prob.censity

Figure 2: Effect of statistical error on parameter estimates. The posterior pdfs of « and Ny calculated for individual pairs of simulated spectrum
and ARF are shown for a variety of cases (thin blue histograms). For different spectra adopting the default ARF (left panels), and for a small set
of representative spectra but adopting different ARFs (right panels). The pdfs are generated by obtaining parameter draws from a Markov-Chain
Monte Carlo (MCMC) algorithm and are binned into a histogram. The thick red stepped histogram represents the pdf generated using the draws
combined from all the runs shown in each panel. The set of plots on the left are for spectra with 10* counts and those on the right, for 10° counts. Note
that the width of the pdf decreases with increasing counts, as is expected: the parameters are better determined when counts statistics are higher. Also
note that the pdf width for the cumulative case when the ARF is held unchanging is similar to the pdf width for the individual runs: the combined
pdf preserves the statistical error inherent in the data while eliminating the offset biases introduced for individual simulations. The variations in the
pdfs when the spectrum is held unchanged while the ARFs are changed shows that the effect of the ARF uncertainty on the parameters.
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‘We have developed a robust and general method to incorporate effective area
calibration uncertainties in model fitting of low-resolution spectra. Because
such uncertainties are ignored during spectral fits, the error bars derived for
model parameters are generally underestimated. Incorporating them directly
into spectral analysis with existing analysis packages such as Sherpa and XSPEC
is not possible without extensive case-specific simulations, but it is possible
to do so in a generalized manner in a Markov-Chain Monte Carlo (MCMC)
framework. We describe our implementation of this method here. We use the
estimates of ACIS effective area uncertainties (Drake et al. 2007, SPIE, v6270,
p49) in a MCMC setting, applied to simulated ACIS data, to estimate the
posterior probability densities of power-law model parameters that include the
effects of such uncertainties.

This method is applicable directly to any spectral model in all parts of
the corresponding parameters space. Because no Gaussian approximations are
made in calculating the error bars, and the full posterior probability densities
of the parameters are constructed, the derived parameter bounds are optimally
sized. The method is also fast and is easily generalizable to accounting for the
systematic uncertainties in any type of multiplicative factors.
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Strategy
© Generate a sample of ARFs that represent the uncertainty in the effective area (Figure 1)

o Simulate a set of low-resolution ACIS spectxa for a speeific model (in this ense, power-law with index
=2 and H column density Ny = 10% e 2] for 104 and 10° connts

« Compute the posterior probability density functions (pdfs) for the model paxameters for all combi
nations of spectra and ARFs and test that the statistical uncertainty is well determined (Figure
2)

« Determine the effect of ARF uncertainty on the postericr pdf (Figure 3

o Estimate the sensitivity of the maguitude of the systematic ersors to the musber of distinel ARFs
(Figure 4

A new MCMC based mechanism to include the ARF uncertainty directly within spectral ftting (Fig-
ure 5,

= A proposal to extend the HEASARC ARF standard such that ARF uncertainties can be codified for
geneal use based on a principal component decomposition of the ARF (Figure 6)

—
-

The dashed white line shows the
default effective area for a nominal observation at the aimpoint, as a function of energy.

Figure 1: Uncertainty in ACIS-S effective area

Numerous effective area curves were synthesized by incorporating the uncertainties in
the subsystems (see Drake et al. 2007, CCW Poster #109), and these are shown as
the shaded curves that bracket the default. Curves are calared according to how much
they differ in tato from the default: black for those which exceed the default and red
for the reverse, and the shades represent the extent of the difference. Note that the
simulated curves are tangled in a highly complex manner, and the absolute difference
between the effective areas does not translate to a segregation of the curves into specific
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Figure 3: Effect of area uncertainty on parameter estimates. The posterior pdfs of

a and Ny calculated by first averaging the effect of the ARFs on individual spectra
(thin blue curves) are shown. As in Figure 2, the pdfs are generated using parameter
draws from an MCMC algorithm. The pdf resulting from combining all the draws
is also shown as the red stepped histogram. These curves include the effects of both
statistical and systematic errors, and because they represent draws from the true
posterior distribution functions, antomatically provide the most optimal descriptions
of the parameter uncertainties in the presence of effective area uncertainties. Note
that the pdfs in the high counts case, where the statistical component is relatively
suppressed, show that the systematic errors are not Gaussian.

