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Typical flow of a Markov−Chain Monte Carlo spectral fitting process, modified to account for uncertainty in calibration

Strategy� Generate a sample of ARFs that represent the un
ertainty in the e�e
tive area (Figure 1)� Simulate a set of low-resolution ACIS spe
tra for a spe
i�
 model (in this 
ase, power-law with index� = 2 and H 
olumn density NH = 1023 
m�2) for 104 and 105 
ounts� Compute the posterior probability density fun
tions (pdfs) for the model parameters for all 
ombi-nations of spe
tra and ARFs and test that the statisti
al un
ertainty is well determined (Figure2)� Determine the e�e
t of ARF un
ertainty on the posterior pdfs (Figure 3)� Estimate the sensitivity of the magnitude of the systemati
 errors to the number of distin
t ARFs(Figure 4)� A new MCMC-based me
hanism to in
lude the ARF un
ertainty dire
tly within spe
tral �tting (Fig-ure 5)� A proposal to extend the HEASARC ARF standard su
h that ARF un
ertainties 
an be 
odi�ed forgeneral use based on a prin
ipal 
omponent de
omposition of the ARFs (Figure 6)

Figure 2: E�e
t of statisti
al error on parameter estimates. The posterior pdfs of � and NH 
al
ulated for individual pairs of simulated spe
trumand ARF are shown for a variety of 
ases (thin blue histograms). For di�erent spe
tra adopting the default ARF (left panels), and for a small setof representative spe
tra but adopting di�erent ARFs (right panels). The pdfs are generated by obtaining parameter draws from a Markov-ChainMonte Carlo (MCMC) algorithm and are binned into a histogram. The thi
k red stepped histogram represents the pdf generated using the draws
ombined from all the runs shown in ea
h panel. The set of plots on the left are for spe
tra with 104 
ounts and those on the right, for 105 
ounts. Notethat the width of the pdf de
reases with in
reasing 
ounts, as is expe
ted: the parameters are better determined when 
ounts statisti
s are higher. Alsonote that the pdf width for the 
umulative 
ase when the ARF is held un
hanging is similar to the pdf width for the individual runs: the 
ombinedpdf preserves the statisti
al error inherent in the data while eliminating the o�set biases introdu
ed for individual simulations. The variations in thepdfs when the spe
trum is held un
hanged while the ARFs are 
hanged shows that the e�e
t of the ARF un
ertainty on the parameters.

Figure 1: Un
ertainty in ACIS-S e�e
tive area. The dashed white line shows thedefault e�e
tive area for a nominal observation at the aimpoint, as a fun
tion of energy.Numerous e�e
tive area 
urves were synthesized by in
orporating the un
ertainties inthe subsystems (see Drake et al. 2007, CCW Poster #109), and these are shown asthe shaded 
urves that bra
ket the default. Curves are 
olored a

ording to how mu
hthey di�er in toto from the default: bla
k for those whi
h ex
eed the default and redfor the reverse, and the shades represent the extent of the di�eren
e. Note that thesimulated 
urves are tangled in a highly 
omplex manner, and the absolute di�eren
ebetween the e�e
tive areas does not translate to a segregation of the 
urves into spe
i�
regions.

Figure 4: Sensitivity of parameter un
ertainty on number of tests. The simplest way to a

ount forthe ARF un
ertainty is to 
arry out spe
tral �ts with di�erent realizations of the ARF and 
ombine theresulting pdfs to determine the overall error. Clearly, the larger the number of �ts done with separateARFs, the better the estimate will be. This �gure shows the magnitude of the total error (small squarepoints) for di�erent numbers of ARFs used. The left panels are for spe
tra with 104 
ounts and theright panels, for 105 
ounts. The upper panels are for � and the lower ones for NH . The red verti
albars denote the a

