactions.

Full factorial (N = 256) Smaller sample (N = 120)

Not converged SE > 1000 | Not converged SE > 1000

Small, sparse 0 .003 351 062
Medium, sparse 0 .003 .H83 .053
Large, sparse .005 .033 959 012
Medium, dense 0 0 .796 028

squared error than scaled Cauchy priors, even in settings in which catalytic priors struggle to

achieve nominal coverage.

3.5 LINEAR REGRESSION

3.5.1 GENERAL APPROACH

Consider a linear regression of z on X, where z is a vector of length n and X is an n x k matrix

of covariates. The full model f(z | X,0) is
2| X,0 ~ N(XB,0%I),

where 6 = (8, 0?). Let X, be n, x k. We assume that if we had observed the responses z, cor-
responding to X, we could reliably estimate the regression parameters for a full dataset that
included both (z, X) and (z,, X;). In particular, we must choose X, so that X' X +(7/n,) X X,

is full rank when 7 > 0.
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Figure 3.4: Simulation results for a logistic regression with eight binary covariates in a full factorial design.
(a)—~(d) correspond to the coefficient vectors shown in Figure B.3(a)—(d), respectively. Box plots of the mean
squared errors for estimating the true linear predictors x;ﬂ, 3=1... 28, for maximum likelihood (ML),
scaled Cauchy (SC) priors, catalytic priors with intercept-only prior generating model (Int, black dashed
line) and with prior generating model that included all main effects (ME, red dotted line). The shaded re-
gions for catalytic priors correspond to varying 7. A vertical line is included at = = k, the weight sug-
gested by Clogg et al. (1991)), where k = 1 + 8 + (S) is the number of parameters in the full model that
includes all two-way interactions.
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Figure 3.5: Coverage of logit intervals in a logistic regression simulation with eight binary covariates in a

full factorial design.
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Figure 3.6: Width of logit intervals in a logistic regression simulation with eight binary covariates in a full
factorial design.
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Figure 3.7: Simulation results for a logistic regression with eight binary covariates and N = 120 total
observations. Mean squared error is plotted on a logarithmic scale.
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Figure 3.8: Coverage of intervals for logits in a logistic regression simulation with eight binary covariates
and N = 120 total observations.
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Figure 3.9: Width of intervals for logits in a logistic regression simulation with eight binary covariates and
N = 120 total observations.
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For the prior generating model g(y | ¢), we assume that

2| X6 ~ N(X,B,,020)

where ¢ = (8, 0;) and X, is the n x k, matrix formed by selecting k, of the columns of X. If
u; is the jth column of X, then, say, X, = (u; - - - us, ), where k, is small enough that X X, is

full rank. Under the default prior g(f,, o;) o 1/0, the posterior distribution of o7 is

or |y~ —5-+,
Xn—kg

where Rss, = ||z — X,/3,|[% || - || denotes Euclidean norm, and 3, = (X;X,)~' X}z is the usual

least squares estimator. Conditioning on a the posterior predictive distribution of z;, is
2 1
Zp | Og: Y ~ N( pgﬁg’ g{[np +ng(X X ) Xll)g})’

where X, is the matrix of the first £, columns of X,

Let 4, = (,Bg, ,...,0) be the k-vector formed by filling in zeros for all coefficients of pre-
dictors not included in X, and let &} = tr{ (X, X,/n)~"(X},Xps/np)}, so that if the covariate
vectors for the data and pseudo-data have approximately equal sample means and covari-

ances, then kj ~ k,. The prior (@) leads to the posterior

o

) T{l—i-k;/n}Eg(ag | y) + RSSy
|y ~ .
n+r—

B | 0279 ~ N(B,O’2V5),
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where

Eg(ag | y) = RsSS,/(n — ky — 2),
Ve ={X'X + (T/”p)XII)Xp}_la
B =Va{X'z + (7/np) X}, X3},

RSS; = ||z — XBHQ + (7/np) [| X9 — XPBHZ-

Thus, 7 > k£ — n is necessary for posterior propriety. This accords with the interpretation of
7 as the sample size of a pseudo-dataset, as it means that if there are more regression coef-
ficients than observations, then we must add enough pseudo-observations that the total size
n+ 7 is larger than the number of coefficients to be estimated. Although the recommendation
of Clogg et al. (1991) to use 7 = k was for logistic regression, not linear regression, it would

obviously guarantee this.