Figure 4: Sensitivity of parameter uncertainty on number of tests

The simplest way to account for

Tl s the ARF uncertainty is to carry out spectral fits with different realizations of the ARF and combine the
1-HiHEH A — B resulting pdfs to determine the overall error. Clearly, the larger the number of fits done with separate
T B ARFs, the better the estimate will be. This figure shows the magnitude of the total error (small square
1 < points) for different numbers of ARFs used. The left panels are for spectra with 10 counts and the
P right panels, for 10° comnts. The upper panels are for o and the lower ones for Ny The red vertical
1 ER| bars denote the accuracy with which this error can be determined for any specific set of ARFs, and are
g ] determined for each set of N ARFs hy running spectral fits N x 200 times choosing different ARFs each
bl time. The “true” estimate of the total error is seen to reach an asymptotic value when only N &~ 20 ARFs
T4 s are used; including more ARFSs in the caleulation only serves to determine this value more robustly. For o
. . . . . . g4 . ; . . . comparison, we also show the systematic error estimate computed by Drake et al. (2007, SPIE, v6270, p49;
o n 0 ® a0 ® o M M ® M = see also Poster #109) as horizontal dashed lines. These points are generated by averaging only the best-fit DRAWPARAWETERS
e e parameter values calculated for a given spectrum while changing the ARF for each fit. Generally, these
values agree with each other, though the values based only on the best-fit tend to increasingly overestimate
the magnitude of the total error as the non-Gaussianity of the pdfs become more relevant.
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] Figure 5: Typical flow of a Markov-Chain Monte Carlo spectral fitting process, madified ta account for
1 H m HHHHMHHHHHHH uncertainty in calibration. We have shown above (Figures 2, 3 & 4) that the brute force approach of
. J { A 4 carrying out spectral fits with different simulated ARFs that represent our uncertainty in the calibration
P { H H f works well and produces reliable estimates of the total error. However, this is extremely inefficient because
1 most of the computational time is wasted in calculating pdfs for individual cases. It is possible ta speed
2 up the process by two or more orders of magnitude by incorporating the varying ARFs within the calcu-
14 lation. Briefly, if 6 are the parameters of interest. we can compute pdf= p(§ ARF, Data)-p(ARF), where
. P(ARF) represents the distribution of ARFs. The manner in which p(ARF) is included is shown here for
1 a typical MCMC data flow diagram. The data and calibration (ARFs, RMFs, etc.) are combined with
j T j j j j j T j j j j a spectral model, and the program iterates by drawing new samples of the parameter values (generally
o 0 B @ “ @ o 0 B @ “ @ tra ) : :
as deviations from the current values), computing the new likelihood, and adopting the new parameters
sars sars as necessary. This process is slightly changed with an additional selection of a new ARF, sampled from
p(ARF), prior to drawing new parameter values. We have implented this change in an MCMC based spec-
tral fitting algorithm, and find that we obtain the same pdfs as in Figure 3 with an ~ 100x improvement
in computational speed.
Figure 6: Decomposition of the principal components of variations in the Proposed Extension to ARF standard
30 T effective area. The procedure described in Figure 5 relies on the existence Once a set of ARFs {Ai(E;),i = 1, Nanp,j = 1, Njn} are generated such that they
0.4390.2370.108 0.0160.010 of a sample of simulated ARF's, or the ability of the researcher to generate encompass the range of nncertainty present in our knowledge of the ARF, the dit
such a sample. This is an onerous burden on most astronomers, but there is a ferences with respect to the default ARF An(F,), 64y — Ay, Ao are calculated,
— simple workaround. We propose that the ARF uncertainties be decomposed into and these carry the full uncertainty information. The {64} can be decomposed
20 their most prominent components and stored as files similar to the ARF itself o : . " :
IS ! P | via a principal components analysis to generate eigenvalues {e,} and eigenvectors
S In order to determine these components, we have used Principal Components . e ke n
X h - " y L : {vi(E;)}. The fraction of the variance in {§.A;} accounted for by the k** component
Analysis (PCA). This is not a unique solution, but is designed to be eminently e Nanr 3 ool veats o #
o practical. The top 8 components of the 1000 ARFs in Figure 1 are shown is given by fu = el/3, 5" el. A typical realization of an can be generate
s 10 here, as deviations from the default ARF, and the shaded regions representing as {A) = A + 34 + 305" i e i) where ri ~ N(0, 1) are Ganssian deviates,
= the range of variation accounted for by each component. The fraction of the A, = (1/Nanr) 32, a4y is the average deviation from the default, which is usually
= total variance in the ARFS that is explained by a given component are shown expected to be small and close t0 0. Neomy is formally equal to the number of ARFs
54 0 ;““f]l‘f top. The 8 components shawn here together account for > 95% of the in the sample, but can he reduced as needed ta discard companents that are ignorable.
o otal variance. Typically, Neomp ~ 10 15 is sufficient to account for > 99% of the variance. The
o - A'(E,) thus generated is used as the draw from p(ARF) in Figure 5
5 The results of the PCA decomposition can be stored in files in the same manner
o —10 + as ARFs and distributed widely for incorporating within spectral fitting routines. We
2 have adopted the following format for the file, which is reminiscent of the HEASARC
8 + not necessary to carry out simulations for each model parameter value ARF standard (CAL/GEN 92 002)
% —20 + no simplifying Gaussian assumptions made as to the nature of the error distributions o PRIMARY block: NONE
+ not necessary to know how to generate a sample of ARFs that represent the correct distribution of  SPECRESP_OFFSET black: similar to the SPECRESP extension, hut containing
uncertainties 54, in place of Ag; in the SPECRESP column
=30 L + the effect of uncertainties in specific regions in the ARF can he dealt with explicitly by choosing PCA ® PCA_EVALUE block: an array of Neomy values of the eigenvalues e;, stored in a
components appropriately single column
1 10

- requires a fitting engine that uses Markov-Chain Monte Carlo techniques

- care must be taken to ensure that a discarded component does not have a large effect on the analysis

in the energy range of interest

« PCAEVECTOR block: an array of size Noomp X Nin containing the eigenvectors
vij, with each row in the file ing the full ef for that
and with the rows matching one-to-one with those in the extension PCA_EVALUE.