ura
y with whi
h this error 
an be determined for any spe
i�
 set of ARFs, and aredetermined for ea
h set of N ARFs by running spe
tral �ts N � 200 times 
hoosing di�erent ARFs ea
htime. The \true" estimate of the total error is seen to rea
h an asymptoti
 value when only N � 20 ARFsare used; in
luding more ARFs in the 
al
ulation only serves to determine this value more robustly. For
omparison, we also show the systemati
 error estimate 
omputed by Drake et al. (2007, SPIE, v6270, p49;see also Poster #109) as horizontal dashed lines. These points are generated by averaging only the best-�tparameter values 
al
ulated for a given spe
trum while 
hanging the ARF for ea
h �t. Generally, thesevalues agree with ea
h other, though the values based only on the best-�t tend to in
reasingly overestimatethe magnitude of the total error as the non-Gaussianity of the pdfs be
ome more relevant.

Figure 3: E�e
t of area un
ertainty on parameter estimates. The posterior pdfs of� and NH 
al
ulated by �rst averaging the e�e
t of the ARFs on individual spe
tra(thin blue 
urves) are shown. As in Figure 2, the pdfs are generated using parameterdraws from an MCMC algorithm. The pdf resulting from 
ombining all the drawsis also shown as the red stepped histogram. These 
urves in
lude the e�e
ts of bothstatisti
al and systemati
 errors, and be
ause they represent draws from the trueposterior distribution fun
tions, automati
ally provide the most optimal des
riptionsof the parameter un
ertainties in the presen
e of e�e
tive area un
ertainties. Notethat the pdfs in the high 
ounts 
ase, where the statisti
al 
omponent is relativelysuppressed, show that the systemati
 errors are not Gaussian.

Figure 5: Typi
al 
ow of a Markov-Chain Monte Carlo spe
tral �tting pro
ess, modi�ed to a

ount forun
ertainty in 
alibration. We have shown above (Figures 2, 3 & 4) that the brute for
e approa
h of
arrying out spe
tral �ts with di�erent simulated ARFs that represent our un
ertainty in the 
alibrationworks well and produ
es reliable estimates of the total error. However, this is extremely ineÆ
ient be
ausemost of the 
omputational time is wasted in 
al
ulating pdfs for individual 
ases. It is possible to speedup the pro
ess by two or more orders of magnitude by in
orporating the varying ARFs within the 
al
u-lation. Brie
y, if � are the parameters of interest, we 
an 
ompute pdf= p(�jARF;Data)�p(ARF), wherep(ARF) represents the distribution of ARFs. The manner in whi
h p(ARF) is in
luded is shown here fora typi
al MCMC data 
ow diagram. The data and 
alibration (ARFs, RMFs, et
.) are 
ombined witha spe
tral model, and the program iterates by drawing new samples of the parameter values (generallyas deviations from the 
urrent values), 
omputing the new likelihood, and adopting the new parametersas ne
essary. This pro
ess is slightly 
hanged with an additional sele
tion of a new ARF, sampled fromp(ARF), prior to drawing new parameter values. We have implented this 
hange in an MCMC based spe
-tral �tting algorithm, and �nd that we obtain the same pdfs as in Figure 3 with an � 100x improvementin 
omputational speed. Proposed Extension to ARF standardOn
e a set of ARFs fAi(Ej); i = 1; NARF ; j = 1; Nbing are generated su
h that theyen
ompass the range of un
ertainty present in our knowledge of the ARF, the dif-feren
es with respe
t to the default ARF A0(Ej), ÆAij = Aij � A0j are 
al
ulated,and these 
arry the full un
ertainty information. The fÆAijg 
an be de
omposedvia a prin
ipal 
omponents analysis to generate eigenvalues feig and eigenve
torsf�i(Ej)g. The fra
tion of the varian
e in fÆAig a

ounted for by the kth 
omponentis given by fk = e2k=PNARFi=1 e2i . A typi
al realization of an ARF 
an be generatedas fA0j = A0j + ÆAj +PN
ompk=1 ri ei �ijg where ri � N (0; 1) are Gaussian deviates,ÆAj = (1=NARF )Pi ÆAij is the average deviation from the default, whi
h is usuallyexpe
ted to be small and 
lose to 0 . N
omp is formally equal to the number of ARFsin the sample, but 
an be redu
ed as needed to dis
ard 
omponents that are ignorable.Typi
ally, N
omp � 10 � 15 is suÆ
ient to a