3.5.2 SIMULATION

We applied our general linear regression approach using the same true coefficient vectors as
in the simulation in Section @ We sampled n = 30 rows without replacement from the 2°
rows of the full factorial covariate matrix, and simulated 1000 different datasets for each true
coefficient vector. Thus, there were enough observations to fit the main effect model with nine
parameters but not enough to fit the model with all two-way interactions with 37 parameters
via maximum likelihood. For the catalytic priors, we used the full factorial covariate matrix
for X,. Figures B.10-B.13 summarize the mean squared error, coverage, and interval width
for estimates of the linear predictors 23 for maximum likelihood using only the main effects,
catalytic priors with intercept-only prior generating model, and catalytic priors with prior
generating model that included all main effects. We also compare to ridge regression for a

variety of ridge tuning parameters. More precisely, the model for ridge regression is a fully
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Bayesian model with prior

p(027 61) (8 17

(Bi—yy | 0%, B1) ~ N(0, A~ H( X[y X)),

where f_y) = (B2, ..., Bk), X|—1) is the matrix that omits the first column of X, and A is the
ridge regression tuning parameter.

When the model including only main effects is close to true, maximum likelihood under
this wrong model can do extremely well in terms of mean squared error; see Figures (a)
and (b). Similarly, catalytic priors with a prior generating model including main effects
can do extremely well in these settings. However, perhaps because of the discrepancy be-
tween the truth and the assumed model, maximum likelihood with only main effects leads
to some under-coverage under all true parameter vectors, with the problem becoming more
severe when there are more non-negligible true interaction terms; see Figures and
. For small choices of the catalytic prior tuning parameter 7, the catalytic priors lead
to over-coverage under all true coefficient vectors used in the simulation. However, this
seems preferable to the potentially severe under-coverage that maximum likelihood under a
too-simple model and ridge regression can exhibit, as in Figures (d). Of course, catalytic
priors achieve this over-coverage by inflating the width of posterior intervals, leading to
imprecise inferences.

Interestingly, for the three coefficient vectors with sparse true interactions, catalytic priors
with the intercept-only prior generating model always yielded wider intervals than with the
main-effects prior generating model. For the coefficient vector with dense true interactions,

this relationship was reversed, and the intercept-only prior generating model always yielded
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Figure 3.10: Mean squared error for linear regression with n = 30, eight binary predictors, and all two-
way interactions. Maximum likelihood (ML) uses only the main effects. Also shown are results for the cat-
alytic priors using prior generating models with intercept only (Int) and with all main effects (ME). (a)—(d)
use the coefficient vectors of Figures B.3(a)—(d), respectively. Ridge regression results (Ridge) are shown
for a range of tuning parameters. The results under catalytic priors are plotted for varying choices of T/np.
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Figure 3.11: Coverage of 95% intervals for linear predictors J:;ﬂ in a linear regression simulation.
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with prior generating model that includes all main effects; the dotted line is for maximum likelihood using
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for the choices of ridge tuning parameter considered.
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Figure 3.13: Width of 95% intervals for linear predictors azgﬁ in a linear regression simulation. The y-axes
for the top and bottom rows have different scales.
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shorter intervals.

