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Classifying Black Hole States 
— Lessons Learned in Machine Learning—



How do black holes accrete 
matter?



General 
Relativityplasma physics + 

magnetic fields

jet physics + particle 
acceleration

stellar winds



What is the long-term evolution 
of black hole X-ray binaries?



GRS 1915+105



Belloni et al, 2000, Klein-Wolt et al, 2002, Hannikainen et al, 2004



Belloni et al, 2000, Klein-Wolt et al, 2002, Hannikainen et al, 2004

Machine learning



— NYAS Machine Learning Symposium

“Machine Learning, a subfield of computer 
science, involves the development of 

mathematical algorithms that discover 
knowledge from specific data sets, and then 
"learn" from the data in an iterative fashion 

that allows predictions to be made”



+ very flexible

—   often not designed to do inference 

—   sometimes hard to interpret 

—   strongly input-dependent

+ works on large data sets

+ excellent at prediction problems



Belloni et al, 2000, Klein-Wolt et al, 2002, Hannikainen et al, 2004



Lesson 1: data characteristics 
are important!



GRS 1915+105

• ~10,000 light curves 

• “ground truth” classifications supplied by humans 

• heavily imbalanced data set



Lesson 2: Feature Engineering is 
hard!



Belloni et al, 2000, Klein-Wolt et al, 2002, Hannikainen et al, 2004



Feature Engineering

• mean/variance/skew of time series 
• autoregressive model of time series 
• maximum power in PSD 
• power colours (Heil et al, 2014) 
• PCA decomposition of PSD 
• hardness ratio mean/variance/covariance



Lesson 3: sometimes fancy 
methods doesn’t help!



Machine Learning

• use human classification as “ground truth” 
• logistic regression 
• cross-validation 
• 92.5% accuracy on test set

https://github.com/dhuppenkothen/BlackHoleML

https://github.com/dhuppenkothen/BlackHoleML
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Figure 4. Projection of the 10-dimensional feature space into 2 dimensions using PCA. On the left side, the original human classifications
in colour and unclassified samples in grey. On the right, we show the union of the human classification and the predicted states for the
previously unclassified samples. Even in this low-dimensional representation, it is possible to see how samples belonging to the same state
tend to cluster close together. That this is true also for the combined human and machine classified samples indicates that the logistic
regression model performed fairly well. We note that seemingly disconnected regions are an artifact of reducing 10 dimensions to 2 and
plotting many points of di↵erent classes in the same Figure.

makes it unfavourable to choose longer segments, thus a small
fraction of segments always run the risk of being confused
in this way. It is worth noting, however, that many of the
samples falling in this particular case occur only once or at
most twice in the test set for a certain combination of classes,
thus they are expected to add only a small amount of noise
to the classifications.

• For some cases where human and machine classifications
disagree, the simple summary statistics and autoregressive
model used to represent the variability in the light curves
fail to fully encode the complexities of the patterns observed
in GRS 1915+105. The most striking example is the ⇢ state,
where several segments were instead classified as belonging
to the � state instead. Looking at the light curve, it is fairly
straightforward for the human brain to distinguish both
states based on the patterns in the light curve. However,
for several cases, the model used for encoding variability
was not su�cient to fully appreciate the di↵erences between
those two states, in particular since the power spectra look
fairly similar. Here, a better model for the light curves would
clearly have helped with the classification, however, building
such a model for light curves as complex as those observed in
GRS 1915+105 is a major undertaking and thus the subject
of future work.

• There are several confused cases where the rigid classi-
fication into 14 states does not capture the behaviour very
well. For example, there is a number of examples of the
� state that have a higher count rate by a factor of ⇠ 3
than typical examples of this state; these light curves are
routinely mis-classified as non-flaring parts of either ⌫ or ✓
states, whose dim intervals tend to be much brighter than
any typical � light curves. Similarly, there is a set of � light
curves mis-classified as belonging to the ⇢ state. This may
seem surprising at first; however, closer inspection reveals
very regular flares in these light curves as well as a much

Figure 5. Confusion matrix for the machine classification (x-axis)
versus the human classification (assumed as the “true label”) on
the y-axis. On the diagonal are classes where the human and
machine classifications agree. O↵-diagonal cases occur where there
is a disagreement.

higher variance than is typically observed in the � state.
Perhaps these light curves show a transition between the �

and ⇢ state, and therefore has properties reminiscent of both
classes, which in turn confuses the classifier.

