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Abstract.  Typical X-ray spectra have low counts and should be modedauuthe
Poisson distribution. Howevey? statistic is often applied as an alternative and the data
are assumed to follow the Gaussian distribution. A variétyweights to the statistic or

a binning of the data is performed to overcome the low cowsgsds. However, such
modifications introduce biases/and a loss of information. Standard modeling pack-
ages such as XSPEC a8terpaorovide the Poisson likelihood and allow computation
of rudimentary MCMC chains, but so far do not allow for sejtanfull Bayesian model.
We have implemented a sophisticated Bayesian MCMC-baggxdithim to carry out
spectral fitting of low counts sources in tBherpaenvironment. The code is a Python
extension tdSherpaand allows to fit a predefine8herpamodel to high-energy X-ray
spectral data and other generic data. We present the &lgoanhd discuss several is-
sues related to the implementation, including flexible diédin of priors and allowing
for variations in the calibration information.

1. Introduction

Standard spectral modeling packages provide a library ydiphl models, sets of statis-
tics and optimization methods to fit spectral data (&berpa XSPEC or ISIS). Two
classes of statistics are available: (1) Many flavorg<tatistics with diferent weights
to allow for fitting low counts X-ray spectra. However, evéedse statistics can lead to
biased results when applied to the non-Gaussian X-ray da@Arnaud et al. 2011);
(2) Poisson based likelihood statistics provide unbiagsdits, e.g.cash(derived by
Cash (1979)) o€, i.e. a slightly modified form otash In this case the background
and source data have to be modeled simultaneously whictt tsivial and there is no
simple goodness-of-fit test so often the various modificatiof y 2 have been used.
Poisson likelihood methods appropriate for low counts dedaire techniques for
checking model selections and assessing “goodness-dhéitinvolve sampling from
the posterior probability distribution. Available softreapackages contain the Poisson
likelihood and standard optimization methods. Howeveandhis no generally available
software to probe the posterior probability and check thpliag models using the
Bayesian methods which include prior. Markov Chain Monted @M CMC) methods
explore the posterior probability in Bayesian analysisey are more reliable than the
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Figure 1. Data flow diagram for the PyBLoCXS algorithm: Draargmeters
from a "proposal distribution”, calculate likelihood andgierior probability of the
"proposed” parameter value given the observed data, uset@pdis-Hastings cri-
terion to accept or reject the "proposed” values. The stepWiddfective area” to
account for calibration uncertainties in the simulatianmiarked in yellow.

standard downhill optimization algorithms which can geicktin local minima and
are highly sensitive to stopping rules, especially for carpikelihood surfaces. The
MCMC provides the full view of the posterior, and gives a dirgvay to calculate
parameter uncertainties and p-values (and ppp-values).

We have developed a Bayesian model for exploring the posterobability (van
Dyk et al. 2001). The method has been implemented in a Pytlasedpackage
pyblocxs which can be used iBherpamodeling and fitting application.

2. PyBLOCXS

PyBLoCXS is a sophisticated MCMC based algorithm desigonarhtry out Bayesian
Low-Count X-ray Spectral (BLOCXS) analysis in tB&erpaenvironment. The code is
a Python extension t8herpahat explores parameter space at a suspected minimum us-
ing a predefine®herpamodel. It includes a flexible definition of priors and alloves f
variations in the calibration information. It can be used¢ompute posterior predictive
p-values for the likelihood ratio test (see Protassov 2@02).

pyblocxs is based on the methods described in van Dyk et al. (2001) raut e
ploys a diferent MCMC sampler than the one presented in that articlgalticular,
pyblocxs has two sampling algorithms. The first uses a MetropolistiHgs jumping
rule that is a multivariate t-distribution with user spesifidegrees of freedom centered
on the best spectral fit and with multivariate scale deteeahiny theSherpafunction,
covar (), applied to the best fit. The second algorithm mixes this Mmilis-Hastings
jumping rule with a Metropolis jumping rule centered at thierent draw, also sampling
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according to a t-distribution with user specified degreefaddom and a multivariate
scale determined by a specified scalar multiple@far () applied to the best fit.

A general description of the MCMC techniques we employ alaity their con-
vergence diagnostics can be found in Appendices A.2 - A 4 oflgk et al. (2001)
and in more detail in Chapter 11 of Gelman et al. (2004)

3. Applications

pyblocxs is a generally available code. It can be used to perform akumportant
statistical tasks:

e Explores parameter space and summarizes the full postrimmofile posterior
distributions.

e Computes parameter uncertainties that can include ctibbrarrors.
e Simulates data from the posterior predictive distribugion

e Tests for added spectral components by computing the hiketl Ratio Statistic
on replicate data and the ppp-value (posterior-predigtivalues).

3.1. Calibration Uncertainties

Instrument calibration measurements such as féeckve area of a telescope have
known uncertainties. These uncertainties are often m@ali and cannot be simply
added to the statistical uncertainties. A standard appriaio just ignore these uncer-
tainties, mainly because there have been no methods torgdcothem in the analysis
software. However, these uncertainties are importantegsliimit the final parameters
constraints given by the observations. Also their impach@e significant in the high
signal to noise spectra (see Drake et al. 2006; Kashyap 20@8, Lee et al. 2011).

PyBLoCXS MCMC methods can take into account calibrationemainty, by in-
cluding an additional “update calibration” step in the MCN&Op (e.g. 'draw &ective
area’ step in Fig. 1). The new calibration data (effg@&ive area) is drawn just before
each computation of the likelihood and is used in the modauetion and the final ac-
ceptance of the parameters in the loop. Lee et al. (2011)isbsthe model that includes
the calibration uncertainties and was applied to Chandegtspp. They also compare
several methods to account for these uncertainties andstissome implications on
the overall data analysis. Figure 2 shows an impact of thbragibn errors on the un-
certainties. The departure between the statistical amd ¢otors is larger for the data
with the highest signal to noise indicating the limit in thmstraints that can be put on
model parameters, e.g. we cannot improve our knowledgetdbese sources with a
larger number of counts.

4, Summary

pyblocxs is used to analyze astronomical counts data. It provideM@®BMC simula-
tions to explore parameter space of models applied to Podata. It requireSherpa
and was only tested on applications to simple one componedels, while a param-
eter space can be complex for composite models. It is alailab aSherpaPython
extension ahttp://hea-www.harvard.edu/AstroStat/pyBLoCXS/index.html



4 Siemiginowska et al.

[ (b) Prog Boyes w.PCA

+ 1602
1.00F x 3055 -

E o 3056 < ]
[ A 3097 "
[ o 3098

x 3100 <>»’

[ m 3101 X
oqoL 03192
10 = 3103 E
I e 3104 >|.D3K E

I & 3105 w
F a308 YV

| & 3107
I > 377
v 866 .

L

(D)

0.01

0.01 0.10 1.00
ostut( r)

Figure 2. Comparison of the statistical and total error uhéccounts for cali-
bration uncertainties. Points are results afydlocxs fit to the data including the
calibration step in Fig.1 The dotted line represents etubéitween the statistical(x-
axis) and total (y-axis) errors (Lee et al. 2011). Note tlwtHigh counts sources
where the #&ect of calibration uncertainty is most prominent, the oilleearor
reaches a minimum even as the statistical error continugsdease with increasing
data quality.
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