3.6 LATENT VARIABLE AND MULTILEVEL MODELS

Suppose the full model for y given parameters 6 is the marginal distribution of a joint distri-

bution of observations y and latent variables v:

Fly ) = / .o | 6)do,

Many complicated multilevel models can be formulated in this way. It is often more conve-
nient to develop a catalytic prior using the joint full model f(y,v | #) and a corresponding

joint prior generating model g(y, v | ¢), yielding
Try(0) o< f(0) exp {T/g(ypv vp | y) log f(yp, vp | e)dypdvp} . (3.8)

3.6.1  FINITE MIXTURE MODELS

Suppose the model for the observed data is the J-component mixture model
J
Flyi |0) =Y Nih(yi | B),
j=1

where § = (X, 3), A = (A1,...,A;) is a vector of probabilities such that ijl A=108=
(B1,-..,Bs),and h(y; | 5;) is a density with parameter (3. This model admits the latent vari-

able formulation

v; | @ ~ Multinomial(1, \)

Yi | Uiye ~ h( | BW))
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where v; is a latent allocation variable indicating which mixture component was responsible
for generating y;.

We can view the latent allocation variables as missing data. The observed-data likelihood
averages over these allocations and consequently can be computationally intractable. The
complete-data likelihood, on the other hand, factors into separate likelihoods for each mix-
ture component, where each factor only includes the subset of the data assigned to that com-

ponent. Lettingy = (v1,...,¥,) and v = (vq,...,v,), the complete-data likelihood is

flyv0) =TTTT bty | )Y,

i=1 j=1

where 1(v; = j) is the indicator function that equals 1 if v; = j and 0 otherwise. If y,, consists

of conditionally independent values y,;, 7 = 1, ..., n,, then (@) becomes
J Z”P . i
Try(0) o £(0) [T A5 57" exp { ZPUC(&)} : (39)
j=1 i=1
where

Dij = Prg(vpi =7 | y)

C(B;) = Ey{log h(ypi | B5) | y} -

3.6.2 INFERRING LATENT PROCESSES ON A NETWORK

Blocker and Airoldi (2011) and Airoldi and Blocker (2013) considered the problem of estimat-
ing point-to-point traffic flows on a network when only aggregate traffic is observed. They
developed a non-conjugate multilevel state-space model to account for the complex noise
characteristics in the observations, but they found that their model needed additional reg-

ularization. In particular, under a naive prior on the top-level parameters, their estimates
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of the latent time series of interest were worse than competing approaches on datasets for
which ground truth was available.

However, they were able to use a simpler model to obtain rough estimates of the latent
point-to-point traffic. They then used these estimates to set the top-level parameters in their
more complicated dynamic multilevel model, partly justifying their method by noting its sim-
ilarity to that of Clogg et al| (1991). Airoldi and Blocker (2013) found that their dynamic
multilevel model, when regularized using estimates from an appropriate simpler model, out-
performed competing state-of-the-art methods. The choice of an appropriate simpler model
depended on, for instance, the structure of the network.

Airoldi and Blocker (2013) also found that their dynamic multilevel model often did not
significantly improve on the performance of the simpler model used for regularization. The
catalytic prior framework offers one possible explanation for this behavior. Their strategy of
plugging in estimates for top-level parameters, where those esimates were obtained under a
simpler model, can be viewed as a posterior distribution under a catalytic prior with 7 = oo,
which as discussed in Section @ corresponds to the Kullback-Leibler projection of the fitted
simpler model onto the full model family. Since Airoldi and Blocker’s simpler model was not
a submodel of their dynamic multilevel model, this projection does not trivially reduce to
the fitted simpler model. An interesting question for further work is whether Airoldi and
Blocker's results can be improved upon by using a smaller value of 7 and thus imposing less

regularization on their dynamic multilevel model.