MNRAS 000, 1–15 (2016)



Lesson 4: physical 
interpretation requires 

probabilities
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Figure 5. Confusion matrix for the machine classification (x-axis)
versus the human classification (assumed as the “true label”) on
the y-axis. On the diagonal are classes where the human and
machine classifications agree. O↵-diagonal cases occur where there
is a disagreement.

computer agree show a very high predicted probability for
the chosen class (> 0.85 in more than 75% of all cases) and
a peaked probability distribution (with low probabilities for
all other classes). This is generally not the case for confused
cases, which show much flatter probability distributions and
the classifier is generally uncertain about its prediction. In
these cases, the predicted probability of the class chosen by
the computer can be as small as 0.3 and often close to the
probability assigned to the human-generated class.

4.2 Overall Distribution of States

In Figure 6 we compare the total duration the source spent in
each state during the observed intervals for both the human
classified part of the data as well as the computer-generated
classification. At the same time, this presents a split in time:
Belloni et al. (2000) and Klein-Wolt et al. (2002) classified
observations between 1996 June and 1999 December, with
an additional state identified in an observation on 2003 Mar
6 (Hannikainen et al. 2003, 2005). Trained on these human
classifications, we allowed the computer to find classes for
the remaining observations, spanning from 2000 Jan to the
end of RXTE’s lifetime in early 2012. Assuming that the
logistic regression model generally reproduces the human
classification, one may then use the data set to search for
time evolution in the overall pattern of states.

We find that broadly, the machine classification repro-
duces the human classification. Particularly the � state re-
mains the most common state to find GRS 1915+105 in.
Other states such as ✓, ⇢, , µ, ↵ and ! are represented sim-
ilarly often, other classes occur with a significantly di↵erent
frequency in later observations. It is important to note here
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State

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
ac

ti
on

of
T

o
b
s
sp

en
t

in
st

at
e

Distribution of classified states from the supervised classification
human

computer

Figure 6. Fraction of total observation time Tobs assigned to a
certain state in both the human-classified data (1996-⇠2000; blue)
and the machine-classified data ( ⇠2000 - 2011; red). Durations
spent in each state are calculated from the human and computer-
generated labels taking into account the overlap between segments
for long observations.

that the initial distribution on the state occurrences in the
logistic regression model was based on the previous state
occurrences, that is, a state with a higher previous occurrence
was more probable to occur again than a state that was only
seen once or twice. In this context, it is interesting to note
the relatively higher fraction of time spent in the � and �

states compared to the human-classified data set.
Conversely, the states � and ⌘ occur much less frequently

during later observations compared to the earlier data set.
For class ⌘, this may, to some degree, be due to chance: with
only one confirmed observation and the small fraction of
telescope time spent on the source, it is intrinsically hard to
reliably estimate the duration of the source previously spent
in this state. Based on our results from Section 4.1, it is
unlikely that confusions between states play a significant role
in explaining all discrepancies between the state durations
in the human and computer-classified data sets. Confusions
seem to dominate in classes whose fraction of observation
time are very similar.

For the classes with the strongest relative discrepancies—
�, � and � and ⌘—we also explored the probabilities of the
assigned state in an e↵ort to learn how certain the logistic
regression model was in its classification for those states. We
find that for states �, � and ⌘, the classifier is fairly certain
in its predictions: for example, for class �, more than 94% of
all classified samples have a probability for the source being
in state � that is > 0.8, and for 98% of all classified samples
have a probability of � being the true state that is at least
twice that of the state with the second-largest probability.
For this state, there is a small population of samples (⇠ 7%)
that might be in state � or ⌘ with a probability of up to 0.4,
that is close to equally likely to the classification as �.

For class �, which shows the largest growth between the
early and the late data set, the situation is much less clear.
The confusion matrix in Figure 5 shows a significant fraction
of other states, most notably ✓ and ⇢ being mis-classified
as �, raising the question whether these mis-classifications

MNRAS 000, 1–15 (2016)

Distribution of states evolves over 16 years!
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Figure 7. Transition matrix of states. We used human labels
where available, and labels inferred by the logistic regression model
trained on the human labels where the latter were unavailable. The
matrix presents the probability of arriving in state xt+1 given the
current state xt. The probability is row-wise normalized such that
the probabilities to arrive in any new state j from a given state
i sum to one:

PN
j=1 p(xt+1,j |xt,i) = 1. The diagonal indicates

transitions into the same state.