ount for > 99% of the varian
e. TheA0(Ej) thus generated is used as the draw from p(ARF) in Figure 5.The results of the PCA de
omposition 
an be stored in �les in the same manneras ARFs and distributed widely for in
orporating within spe
tral �tting routines. Wehave adopted the following format for the �le, whi
h is reminis
ent of the HEASARCARF standard (CAL/GEN 92-002)� PRIMARY blo
k: NONE� SPECRESP OFFSET blo
k: similar to the SPECRESP extension, but 
ontainingÆAj in pla
e of A0j in the SPECRESP 
olumn� PCA EVALUE blo
k: an array of N
omp values of the eigenvalues ei, stored in asingle 
olumn� PCA EVECTOR blo
k: an array of size N
omp � Nbin 
ontaining the eigenve
tors�ij , with ea
h row in the �le 
ontaining the full eigneve
tor for that 
omponent,and with the rows mat
hing one-to-one with those in the extension PCA EVALUE.
�+ not ne
essary to 
arry out simulations for ea
h model parameter value+ no simplifying Gaussian assumptions made as to the nature of the error distributions+ not ne
essary to know how to generate a sample of ARFs that represent the 
orre
t distribution ofun
ertainties+ the e�e
t of un
ertainties in spe
i�
 regions in the ARF 
an be dealt with expli
itly by 
hoosing PCA
omponents appropriately- requires a �tting engine that uses Markov-Chain Monte Carlo te
hniques- 
are must be taken to ensure that a dis
arded 
omponent does not have a large e�e
t on the analysisin the energy range of interest

Figure 6: De
omposition of the prin
ipal 
omponents of variations in thee�e
tive area. The pro
edure des
ribed in Figure 5 relies on the existen
eof a sample of simulated ARFs, or the ability of the resear
her to generatesu
h a sample. This is an onerous burden on most astronomers, but there is asimple workaround. We propose that the ARF un
ertainties be de
omposed intotheir most prominent 
omponents and stored as �les similar to the ARF itself.In order to determine these 
omponents, we have used Prin
ipal ComponentsAnalysis (PCA). This is not a unique solution, but is designed to be eminentlypra
ti
al. The top 8 
omponents of the 1000 ARFs in Figure 1 are shownhere, as deviations from the default ARF, and the shaded regions representingthe range of variation a

ounted for by ea
h 
omponent. The fra
tion of thetotal varian
e in the ARFs that is explained by a given 
omponent are shownat the top. The 8 
omponents shown here together a

ount for > 95% of thetotal varian
e.

We have developed a robust and general method to in
orporate e�e
tive area
alibration un
ertainties in model �tting of low-resolution spe
tra. Be
ausesu
h un
ertainties are ignored during spe
tral �ts, the error bars derived formodel parameters are generally underestimated. In
orporating them dire
tlyinto spe
tral analysis with existing analysis pa
kages su
h as Sherpa and XSPECis not possible without extensive 
ase-spe
i�
 simulations, but it is possibleto do so in a generalized manner in a Markov-Chain Monte Carlo (MCMC)framework. We des
ribe our implementation of this method here. We use theestimates of ACIS e�e
tive area un
ertainties (Drake et al. 2007, SPIE, v6270,p49) in a MCMC setting, applied to simulated ACIS data, to estimate theposterior probability densities of power-law model parameters that in
lude thee�e
ts of su
h un
ertainties.This method is appli
able dire
tly to any spe
tral model in all parts ofthe 
orresponding parameters spa
e. Be
ause no Gaussian approximations aremade in 
al
ulating the error bars, and the full posterior probability densitiesof the parameters are 
onstru
ted, the derived parameter bounds are optimallysized. The method is also fast and is easily generalizable to a

ounting for thesystemati
 un
ertainties in any type of multipli
ative fa
tors.
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