3.7 EVALUATING A JOB TRAINING PROGRAM

3.7.1 INTRODUCTION

Frumento et al, (2012) analyzed a randomized experiment to evaluate the Job Corps job train-

ing program for disadvantaged youths aged 16 to 24. The causal estimands of interest were
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the effects of training on employment and wages, but several features of the experiment com-
plicated the analysis. First, while encouragement to enroll in Job Corps was randomized, not
everyone who was encouraged actually enrolled. In fact, only 68% of those assigned treatment
enrolled within the first semester after assignment. Second, one of the outcomes of interest,
wages, is only defined when individuals are employed. Finally, some of the outcome data was
missing. To address these complications, Frumento et al| (2012) used principal stratification.
Their model was a finite mixture of regression models, where the latent mixture components
corresponded to the principal strata, and they used a likelihood-based analysis. Here, we
explore choices of catalytic priors to obtain posterior distributions under this model. We
compare estimates and estimated uncertainties obtained via posterior distributions under
different catalytic priors with the maximum likelihood estimates of Frumento et al, (2012).

We will first give a brief overview of the model, referring the reader to Frumento et al.
(2012) for more details. Our sample consists of n = 13 794 individuals. We observe a covariate
matrix X with £ = 23 columns, including an intercept term, design weights, sex, age, race
(white or not), and covariates describing each individual’s family, education, and employment
history. The predictors X also include some missingness indicators and two-way interactions.

We know each individual’s treatment assignment Z;, where Z; = 1 if individual : was en-
couraged to enroll in Job Corps and Z; = 0 otherwise. Let D;(1) denote the compliance status
ifindividual ; was offered treatment, where D;(1) = 1 if the subject would enroll in Job Corps
within six months after being offered and D;(1) = 0 otherwise. In this study, if an individual
was not offered participation in Job Corps, then it was not possible to enroll; thus D;(0) = 0
by definition. We also observe the potential employment status S;(z) (S;(z) = 1 if employed,
0 otherwise), potential wage W;(z), and potential missingness indicator M;(z) under treat-
ment z. If the individual is not employed, then wages are not well defined, so we use the
special symbol W;(z) = xif S;(z) = 0.

The latent principal strata are determined by compliance behavior and by potential em-
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ployment status. Compliers are those individuals with D;(1) = 1, and noncompliers are
those with D;(1) = 0. There are four goups of individuals determined by their potential
employment status: the always-employed, who would be employed under either treatment
assignment; those who would be employed only if assigned treatment; those who would be
employed only if assigned control; and those who would not be employed under either treat-
ment assignment.

We assume two exclusion restrictions for noncompliers, one for employment status and
one for wages. That is, if individual s would not enroll in Job Corps regardless of treatment
assignment, then neither employment status nor wages will be affected by treatment assign-
ment, so that S;(0) = S;(1) and W;(0) = W;(1). The exclusion restriction on employment
status eliminates two principal strata because it removes the possibility that noncompliers
could be employed only under treatment or only under control. Thus, we have J = 6 princi-

pal strata:

1. always-employed compliers,

2. compliers only employed under treatment,
3. compliers only employed under control,

4. never-employed compliers,

5. always-employed noncompliers, and

6. never-empoyed noncompliers.

Following the notation of Section B.6.1, we let v; = j if individual ¢ is assigned to the jth
latent principal stratum. We model the conditional distribution of v; given covariates as a

multinomial logistic regression:

_exp(zia;)
Sy exp(aa)

84

Pr(v; = j | 2, ) = pj(x, ) (3.10)



where z; = (2;1,..., ;) is the covariate vector for individual 7, « = (a1,..., ), and a;; =
(a1, ..., ;). We take never-employed noncompliers as the baseline and set a; = (0, ..., 0).

We model employed individuals’ wages by a linear regression of log wages on the covariates
X. The exclusion restriction on wages implies that always-employed noncompliers must have
the same distribution of wages regardless of treatment assignment. This leaves five groups,

each with its own regression parameters:
1. always-employed compliers, assigned treatment;
2. always-employed compliers, assigned control;
3. compliers employed only under treatment, assigned treatment;
4. compliers employed only under control, assigned control; and
5. always-employed noncompliers.

We let this set of groups be denoted £ (for “earners”), so that we have

log{W;(Z;)} ~ N (34, 07) (3.11)
if individual 7 is in group h, where h € £.

