A Statistical Approach to Stellar Archaeology

H. Lee, A. Zezas, and V. Kashyap
Harvard Smithsonian Center for Astrophysics

Aug. 1, 2007

Color-Magnitude Diagram (CMD)

The CMD of our target data set.
Color Magnitude Diagram of NGC 346

Isochrones - Reference Tables

Isochrones reveal physical informations from CMD (Temp, mass, [$\mathrm{Fe} / \mathrm{H}]$, age, class, etc.)

- Realization of theoretical models (quite complicated).
- Depends on so many input parameters.
- Tables tell the location of a star in the diagram (color vs magnitude) at the given age, metalicity, mass, etc.
- A typical inverse problem in astronomy

How these isochrones look like on CMD?

Isochrones continued- How they look?

Age 3000 yr to 15.5 Gyr isochrones, $[\mathrm{Fe} / \mathrm{H}]=0.4$

100Myr isochorones with different [Fe/H]

Hyunsook Lee, Harvard Smithsonian Center for Astrophysics

47 Tuc: 11.2 Gyr Old Globular Cluster

NGC 104 (47 Tuc)

Hyunsook Lee, Harvard Smithsonian Center for Astrophysics

Motivation

CMD (data) and Isochrones (model) are available and we like to know the age distribution of stellar clusters in a statistical fashion.

Statistical Modeling- Simplest

Bayes Rule: the age (τ) posterior distribution is proportional to the likelihood times a prior. For a single star,

$$
p\left(\tau \mid M_{i}, C_{i}\right) \propto l_{i}\left(M_{i}, C_{i} \mid \tau\right) p(\tau)
$$

where M_{i} is magnitude $\left(M_{v}\right)$ and C_{i} color $(B-V)$. Therefore,

$$
p\left(\tau \mid\left\{M_{i}\right\},\left\{C_{i}\right\}\right) \propto p^{n}(\tau) \prod_{i=1}^{n} l_{i}\left(M_{i}, C_{i} \mid \tau\right)
$$

We like to focus on the likelihood,

$$
\prod_{i=1}^{n} l_{i}\left(M_{i}, C_{i} \mid \tau\right)
$$

How can we estimate this likelihood?

Information Theory: K-L distance

The Kullback-Leibler distance is defined to be

$$
D\left(f_{\tau}(x) ; g(x \mid \tau)\right)=\int \log f_{\tau}(x) f_{\tau}(x) d x-\int \log g(x \mid \tau) f_{\tau}(x) d x \geq 0
$$

We do not know the true age density $f_{\tau}(x)$ but introducing $g(x \mid \tau)$ and maximizing $E_{\tau}[(\log g(X \mid \tau)]$ provides the best τ (age) for a given $g(x \mid \tau)$, where x is observed and its random variable is denoted by X.

$$
\hat{\tau}=\arg \max _{\tau \in\left\{\tau_{j}\right\}} E_{\tau}[\log g(X \mid \tau)]
$$

To estimate $E_{\tau}[\log g(X \mid \tau)]$, we used the empirical mean of the \log likelihood.

$$
E_{\tau}[\log g(X \mid \tau)]=\frac{1}{n} \sum_{i=1}^{n} \log g\left(x_{i} \mid \tau\right)+\frac{b}{n}
$$

where b is a bias term such as the penalty terms in AIC and BIC. We assume $\frac{b}{n} \rightarrow 0$. Finding τ that maximizes $\frac{1}{n} \sum_{i=1}^{n} \log g\left(x_{i} \mid \tau\right)$ leads to the best guess for the age of the stellar cluster.

Then, what would be the likelihood?

Likelihood

We took Multivariate Normal to establish the likelihood based on additional informations from data:

- Errors on each observation (σ_{i} are known)
- Independence among color bands (U,B,V,I,R,etc)
- Multivariate Normal assumption is quite reasonable For a star i, the recorded value is apparent magnitudes $\left(v_{i}, b_{i}\right)$, corrected by the appropriate distance modulus and the extinction laws (these corrections have their own uncertainties but we ignore at the moment).

Likelihood - continued

By denoting this corrected value as $\left(M_{i}, C_{i}\right)=x_{i}$, the likelihood of a star is

$$
l_{i}\left(M_{i}, C_{i} \mid \tau\right)=\frac{1}{2 \pi\left|\Sigma_{i}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(x_{i}-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(x_{i}-\mu_{i}\right)\right)
$$

where Σ_{i} is a covariance matrix for star i and $\mu_{i}=\mu_{i}(\tau,[\mathrm{Fe} / \mathrm{H}]$, mass, class $)$ although the function μ_{i} is unknown. As indicated, the best tactic is maximizing the likelihood and this is achieved by finding μ_{i} that minimize the distance to x_{i}. Given $\tau_{j}\left(j=1, \ldots, 91\right.$, Geneva models provide 91 age grids), $\mu_{i}\left(h_{j}\right)$ minimizes the distance to x_{i}.

But how to minimize the distance?

Defining a point of min. distance

Finding a point of minimum distance, associated with a complicated curve, only represented by a set of points. \rightarrow piece-wise Euclidean distance

Applying the model selection method

Real Data Application:

NGC	$[\mathrm{Fe} / \mathrm{H}]$	$(m-M)_{o}$	$E(B-V)$	Age $^{1}(\mathrm{Gyr})$	Est. Age
104 (Tuc47)	0.004	13.33	0.04	10.9 ± 1.4	11.22
188	0.02	11.17	0.09	6.3 ± 0.8	5.0
2420	0.007	11.94	0.05	2.2 ± 0.3	2.24
$2682(\mathrm{M} 67)$	0.02	9.59	0.04	4.3 ± 0.5	3.55
6791	0.050	12.96	0.15	10.2 ± 1.2	8.71
7789	0.014	11.22	0.29	1.80 ± 0.3	2.24

Log Likelihood Profiles of Some Stellar Clusters

likelihood profiles

Age of NGC 346 - part of SMC

Isochrones (3000-15.5G yrs), [Fe/H]=0.01

Log Likelihood Profiles of NGC 346 and SMC

likelihood profiles

- NGC346 (17.8Myr)
- SMC (49.0Myr)

Discussion

The model selection by maximizing likelihoods is

- empirical method: the correctness of ages highly depends on data. (data processing affects results: e.g. foreground stars and covariance matrix).
- easy, quick, simple, heuristic, and diagnostic.

Requires a fine tuning: Extention to Bayesian approaches

- posterior distribution from marginalizing the initial mass function (IMF)

$$
\begin{aligned}
p\left(\tau \mid\left\{M_{i}\right\},\left\{C_{i}\right\}\right) & =\int p\left(\tau, m \mid\left\{M_{i}\right\},\left\{C_{i}\right\}\right) d m \\
& \propto \int \prod_{i=1}^{n} l_{i}\left(M_{i}, C_{i} \mid \tau, m\right) p(\tau, m) d m
\end{aligned}
$$

- developing hierarchical models to incorporate not only IMF but metalicity, classes, completeness, and uncertainties, etc...

Thank you!

Please visit AstroStatistics blog at http://groundtruth.info/AstroStat/slog/