the machine-classified data set, were the second-most prob-
able state, and compared their probability to that of the
state the logistic regression model chose for these specific
samples. We find that state � comes often second to �-state
observations. However, because the hardness ratios are quite
di↵erent for both states, we find that the logistic regression
model assigns these samples to class � with a very high de-
gree of confidence (with a �-state probability of > 0.8 in 90%
of all samples where � has the second-highest probability).
This indicates that the paucity of �-state observations in
recent years is likely real. Similar reasoning applies to state
⌘, where we find similar numbers for the confidence that
the light curves in question belong to the � state instead.
Additionally, both � and ⌘ are extremely rarely confused in
the validation and test data sets; in the case of ⌘, it is more
likely to gain false positives from mis-classifications of state
�.

Overall, we conclude that there likely was a drop in the
occurrence of states � and ⌘ in the later observations that
cannot be explained by confusions with other classes.

4.3 Time Evolution of States

While the logistic regression model employed in the clas-
sification task does not include any time dependence, it is
instructive to put the classified observations into context over
the sixteen years of RXTE monitoring. In Figure 7, we show
a transition matrix between states. Each row in this matrix
represents a probability to pass from initial state i to final

state j, p(xt+1,j |xt,i). The transition matrix was constructed
by using the human classified states for observations where
these labels exist, and the computer-based classification for
all other observations. We then counted transitions from each
state i into each other state j for the entire RXTE data set,
and row-wise normalized such that the probabilities to move
into state j from state i sum to one.

Note, however, that there is an important caveat in this
procedure: it implicitly assumes continuous observations that
are causally connected, that is, the state does not change
between one observation and the next. This is not true in
practice: RXTE observed GRS1915+105 for ⇠ 2 ks per day,
leaving most of the day unobserved. Rapid state transitions
are possible, thus the transition matrix here can only be seen
as an indication of how state transitions might occur in this
source. However, a more realistic transition matrix requires
more complex (time-dependent) methods that are beyond
the scope of this paper.

Overall, it appears that the transition matrix is well-
connected: most state transitions are possible, though many
occur with a fairly low probability. Transitions to and from
the �-state occur more frequently than most other transition,
which is not surprising given that the source spends the
majority of its time in this state. Conversely, the probability
distribution for leaving the �-state is fairly flat, indicating
that the source is more or less equally likely to go into any
of the other states.

There are several other transitions that occur with higher
probability. For example, the source is more likely to move
from state ↵ into state �, compared even with �. Some
transitions do not occur at all, for example transitions from
states � and � into state ↵ or from states ↵ and ⌘ into state
�. In principle, unobserved transitions are of as much interest
as those that occur frequently, though their interpretation
requires caution.

While the transition matrix is calculated as a set of
probabilities, all we can say about the transitions with a
probability of 0 is that they have not been observed during
the lifetime of RXTE. This may just as well be due to the lack
of continuous observations and the low observational duty
cycle as a real physical e↵ects. In practice, it is interesting to
note that while the transition matrix is overall not symmetric
(transitions from state i into state j have a di↵erent proba-
bility from transitions from state j into state i), there are
some notable symmetries. In particular, transitions between
states ↵ and �, states � and ⌘, states µ and !, and states
µ and ⌘ never occur in either direction. They indicate that
perhaps the transition matrix encodes real physical e↵ects
that a better model could capture more e�ciently.

4.4 Supervised Classification with Physically
Motivated Labels

The connection between long-term evolution of the patterns
observed in GRS 1915+105 and the underlying physical
processes of the accrection disc are poorly understood. There
is no comprehensive accretion theory that could explain
the complex variability observed in the source. Therefore,
we can only attempt a comprehensive phenomenological
description, as done above. However, there are attempts to
connect the set of states with some underlying mechanisms.
In particular, Misra et al. (2004, 2006) and Harikrishnan et al.