3.7.2 CATALYTIC PRIORS

In the model of Section @, the complete data include the principal stratum membership
indicators v = (vy,...,v,) and the wages . In this model, there is one complication that
has not appeared in our previous discussions of regression and mixture models: how to treat
the treatment assignment indicators for the pseudo-data. Inspired by Hirano et al, (2000),

we assume that each individual in the pseudo-dataset has probability 1/2 of being assigned
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treatment, and this probability does not depend on the individual’s covariates z}, or princi-
pal stratum membership v,,;. Thus, ignoring constant factors, the complete-data full-model

likelihood for the pseudo-dataset is

S (vp, up, Zy | X5, 0) H H {pj (i, )} ] [H {F(upi | 2o, By o)} | (3.12)
i=1 Lj=1 he€

where vy = (Vp1, ..., Vpn, ) Upi = 10g{Wpi(Zpi)}, up = (Upt, - - Upn,)s [(Upi | Tpi, B, 07) s
the density of a normal random variable with mean z;,3;, and variance o?,and 1(i € h)is
the indicator for whether (vy;, Z,;) agrees with earner group h. For our pseudo-dataset, we
setn, = nand X, = X, which we believe is reasonable because the original study was a
designed experiment.

Equation (B.12) defines the full model likelihood f(y, | X,,0) that appears in the catalytic
prior (@). To finish specifying a catalytic prior we need to choose a prior generating model g,
evaluate the expectation of log f(y, | X;, ) under g(y, | v), and choose the tuning parameter
7. However, to simplify our approach, instead of finding and averaging over the full posterior
predictive distribution g(y, | y), we will use the simpler approach of finding the maximum
likelihood estimate ¢ under g(y | ¢) and evaluating the expectation of log f(yp | Xp,0) under
9(yp | ¢), plugging in the MLE.

Ignoring terms that do not involve §, we have

E{log f(vpvupa Zy | Xp79>} =

np J
Z <Z Pr(vy; = j) log p;(zp;, )

i=1 \j=1

. 1
+ZPr(z € h) [—ﬁlog or —

heE h

1 .
?E {(upz — I;iﬂh)Q I 1€ h}:|) s
where the probabilities and expectations are calculated under g(y, | ).

86



The catalytic prior factors into independent priors on a and on (3, o). We will treat these
priors separately, which is helpful because of different constraints on the tuning parameters,
as we will see below. First, let 7, be the tuning parameter for the catalytic prior on «. Then,

assuming a default prior f(«) o 1, we have

np J
Try(a) o H H{pj (i, ) } 7o/ m0) Prlvi=1) (3.13)

i=1j=1

where the factor 1/n, in the exponent arises from the same arguments as in Section @ A
small value of 7, relative to n, = 13794 will lead to a diffuse prior. It is not clear how to
directly apply the recommendations of Clogg et al| (1991) for the choice of tuning parameter
in this model because the pseudo-data are constructed for the complete-data likelihood, not
the observed-data likelihood.

Next, we consider catalytic priors for (3;,, 02). Consider the terms

1
5B {(upi — x;zﬂh)Q i€ h}

np . 1
ZPr(z €h) {—§log or — T‘h

i=1

in the expectation of the complete-data log likelihood. Recall that in Section , if we wanted
to use the empirical distribution of the covariates, the catalytic prior for a regression model

would take the form

Try(0) x f(0) exp {nl /g(zp | Xp,vy)log f(% | Xp,e)dzp} )

p

Here, the factor Pr(i € h) can be viewed as a weight assigned to the ith individual, so rather

than dividing 7 by n,, we divide by }_;?, Pr(i € h). Letting 7, be the tuning parameter for the
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catalytic prior on (3, o7) and letting r;, = Pr(i € h), we have

