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Abstract. In low-count discrete photon imaging systems, such as ih bigergy
astrophysics, the spatial distribution of a very few (or)motons per pixel can indeed
carry important information about the shape of intereséingssion. Our Low-counts
Image Restoration and Analysis packag#RA, was designed to: ‘deconvolve’ any
unknown sky components; give a fully Poisson ‘goodnesktdbr any best-fit model;
and quantify uncertainties on the existence and shape afawrk sky components.
LIRAdoes this without resorting $¢” or rebinning, which can lose high-resolution in-
formation. However, since it combines a Poisson-specifitiracale model for the sky
with a full instrument response, within a (Bayesian) prditibframework, sampled
via MCMC — running it thoughtfully requires understandireysral key areas.

To this end, we have created and are releasing a ‘teachimgioveof LIRA
It is implemented in R (cran.r-project.org). The accompagyutorial and R-scripts
step through all the basic analysis steps, from simple rsatile representation and
deconvolution; to model-testing; setting quantitativeits; and even simple ways of
incorporating uncertainties in the instrument response.

1. Intro: Wonder, Glee, Skepticism, and LIRA

As one confronts beautiful, beautifully processed, astronomical imagesh-as many
in these proceedings — who does not feel the pull of wonder? As wedinwhe recog-
nizes that a newly visible feature appears to match one’s theory, isret dhsarp pull
of glee? Yet, in this paper, we advocate doubt: “where are the errs?’bar

LIRAwas developed precisely to quantify this doubt, for low-count Poisstan da
To do this,LIRADbrings together severalftrent kinds of machinery, from Multi-scale
(MS) models to Markov chain Monte Carlo (McMC) in a Bayesian framewarR,3].
Although made for Poisson counts, our schema of: a flexible or nonaafs@rametric
model; with a background or Null model; within a full likelihood framework; canve
as a model for more general data. The combination can at first feeltwin@nfor
even seasoned researchers. Hence, we have created a ‘teaghgigh, with many
examples, within the easy-to-use public statistical package/RRAis available from:
nathanmstein at gmail.com Or aconnors at eurekabayes.com
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Here, we briefly exhibit parts of one of the teaching examples. It is basexl
hypothetical ‘skytruth’ of a dtuse component (a broad letter E) and a cluster of point
sources (also forming a letter E) on a flat background, in 128x128dérshown in the
first figure. The instrument smearing, or point-spread function (RS&¥sumed to be a
circular Gauss-Normal distribution with = 1.5 bins. Simulated Poisson ddbebased
on these is shown in the 2nd panel. We display a ‘Null Model’ of tifeude emission
based on hypothetical measurements and theory: a broad ‘E’ — in theaBedl pThe
simulated data, PSF, and Null model, are input§tBA; one of the outputs is the mean
‘mismatch’ between the data and theory, shown in the last panel of the dis.fig
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2. LIRAMechanics:

LIRAcan be termed a ‘forward-fitting’ likelihood-based method, built undery&ian
umbrellla’. That is, we use a Bayesian framework to successively gades’ to the
total likelihood: Poisson likelihood of the dai (red); given a Null Model with pa-
rameterd), be designated bi(6) (blue); and the Instrument Responsel By(brown).
Then, using Bayes’ theorem, the posterior probability can be written as finghpanel
of the second figure, where @ designates a convolution.

(Model M(B)|Data D,Instrument Response IR, etc) = P(Model M(8), MisMatch(f, ’J\/[S)|Data D, Response IR, etc) =
PDIM(6),IR etc) P(M,Bletc) / P(D] IR, etc) = P(D](FM(B)+MS),IR etc) P(, M, aletc) / PD|IR,etc ) =
Poiss(D| M@|R> r(em(M)/P(U) Poiss(D|((M+M)@IR) FHm(Mym( ot )/P(D)
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Bayes Umbrellas: Adding a apoke (right panel; green).

In this form, it is easy for us to addraodeldata mis-matchspoke’ (green) to our
Bayesian umbrella. In our low-count regime, we formulate iwgdata mis-match
term to be gorefactortimes the null model, plus a Poisson-tailoradlti-scale model
[1,2,4] that will handle both fine details and broad features. But now thiere great
many parameters: rates at each successively finer multi-scale level tg@verevious



TeachingLIRAIN R 3

level; tuning (or smoothing or regluarization) hyper-parmeters, for &at; the Null

Model prefactor. Hence rather than e.g. a Powell or Levenbergpadt method for
finding a mode, we use Markov chain Monte Carlo to map out the full probabpge.
This allows us to get both a ‘best fit', and a way to express uncertaintiagyfeature
from the datgmodel mis-match.

3. Running LIRA

In the next several figures, we illustrate McMC in action, mapping out tapesbf our
posterior likelihood (or Bayesian Umbrella from the second figure). dtvshboth a
‘burn-in’ phase and a converged phase. Finally we illustrate that, irr ¢odget full
guantitative limits, we must perform the samfietRA analysis on a handful of simulated
data sets based on the Null Model (convolved with the instrument regpdiveehen
use a small subset of the parameters — in this case, the total counts infeesthtihe
multi-scale MS) component — as aummary statistiof the ‘distance’ between the
data and the null of the summary statistic give the upper and lower bounde simeihe
of the Dat@Null-Model mis-match.
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Iteration 125. Two start values: high (top imagé+’); low (bottom image, +).
Orange arrows roughly indicate burn-in range for high starting values.
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LIRAResults, after burn-in. Left: Mean Images from Data (top) vs. Simulated Nulls
(bottom). Right: Distributions of Data (dark colors) vs Simulated Nulls (brightrs).

LIRAResults, limitson shape. Data (top) vs Simulated Null (bottom): Left: lower
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