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Abstract. Typical X-ray spectra have low counts and should be modeled using the
Poisson distribution. However,χ2 statistic is often applied as an alternative and the data
are assumed to follow the Gaussian distribution. A variety of weights to the statistic or
a binning of the data is performed to overcome the low counts issues. However, such
modifications introduce biases or/and a loss of information. Standard modeling pack-
ages such as XSPEC andSherpaprovide the Poisson likelihood and allow computation
of rudimentary MCMC chains, but so far do not allow for setting a full Bayesian model.
We have implemented a sophisticated Bayesian MCMC-based algorithm to carry out
spectral fitting of low counts sources in theSherpaenvironment. The code is a Python
extension toSherpaand allows to fit a predefinedSherpamodel to high-energy X-ray
spectral data and other generic data. We present the algorithm and discuss several is-
sues related to the implementation, including flexible definition of priors and allowing
for variations in the calibration information.

1. Introduction

Standard spectral modeling packages provide a library of physical models, sets of statis-
tics and optimization methods to fit spectral data (e.g.Sherpa, XSPEC or ISIS). Two
classes of statistics are available: (1) Many flavors ofχ

2 statistics with different weights
to allow for fitting low counts X-ray spectra. However, even these statistics can lead to
biased results when applied to the non-Gaussian X-ray data (see Arnaud et al. 2011);
(2) Poisson based likelihood statistics provide unbiased results, e.g.cash(derived by
Cash (1979)) orC, i.e. a slightly modified form ofcash. In this case the background
and source data have to be modeled simultaneously which is not trivial and there is no
simple goodness-of-fit test so often the various modifications ofχ2 have been used.

Poisson likelihood methods appropriate for low counts datarequire techniques for
checking model selections and assessing “goodness-of-fit”that involve sampling from
the posterior probability distribution. Available software packages contain the Poisson
likelihood and standard optimization methods. However, there is no generally available
software to probe the posterior probability and check the applied models using the
Bayesian methods which include prior. Markov Chain Monte Carlo (MCMC) methods
explore the posterior probability in Bayesian analysis. They are more reliable than the
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Figure 1. Data flow diagram for the PyBLoCXS algorithm: Draw parameters
from a ”proposal distribution”, calculate likelihood and posterior probability of the
”proposed” parameter value given the observed data, use a Metropolis-Hastings cri-
terion to accept or reject the ”proposed” values. The step “draw effective area” to
account for calibration uncertainties in the simulations is marked in yellow.

standard downhill optimization algorithms which can get stuck in local minima and
are highly sensitive to stopping rules, especially for complex likelihood surfaces. The
MCMC provides the full view of the posterior, and gives a direct way to calculate
parameter uncertainties and p-values (and ppp-values).

We have developed a Bayesian model for exploring the posterior probability (van
Dyk et al. 2001). The method has been implemented in a Python based package
pyblocxs which can be used inSherpamodeling and fitting application.

2. PyBLoCXS

PyBLoCXS is a sophisticated MCMC based algorithm designed to carry out Bayesian
Low-Count X-ray Spectral (BLoCXS) analysis in theSherpaenvironment. The code is
a Python extension toSherpathat explores parameter space at a suspected minimum us-
ing a predefinedSherpamodel. It includes a flexible definition of priors and allows for
variations in the calibration information. It can be used tocompute posterior predictive
p-values for the likelihood ratio test (see Protassov et al.2002).

pyblocxs is based on the methods described in van Dyk et al. (2001) but em-
ploys a different MCMC sampler than the one presented in that article. Inparticular,
pyblocxs has two sampling algorithms. The first uses a Metropolis-Hastings jumping
rule that is a multivariate t-distribution with user specified degrees of freedom centered
on the best spectral fit and with multivariate scale determined by theSherpafunction,
covar(), applied to the best fit. The second algorithm mixes this Metropolis-Hastings
jumping rule with a Metropolis jumping rule centered at the current draw, also sampling
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according to a t-distribution with user specified degrees offreedom and a multivariate
scale determined by a specified scalar multiple ofcovar() applied to the best fit.

A general description of the MCMC techniques we employ alongwith their con-
vergence diagnostics can be found in Appendices A.2 - A 4 of van Dyk et al. (2001)
and in more detail in Chapter 11 of Gelman et al. (2004)

3. Applications

pyblocxs is a generally available code. It can be used to perform several important
statistical tasks:

• Explores parameter space and summarizes the full posterioror profile posterior
distributions.

• Computes parameter uncertainties that can include calibration errors.

• Simulates data from the posterior predictive distributions.

• Tests for added spectral components by computing the Likelihood Ratio Statistic
on replicate data and the ppp-value (posterior-predictive-p-values).

3.1. Calibration Uncertainties

Instrument calibration measurements such as an effective area of a telescope have
known uncertainties. These uncertainties are often non-linear and cannot be simply
added to the statistical uncertainties. A standard approach is to just ignore these uncer-
tainties, mainly because there have been no methods to account for them in the analysis
software. However, these uncertainties are important as they limit the final parameters
constraints given by the observations. Also their impact ismore significant in the high
signal to noise spectra (see Drake et al. 2006; Kashyap et al.2008; Lee et al. 2011).

PyBLoCXS MCMC methods can take into account calibration uncertainty, by in-
cluding an additional “update calibration” step in the MCMCloop (e.g. ’draw effective
area’ step in Fig. 1). The new calibration data (e.g.effective area) is drawn just before
each computation of the likelihood and is used in the model evaluation and the final ac-
ceptance of the parameters in the loop. Lee et al. (2011) discuss the model that includes
the calibration uncertainties and was applied to Chandra spectra. They also compare
several methods to account for these uncertainties and discuss some implications on
the overall data analysis. Figure 2 shows an impact of the calibration errors on the un-
certainties. The departure between the statistical and total errors is larger for the data
with the highest signal to noise indicating the limit in the constraints that can be put on
model parameters, e.g. we cannot improve our knowledge about these sources with a
larger number of counts.

4. Summary

pyblocxs is used to analyze astronomical counts data. It provides theMCMC simula-
tions to explore parameter space of models applied to Poisson data. It requiresSherpa
and was only tested on applications to simple one component models, while a param-
eter space can be complex for composite models. It is available as aSherpaPython
extension athttp://hea-www.harvard.edu/AstroStat/pyBLoCXS/index.html
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Figure 2. Comparison of the statistical and total error which accounts for cali-
bration uncertainties. Points are results of apyblocxs fit to the data including the
calibration step in Fig.1 The dotted line represents equality between the statistical(x-
axis) and total (y-axis) errors (Lee et al. 2011). Note that for high counts sources
where the effect of calibration uncertainty is most prominent, the overall error
reaches a minimum even as the statistical error continues todecrease with increasing
data quality.
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