Try(Bhy 02) o f (B, 07 )(07) "™/

Tp
Th { ~2 / A 2}
X exp | —=—s—=—— > Tins0; + |2, (Br — : 1
p 20_}% Z?il e ; ih h H pi (ﬁh Bh)H ] (3.14)
where 67 and Bh are estimates under the prior generating model. If 7, > k and (53, 0})
1/0%, we can express the catalytic prior 7, , (8, 07) as
2 ThOj,
Uh ~ 2 5

XTh—k

(Bu | o) ~ N <5Ah77;:10;21(X{,Ath)71) ;

where A, = diag(r, - - - ,Tnph)/ Z?ﬁl Tihe

3.7.3 CHOICE OF PRIOR GENERATING MODEL

We will compare two prior generating models. The first has the same structure as the full
model, but with fewer covariates. We will only include the constant term and the design
weights as predictors in both the multinomial logistic regression for principal stratum mem-
berships and the linear regressions for log wages. One possible problem with this model is
that discarding so many covariates makes the assumption that data are missing at random
less plausible. The second prior generating model includes all of the covariates, but assumes
that the parameters do not change over time. We have observations at three different points
in time, at 52, 130, and 208 weeks after treatment assignment. Frumento et al| (2012) ana-
lyzed these as three separate datasets, but for our second prior generating model we analyze
all three weeks together.

An alternative prior generating model could simplify the full model by imposing additional

restrictions, such as monotonicity of employment, no effect of assignment on employment

88



for compliers, or no affect of assignment on wages for always-employed compliers (Frumento
et al,, 2012). We find this less attractive than discarding covariates because if we make such
meaningful restrictions in our prior generating model, then if the final inferences seem to
support such restrictions, it will be less clear if this can be attributed to the data or just to the

prior.

3.7.4 CHOICEOF T

Finally, we need to choose values of the tuning parameters in the catalytic priors. We choose
To = 5, which is much less than n = 13 794, and hence should lead to a very diffuse prior on
«a relative to the likelihood. Using the sums of Pr(i € h) to scale the tuning parameters in the
wage parameter priors ensures that setting 7, = 73, for all & can be interpreted as adding
the approximately same number of pseudo-observations to each wage stratum. One subtlety
is that 73 , must be strictly greater than k£, the number of columns in X, to guarantee a proper
posterior distribution. Here, k& = 23, so we can try 73, = 24. We restrict 73, > k because
it is possible for some of the latent groups in £ to have no actual observations assigned to
them (see Frumento et all, 2012, Table 3). Thus, to ensure that the wage regressions on &
predictors are estimable even if these latent strata have no observations, we must add greater
than £ pseudo-observations. The restriction 73 , > k is an argument for using different tuning
parameters in the catalytic priors on o and on (3, 07) because there is no such restriction on
Ta-

Interpreting 7, and 73, as prior sample sizes is less straightforward here because the
pseudo-dataset includes information not available in the observed dataset, namely the stra-
tum memberships. It is tempting to directly compare these tuning parameters with the ob-
served sample size 13 794 and conclude that the pseudo-data should contribute, say, roughly
To/(Ta+13794) of the information in the final inferences on «, but we do not know how much

more an individual with fully specified stratum memberships will constrain the likelihood
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than one with memberships only partially specified. Nonetheless, it is appealing that we can
interpret the tuning parameters as the number of fully stratified pseudo-observations we

have added to the dataset.

3.7.5 RESULTS

We have analyzed the data for week 52 under the catalytic prior of Section B.7.2, with 7, =
5 and 73, = 24. Figure displays estimated posterior densities of the following causal

effects:

e A9 the average effect of treatment assignment on employment;
o APS the average treatment effect on employment for compliers; and

o APW) the average treatment effect on wages for always-employed compliers.

Substantively, these posteriors largely agree with the estimates of Frumento et al| (2012).
However, using ratios of maximized likelihoods, Frumento et al, (2012) concluded that the

restriction A(P5)

= 0, or no assignment effect on employment for compliers, was supported
by the data. In contrast, the posterior interval for A’ under this catalytic prior does not
contain zero, suggesting the opposite conclusion. We note that there is very little difference
between the posterior distributions under the two prior generating models. We stress that

this is a preliminary analysis. We have included it to demonstrate how to develop catalytic

priors for a realistically complex model.