MNRAS 000, 1–15 (2016)
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Figure 7. Transition matrix of states. We used human labels
where available, and labels inferred by the logistic regression model
trained on the human labels where the latter were unavailable. The
matrix presents the probability of arriving in state xt+1 given the
current state xt. The probability is row-wise normalized such that
the probabilities to arrive in any new state j from a given state
i sum to one:

PN
j=1 p(xt+1,j |xt,i) = 1. The diagonal indicates

transitions into the same state.

the machine-classified data set, were the second-most prob-
able state, and compared their probability to that of the
state the logistic regression model chose for these specific
samples. We find that state � comes often second to �-state
observations. However, because the hardness ratios are quite
di↵erent for both states, we find that the logistic regression
model assigns these samples to class � with a very high de-
gree of confidence (with a �-state probability of > 0.8 in 90%
of all samples where � has the second-highest probability).
This indicates that the paucity of �-state observations in
recent years is likely real. Similar reasoning applies to state
⌘, where we find similar numbers for the confidence that
the light curves in question belong to the � state instead.
Additionally, both � and ⌘ are extremely rarely confused in
the validation and test data sets; in the case of ⌘, it is more
likely to gain false positives from mis-classifications of state
�.

Overall, we conclude that there likely was a drop in the
occurrence of states � and ⌘ in the later observations that
cannot be explained by confusions with other classes.

4.3 Time Evolution of States

While the logistic regression model employed in the clas-
sification task does not include any time dependence, it is
instructive to put the classified observations into context over
the sixteen years of RXTE monitoring. In Figure 7, we show
a transition matrix between states. Each row in this matrix
represents a probability to pass from initial state i to final

state j, p(xt+1,j |xt,i). The transition matrix was constructed
by using the human classified states for observations where
these labels exist, and the computer-based classification for
all other observations. We then counted transitions from each
state i into each other state j for the entire RXTE data set,
and row-wise normalized such that the probabilities to move
into state j from state i sum to one.

Note, however, that there is an important caveat in this
procedure: it implicitly assumes continuous observations that
are causally connected, that is, the state does not change
between one observation and the next. This is not true in
practice: RXTE observed GRS1915+105 for ⇠ 2 ks per day,
leaving most of the day unobserved. Rapid state transitions
are possible, thus the transition matrix here can only be seen
as an indication of how state transitions might occur in this
source. However, a more realistic transition matrix requires
more complex (time-dependent) methods that are beyond
the scope of this paper.

Overall, it appears that the transition matrix is well-
connected: most state transitions are possible, though many
occur with a fairly low probability. Transitions to and from
the �-state occur more frequently than most other transition,
which is not surprising given that the source spends the
majority of its time in this state. Conversely, the probability
distribution for leaving the �-state is fairly flat, indicating
that the source is more or less equally likely to go into any
of the other states.

There are several other transitions that occur with higher
probability. For example, the source is more likely to move
from state ↵ into state �, compared even with �. Some
transitions do not occur at all, for example transitions from
states � and � into state ↵ or from states ↵ and ⌘ into state
�. In principle, unobserved transitions are of as much interest
as those that occur frequently, though their interpretation
requires caution.

While the transition matrix is calculated as a set of
probabilities, all we can say about the transitions with a
probability of 0 is that they have not been observed during
the lifetime of RXTE. This may just as well be due to the lack
of continuous observations and the low observational duty
cycle as a real physical e↵ects. In practice, it is interesting to
note that while the transition matrix is overall not symmetric
(transitions from state i into state j have a di↵erent proba-
bility from transitions from state j into state i), there are
some notable symmetries. In particular, transitions between
states ↵ and �, states � and ⌘, states µ and !, and states
µ and ⌘ never occur in either direction. They indicate that
perhaps the transition matrix encodes real physical e↵ects
that a better model could capture more e�ciently.

4.4 Supervised Classification with Physically
Motivated Labels

The connection between long-term evolution of the patterns
observed in GRS 1915+105 and the underlying physical
processes of the accrection disc are poorly understood. There
is no comprehensive accretion theory that could explain
the complex variability observed in the source. Therefore,
we can only attempt a comprehensive phenomenological
description, as done above. However, there are attempts to
connect the set of states with some underlying mechanisms.
In particular, Misra et al. (2004, 2006) and Harikrishnan et al.

MNRAS 000, 1–15 (2016)



Lesson 5: Human-based 
classifications are only accurate to 

~90% (and may include biases)



Future: Combine machine 
learning with Bayesian inference!



http://ngoix.github.io/cyg-x1/index.html

Use methods from computational 
chemistry!

*with V. Grinberg, A. 
Müller and N. Goix

Hidden Markov Models*

http://ngoix.github.io/cyg-x1/index.html


Conclusions

- time series are an important tool to study 
physical processes in black holes and other 
astrophysical objects 

- machine learning can be an excellent tool 
to uncover structure (but interpretability 
is important) 

- using logistic regression, we can uncover 
the long-term state evolution of GRS 
1915+105