3.8 CONCLUSION

In this chapter, we have investigated the application of catalytic priors in models of increasing
complexity. In relatively simple models, catalytic priors often perform extremely well. In

logistic regression, the original approach of Clogg et al| (1991)) turns out to be hard to beat in
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Figure 3.14: Posterior distributions of average effects of (a) assignment to treatment on employment,
(b) receipt of treatment on employment for compliers, and (c) receipt of treatment on wages for always-
employed compliers, for the data at week 52. Solid vertical lines give maximum likelihood estimates re-
ported in Frumento et al| (2012). The solid density curve is the estimated posterior distribution under the
prior generating model that only includes an intercept and the design weights as covariates; the dashed
curve is under the prior generating that pools the data across time.

a wide range of circumstances. As for more complex models, Section §.7] demonstrates that
catalytic priors can be developed for models for causal inference that account for real-world
complications, and Section draws a link between catalytic priors and the approach of
Airoldi and Blocker (2013), which outperforms competing methods on benchmark datasets.

There is much room for future work. It would be interesting and useful to develop more
theoretical guidance for the choice of prior generating model g and tuning parameter 7. More
attempts to apply catalytic priors to complex models in practical settings would also be valu-

able, both in order to compare the performance of catalytic priors with competing approaches

and to indicate where there is a need for extensions to the methodology developed here.
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Appendix

A.1 SUPPLEMENTARY TABLES AND FIGURES
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Table A.1: Comparison of maximum likelihood (ML), scaled Cauchy (SC) priors (Gelman et al., 2008), and
Clogg et al.’s priors (CP) for a simulated 2 x 2 x 2 table with high probability of sampling zeros. 5000
simulated data sets were generated. In contrast to Table .4, here the row totals m; were fixed for all sim-
ulations.

N =30 N =100

ML SC Cb ML SC CP

1. Fraction of samples where estimates exist 0.47 1 1 0.89 1 1
2. Mean squared error (given existence)

(a) Bo 24 .19 25 .06 .05 .06
(b) B 26 .28 24 11 .13 .12
(©) BQ 29 29 26 .11 .13 .12

3. Coverage of 95% intervals for coefficients
(percent of samples where estimates exist)

(@) Bo 97.3 97.2 97.5 959 96.4 96.0
(b) 51 93.9 91.2 93.9 97.1 922 955
() 5o 91.6 88.0 93.2 96.9 92.8 954

4. Coverage of 95% intervals for logits
(percent of samples where estimates exist)

@) (zj1,2j2) = (—1,-1) 92.1 87.8 92.8 97.0 92.0 95.0
(b) (1,-1) 97.3 958 97.9 953 955 95.7
(0 (=1,1) 97.1 96.9 97.2 957 957 95.9
(d) (1,1) 93.7 90.5 91.6 96.8 92.3 94.5

5. Width of 95% intervals for logits
(given existence)

(@) (zj1,2j2) = (—1,-1) 4.76 4.09 4.81 3.34 2.86 3.09
(b) (1,-1) 285 2.60 277 1.51 1.47 1.48
(0 (—1,1) 2.43 2.28 236 1.28 1.25 1.26
(d) (1,1) 4.35 3.88 4.32 3.12 2.69 2.87
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Simulation results for a logistic regression with eight binary covariates and N = 120 total
observations. These are the same results as in Figure B.7, except that mean squared error is plotted on a
raw scale over a smaller range, and maximum likelihood results are omitted because their medians are out
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120 total observations. A zoomed-in version of Figure 3.9, excluding the results for maximum likeli-
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A.2 COMPARING A CATALYTIC PRIOR WITH A HIERARCHICAL MODEL

[t is natural to ask how a posterior under a catalytic prior will behave differently than a fully
Bayesian hierarchical model designed to shrink toward a simpler model with the same struc-
ture as g. To begin answering that question, we can compare catalytic priors in the multivari-
ate normal model to a simple hierarchical model. We will not assume that the variance in the
full model is known. Instead, we assume that the full model likelihood is y; | & ~ N(3;, 0?),
independently fori = 1,...,n, where @ = (534, ..., 3., 0?). For the catalytic prior, we use the
prior generating model y; | ¢ ~ N(u, V'), where ¢ = (u, V') so that both the mean and vari-
ance are unknown. Using default priors, we use the following full model and prior generating

model:

fyl0): wi|0~N(Bio?) independently,i=1,...,n, (A1)
f(0) < 1/0”

gyl o) wvilo~N(uV) independently,i=1,...,n,
9(¢) x 1/V.

We will compare our approach with the hierarchical model

yi | 0,10 ~ N(B;,0%) independently,i =1,...,n, (A.2)
B | 0%~ N(ul,, 7 r1,)

p(p, o) < 1/0?,

where § = (f31,. .., 5,). In both models, 7 will be considered fixed (although 7 does not ap-
pear in our specification (E]), it still denotes the tuning parameter of the catalytic prior). We

have attempted to construct a fair comparison by ensuring that both models shrink estimates
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of ; toward the grand mean of the data, and 7 governs the amount of shrinkage.
We are concerned with the posterior distribution of 3 given the observations y, under a

catalytic prior and under the hierarchical model (@). Under the hierarchical model, we have

1 T o? o T
2 — !
~ N 1,, I, +— 1,1
floty (1—|—Ty+1—|—7'y [ ”)
u 1
2| T L \2
Yy~ (i — )
1+7'i21 X1

1 2
6|02,y~N< Y+ ——gl,, — I)

1+7 1+77"" 147"
) T T(1+n™ ) < e L
a* |y {1+T+ — ;(yz W

Thus, under both models, we have the same posterior means of ;. However, under the cat-
alytic prior, the individual §;'s are conditionally independent of each other, while they are
correlated under the hierarchical model. If 7 is small relative to n, this difference will be small.
One key difference between the two models is that the degrees of freedom for the inverse-y?
posterior distribution for o2 are fixed as a function of 7 under the hierarchical model, but de-
pend on 7 under the catalytic prior. If we interpret the catalytic prior as pseudo-data, it makes
sense that we should no longer be able to estimate o well as 7 as approaches o.

The posterior variances of 3;, given by

Varhier(@yy):{ ! T } T i —9)?

1+T+TL(1+T) 147 n—3
13 (1), M) r S

™m—=—2\1+71 ™m — 2 1+7 n—3 ’

Var.(fi|y) = {

exhibit more surprising behavior, as shown in Figure A.4. If 7 < n/(n — 2), then under the

hierarchical model, the posterior variance of 3; decreases as T decreases. This is because the

98



hierarchical model implies that the distribution of 3/;, conditional on ¢ and . but marginalized
over 3, is N(u,0?(1 + 771)). Intuitively, if 7 is too small, the model compensates by decreas-
ing o2 so that this marginal variance is closer to the observed variation around 7. Under the
catalytic prior, 5; only has a posterior variance if 7 > 2/n, but when the variance exists, it
increases as 7 decreases, which accords with our intuition that a smaller prior sample size

should constrain final inferences less.
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Figure A.4: The posterior variance Var(3;|y) versus 7, whenn = 10and >, (y; — §)? = n — 3. The
solid line is for the posterior under the catalytic prior, the dashed line under the hierarchical model. The
posterior variance under the catalytic prior does not exist if 7 < 2/n.

We do not explore imposing a model on 7 and fitting it from the data, though that is an in-
teresting question for future work. This example suggests that models that work well for top-
level variance parameters in hierarchical models may not be appropriate for catalytic prior

tuning parameters, even though much of our original intuition might lead us to believe, mis-
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takenly, that they should behave similarly.
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